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NEWTON POLYGONS AND GEVREY INDICES FOR

LINEAR PARTIAL DIFFERENTIAL OPERATORS

MASATAKE MIYAKE AND YOSHIAKI HASHIMOTO

0. Introduction

This paper is a continuation of Miyake [7] by the first named author, λ

shall study the unique solvability of an integro-differential equation in the ca

gory of formal or convergent power series with Gevrey estimate for the coei

cients, and our results give some analogue in partial differential equations

Ramis [10, 11] in ordinary differential equations.

In the study of analytic ordinary differential equations, the notion of irre^

larity was first introduced by Malgrange [3] as a difference of indices of

differential operator in the categories of formal power series and converge

power series. After that, Ramis extended his theory to the category of formal

convergent power series with Gevrey estimate for the coefficients. In these studi

Ramis revealed a significant meaning of a Newton polygon associated with

differential operator.

We define a Newton polygon of a partial differential operator following

idea of Yonemura [13] which is an extension of Ramis' one. Let

(0.1) P= Σ Σ Σ aaia(x)t° Dί DS

be a partial differential operator of finite order with holomorphic coefficients ir

neighbourhood of the origin, where t = (tι,' * * ,tp) ^ C^ (p ^ 1), x — (xι,' ' *,:

e C* ( q > 0), Dt = (d/dtu ,d/dtP), etc.

For (σ,j, a) e N* X N* x N9, we define a left half line Q(σ,j, a) in

plane R2 by

(0.2) Q(σ,j,a) : = { ( « , \σ\ -\j\) e R 2 u < \j \ +

Now a Newton polygon N(P) of the operator P is defined by

a |
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16 MASATAKE MIYAKE AND YOSHIAKI HASHIMOTO

(0.3) N(P) := Ch{Q(σ, j, a) (σ, j, a) with aσja(x) & 0),

where Ch{ } denotes the convex hull of sets in {•}. By the definition, Newton

polygon N(P) looks like as follows.

(i) The case of polynomial coefficients in i

(ii) The case of non polynomial coefficients in t.

Lk(k=l/(s-l))

Ramis made clear the meaning of sides and vertices of N(P) in the case of

ordinary differential operator (i.e., {p, q) = (1,0)) from a view point of index

theorems of the mappings,

(0.4)

(0.5)

P: GS->GS,

1 '. \J * (jΓ

as follows. For the definitions of Gs and G(s\ see § 1.2.

For s G R, we put k = 1/(5 - 1) e R U {°o}. We draw a line Lk with slope

k such that Lk contacts with N(P) at a vertex or on a side of N(P). Then the in-

dex χ(P;Gs) (resp. χ(P; G{s))) of the mapping (0.4) (resp. (0.5)) is given by

χ(P; Gs) = - minίt; («, υ) e N(P) Π I J (resp. χ(P; G{s)) = - max {v

(M, V) e N(P) Π L J ) (see Ramis [10, 11] for the detailed descriptions).
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The aim of this paper is to give some analogue of these results. For a partial

differential operator, dimensions of kernel and cokernel, however, are infinite in

general. Therefore, we shall study the unique solvability of the Cauchy-Goursat

problem,

\Pu(t,x) =f(t,x),
1 j \u(t, x) - w(t, x) = O(tιxβ) (/ e N>, β e N«),

in the category Gs or G{s) (s G R U {+ °°}). For this purpose, it is convenient to

convert the problem to the bijectivity of the mapping for an integro-differential

operator L' = PDf1 Dχβ,

(0.7) L\GS->GS o r L:G (s) .

by replacing the unknown function u(t, x) to U(t, x) by u = Dt

 ι Dx

β U + w.

In Chapter 1 (§1—§4), we shall study an integro-differential operator of the

form,

(0.8) L = I - f Σ 6 a σ j a ( x ) t σ D{ D£ ( σ e N ' , j ^ Z p

y a ^ Z q ) y

where / denotes the identity map. We call this operator of standard type, because

such an operator is derived from the Cauchy-Goursat problem of usual type (see,

for exampe, §1.6 and Wagschal [12]). Under an assumption that the origin is a

vertex or is in a side of the Newton polygon N(L), which will be defined in §1.4,

we shall study the bijectivity of the mapping (0.7) (Theorems A and B).

In Chapter 2 (§5—§7), we shall study an integro-differential operator of the

form,

(0.9) L = PΛδt) - f Σ 6 aσja(x)tσD{ DS (σ e N*, E Z ^ G Z*),
σ,j,a

where Pm(δt) is a multi-dimensional Euler type operator of order m. Such an

operator was called of Cauchy-Goursat-Fuchs type in Miyake [7], because such an

operator is derived from the characteristic Cauchy problem of Fuchs type or a

multi-dimensional singular operator of Fuchs type. Under an assumption that a

point (m, 0) is a vertex of the Newton polygon N(L), we shall study the bijectiv-

ity of the mapping (0.7) (Theorem C), and also we shall characterize such number

s G R that the mapping,

(0.10) L:G+00/GS-^G+00/GS,

is bίjective (Theorem D), which is known as Maillet's type theorem in ordinary
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differential equations (see Malgrange [4], Gerard and Tahara [1] and references

cited there).

We note that in Yonemura [13] and Miyake [7] only the first positive slope

among the sides of N(L) was analyzed, and hence only the case s > 1 was stu-

died. We also note that the case 0 < 5 < 1 was essentially studied in Miyake [6].

Therefore, the most interesting part in this paper is in the treatment of the spaces

Gs and Gis) for s < 0, and we shall see that this case is completely different from

the case s > 0 (see Theorem B and Miyake [8]).

For the simplicity of descriptions, we restrict ourselves to the operator with

polynomial coefficients in the variables /, but the results obtained in the case

s > 1 hold under the assumption that the coefficients belong to Gs or G{s) accord-

ing to the mapping (see Miyake [7] and Remark 3.2).

At the end of the introduction, we wish to mention that we can see another

analogy between the studies of ordinary and partial differential equations in the

problems of characterization of regular singular points for systems of ordinary

differential equations and that of Kowalevskian systems for partial differential

equations (compare Miyake [5] with Moser [9] and Kitagawa [2]).

Chapter 1. Operators of standard type

1. Statement of results

1.1. Integro-differential operators of standard type

Let t = (h,...,tp) ^ Cp (p > 1) a n d x = (xlf...,xq) e Cq (q > 1 ) . W e shal l

study the following integro-differential operator with holomorphic coefficients in a

neighbourhood of the origin:

(1.1) L = I-hΣe aσja(x)tσD!D2 (σ e N>, e Z'f a^Zq),
σ,j,a

where / denotes the identity map and N (resp. Z) denotes the set of non negative

integers (resp. integers).

For j = 0Ί, * * * JP) G Z*. we define D{ = DR- -Dj> as follows:

rtk

Dtk

 := d/dtfc and DΓk

ι : = I (integration in the variable tk from 0 to tk).
J o

We define | j \ = j \ + j 2 + ' * * + jp ^ Z for j €= 7/ as usually. It is the same for

DS for a e Zq.
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1.2. Gevrey spaces Gs and G(s)

We denote by G+o° the set of formal power series of the form,

U(t,x) = Σ ί//(x)4

where Uι(x) are holomorphic in a common neighbourhood of x = 0 for all / G N*.

DEFINITION 1.1. Let s e R U {± 00} a n d jj{t, x) e G+ O°.

(i) f/(ί, x) G Gs (s G R) if there are positive constants X and T such that

(1.2) max | U,(x) \ < C^jjf (/e N>)

holds for some non negative constant C. Here, || x \\ '-— Σ!Li I ̂  l

(ii) U(t, x) ^ G ( s ) (5 e R) if there is a positive constant X such that

(1.3) max | Ut(x) I < C(T) ^(]f (/ G NO

holds for any T > 0 and some non negative constant C(T) depending on T.

(iii) G-°°:= Π Gs, G^ ^ Π G ( 5 ), G ( + o o ) : = U G ( 5 ).
seR seR seR

By the definition, G1 is the set of holomorphic functions in a neighbourhood

of the origin and Gs (s < 1) is the set of locally holomorphic functions in the

variables x and entire functions of exponential order 1/(1 — s) in the variable t.

The other function spaces are now easily understood.

1.3. Problem

We shall study the following mappings,

(L)s L: GS-*G

for 5 e R U {± oo},

The purpose of this chapter is to characterize the number 5 such that the

above mapping will be bijective. In conclusion, we shall see that such a number is

characterized from the slopes of sides of a Newton polygon N(L) of the operator L

defined below.
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1.4. Newton polygon N(L)

For (σ, , ^ E f x Z ^

plane R2 by

Zq, we define a left half line Q(σ, j , a) in a

,j,a): = {(u,\σ\ - \j |) e R2 u < \j\ + \ a |

Then a Newton polygon N(L) of L is defined by

(1.4) N(L) : = Ch{ζ)(σ, /, a) (σ, , α) with aσja(x) ^ 0}.

Here Ch{*} denotes the convex hull of sets in {•}. We note that Q(o, o, o) (which

corresponds to the identity map /) is included in this set.

1.5. Results

First of all, we assume the following fundamental assumption.

(A) The origin is a vertex or is in a side with non zero slope of N(Z,).

k-

k0 Ψ 0

First, we study the case where the origin is a vertex of N(L).

Let k+ e R U {+00} (resp. k- e R U {-00}) be the slope of the side of

N(L) with the origin as an end point which is lying in an upper (resp. a lower)

half plane.

We define two numbers s* ̂  R U {+ °°} (i = ± , s+ < s_) by

(λ ^) c. = 1 - I — —

Here we make the following rule:

(i) If k- = 0, then s_ : = lim* 1 0 1 + (1/Λ) = + 00.

(ii) If k+ = + oo? then 5+ = 1.
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(iii) If k- = — oos then s_ = 1.

(iv) If k+ = 0, then s+ : = lim* τ o 1 + (I/A) = - oo.

Now our first result is stated as follows.

THEOREM A. We assume the following additional condition,

(1.6) Σ I aoja(0) I < 1 (Spectral condition),

where o — (0, ,0) <= N^. Then we have:

(i) If s+ < 5 < S-, then (L)s and (L)(S) are bijective.

(ii) (L)s+ is bijective.

(iii) (L)(S_) Ϊ5 bijective.

(iv) 7/5- = + °°, then (L)+o* is bijective.

Remark 1.2. The assumption (1.6) can be weakened as follows.

(1.6)' There are r G R i and ξ e R^ (R+ : = (0, + oo)) s u c h that

Σ \aO]a{Q)\τ}ξa<l.
l;Ί = ι α ! = o

Indeed, if we transform the variables (t, x) to (s, y) by t — (Γi5i, ' ,τpsp) and x

— iζiVu' '' yζqVq), then the condition (1.6)' is reduced to (1.6).

Next, we study the case where the origin is in a side of N(L). Let /c0 (=£ 0) be

the slope of this side and put

(1.7) so'= 1 + 4 - eR.

Then we can prove the following,

THEOREM B. (i) Let So > 0. Ttot under the condition,

(1.8) Σ I flo α(O) I < 1 (Spectral condition),
sol;i + lcrl=0

the mapping (L)so is bijective.

(ii) Let So ^ 0 and assume the following condition,

(1.9) A: = Σ ( 1 ) e l ί l + " " | aO J £ r(0) |

+ Σ ( 2 ) esoibι + ιal)\ aOja(0) I < 1 (Spectral condition),
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where the summations are taken over (j, a) such that So | j | + | Oί \ — 0. Then the

mapping (X)(S0) is injective and the mapping, L : Gso—* Giso\ is surjective.

Remark 1.3. (i) The conditions (1.8) and (1.9) can be weakened as the same

manner as Remark 1.2.

(ii) The condition (1.8) seems to be best in the general framework, but the

possibility of improvement of the condition (1.9) will be a problem leaving in the

future.

The following proposition is an immediate consequence of the definitions s±

and So, but it will play an important role in the proofs of the theorems.

PROPOSITION 1.4. Let s, (i = ± , 0) be as above, and s+ < s < s_ or s = s0.

Then it holds that

( 1 . 1 0 ) s i ; I + ( 1 - s) \ σ \ + \ a \ = s ( \ j \ - \ σ \ ) + \ σ \ + \ a \ = - δ < 0,
put

for any (σ, j , a) with aσja(oc) ^ 0.

Ifs+ < s < s-, thenδ = 0 if and only if (| a + \j\, \ σ\ - | ; | ) = (0,0). If s =

Si (i= ± , 0), then δ = 0 if and only if (| a + | j |, | σ \ — \ j |) is on a side o/

with the slope kj. Therefore, if s = s+ (resp. s = s_), ί/iew δ = 0 on/y i/ | σ |

σ | < | ; | ) .

1.6. A simple application and a remark

(A) Let P = P(t, x; Dt, Dx) be a partial differential operator given by (0.1)

and N(P) be its Newton polygon defined by (0.3). We study the surjectivity of

mappings,

(P)s P:GS^G\

(P)is) P:Gis)-+G{s)

for s e= R U {± oo}.

We draw a line Lk with slope k -= 1/(5 — 1) which contacts to N(P) as in

introduction. We define two vertices Vs = (u0, v0) and V(S) = (uu Vι) of N(P) by

Vo = minίz;; (M, V) G N(P) Π L j ,
( ' } t;i = maχ{t;; (M, υ) e N(P) Π L j .

We put
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a , - \j\) = Vs),

= Vίs)}.a\, -

V, = {(o, j , a ) e N ' x N » x N ' ; aoia(0) Φ 0, (\j\

Vω = {(o, j , « ) e N f x N » x N ' ; aotaφ) Φ 0, {\j\

Then Theorem A implies:

o

(i) If Vs Φ φ then the mapping (P)s is surjective.
o

(ii) If V(S) Φ φ then the mapping (P)(S) is surjective.

Indeed, to prove the statement (i) it is sufficient to show the existence of
0

(0, /, β) ^ Vs such that the Goursat problem,

Pu(t, x) =f(t, x) e Gs, u(t, x) = O(tιxβ)

is uniquely solvable in G s. Theorem A shows that it is sufficient if we can take

(/, β) such that

(1.12) aolβ(0) Σ
(o,j,a)evs\(o,l,β)

holds for some (r, ξ) ^ R+ X R+. Now the existence of such (/, β) is easily

proved as follows: if # {j (o, j , a) ^ Vs) ̂  2, then we take (o, I, β) ^ Vs such

that / is a vertex of Ch{; ^ N^ (o, i , a) ^ Vsl, where # {•} denotes the cardin-

al number of {•}. If # {j (o, , α) ̂  V5} = 1, then we take (0, /, /3) ^ Vs such

that j8 is a vertex of Ch{α e N ? (0, , α) e VJ.

It is the same for the statement (ii).

In a special case of an operator P with constant coefficients, the mappings

(P)s and (P)(S) are surjective for all s ^ RU {+ 00}.

(B) We consider the following Goursat problem,

(Pu(t, x) : = {aDlDS ~ Dl~j Dξ+J+a ~ Di+> Dtj~a}u = f (ί, x),
( ' } \u(t,x) ~ w(t,x) = O(tιxβ),

where t, x e C, 1 <j < /, - ^ - < α < β - j and α e C\{0}. In this oper-

ator, — ̂  /; < So = 1 + (a/j) < β/j. Theorem B implies:

(i) Let a > —j. Then So > 0 and the problem (1.13) is uniquely solvable in

Gs° if I a I > 2. The condition | a \ > 2 is the well known spectral condition in the

case a = 0 (i.e. s0 — 1).

(ii) If a < — j , then s0 ^ 0. Therefore, the problem (1.13) is solvable in Gs°

for any/, w <Ξ G ( 5 Q ) if | a \ > exp(soα) + exp(— a).

In Miyake [8], we shall study this operator and discuss more precisely the

spectral condition on a, where we shall find that the circumstances are completely
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different between the cases s0 > 0 and s0 ^ 0.

2. Gevrey spaces GS(T, X; k) (s > 0) and Gs

n(T, X; k) (s < 0)

We denote by 0(||.r || < X) (X > 0) the set of holomorphic functions in a do-

main || x II ' = Σ?=i \xι\ < X and by Θ(\ x || < X) the set of holomorphic functions

in || x || < X and continuous on || x || < X

DEFINITION 2.1. Let £/(£, x) be a formal power series written by

(2.1)
ι,β

Then we define Banach spaces as follows,

(i) Let 5, Γ, X > 0 and ft e N. Then GS(T, X; A) if

(2.2)

if

(2.3)

| | ^ ; , : = s u p I UW

(ii) Let s < 0, T, X > 0, k <Ξ N and n > 1. Then U(t, x) e Gs

n{T, X; k)

Hnlfll \

Here?/! '= Γ(y+ 1) for ί/ > 0.

From the above definition, it is easily proved that:

(i) If 5 > 0, then for any k e N, 0 < X ' < X and 0 < Γ' < T it holds that

(2.4) Gs(7\ Z) : = GS(T, X; 0) c GS(Γ, X; k) c G s ( r , Z')

(ii) If s < 0, then for any k e N, 0 < X7 < Z and 0 < T < T it holds

that

(2.5) Gi(T, X) := GW

5(Γ, Z ; 0) = GS(Γ, Z ; ft) c G5(r, Z 0

Indeed, it is sufficient to check the following inequalities,

/ n V
\n-s)

{n\l l)\β\ + k}\{(n- s) \l\ + n
\\

For t/(ί, x) =

n|/8 | + ft}!{«|/|

!J8!, we set

β\}\ < (n + I V
\

V
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(2.6)

Then we have the following,

= Σ

LEMMA 2.2. (i) Let U(t,x) <ΞGS(T,X) ( S > 0 ) . TTum t//Cr) e 0( | |# | | < X)

(/ G N*) and /or any Y with 0 < F < X, there is a positive constant R depending

only on s and Y/X (< 1) such that

(2-7) max
\\x\\<Y

Uι(x) I < C
/ !

(RT)1

holds for some non negative C.

(ii) Let U(t, x) e Gsn(T, X) (s < 0). Then Uι(x) e 0( | |χ | | < A/g (w + 1))

(/ G N^), and for any Y with 0 < Y < X/e(n + 1) there is a positive constant R de-

pending only on n and s such that the inequality (2.7) holds.

Proof (i) Let s > 0. Then we have immediately,

\\u
Tuι (1 - \x\/X)s l / l + l

(I X ' X\ ~Γ * * ' ~T Xq) .

Here || U\\ = || i / f e and C/(x) < K(x) means that U (x) is majorized by VCr).

This, together with the Stirling formula, implies (2.7).

(ii) Let 5 < 0 and U(t, x) e Gs

n(T, X). Then

«
-I/I / | ! S Σ /1 + (n + 1)

>! |! iδ! \XI *

By employing the Stirling formula, we have

{n\ l\ + (n
{(w — 5) I l\ + n

< C

ι\\~

{2π\β\)ι/2 \ n

for some positive constant C. Since

and

— s

- s l / l /[ + (« ψ.
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we get

T I \ι js/2 I - e(n + l)\x\/X

for some non negative constant C. This shows Uι(x) e ^ ( | | x | | < X/e(n + 1))

and hence the inequality (2.7) follows immediately. •

Now we shall prove the following,

LEMMA 2.3. Let s ^ R . Then it holds that:

(2.8) Gs = U G s (7\ X ) , G ( s ) = U Π G s (7\ X) wλen s > 0.
TJC>0 X>0 Γ>0

(2.9) G s = U Gl(T,X), Gω = U D GK

S(Γ, Z ) when s £ 0.

T,X>0 X>0 T>0

Proof. Lemma 2.2, (2.4) and (2.5) imply

G 5 = ) U G 5 ( 7 \ X ) , G ω 3 U Π G 5 ( Γ , Z ) ( s > 0 ) ,
Jί>0 Γ>0

and the same relations for G%(T, X)(s < 0).

In order to prove the converse, let Uι(x) ^ ΰ{ \x\ < X)(l ^ Np) and

assume

(2.10) max ^ ) f
IIΛ; | |<A: i

for a positive constant T and a non negative constant C. Let Uι(x) — ΣUι$xβ/βl.

Then by employing Cauchy's integral formula on a polycircle Π?=i {| Xi \ — ξtX}

(ξ« > 0 , ί i + + ξ , = 1), we have

I 77 I < Γ 1 ' '•

Since ξβ takes its maximum on the above mentioned domain at a point ξ =
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By the Stirling formula, we have \β\wιβl/ββ < C(2π\ β\)(q-1)/2\ β\l for some

positive constant C . Hence we have

(2.11) u w I < C" I β

for some non negative constant C".

(A) Consider the case s > 1. From (2.11) and the Stirling formula, we get

Uw\ < C\l\s/2\β

for some non negative constant C, and hence U(t,x) = Σ Uι(x)tι//!

GS(T, X') for any 0 < T < T and 0 < Xr < X.

(B) Consider the case 0 < s < 1. In this case we have

for some non negative constant C. Let E — exp( — 1/e). Then C/(ί, J:) ^

GS{T, Xr) for any 0 < T < ET and 0 < X' < X, since E = min {ss;

0 < s < 1}.

(C) Consider the case s < 0. By employing the Stirling formula, we have

Hn-s)\l\+n\β\)l

J^ϊ\TT

n —

Now in view of (2.11), we have

Uu C"
l\ {{n-

{n\ l\ + (n

l)e2sX}ί - s)\l
\β\}\

Hence for any T and X' and 0 < T < (n - s)sesT and 0 < X' < (n + l)e2sX,

we have U(t,x) e Gί(Γ', X') D

The reader may feel to be curious for the definition of Gs

n{T, X k) (s < 0),

but its validity will be found by the following example.
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EXAMPLE 2.4. Let L = I — atDχl, where t, x e C and a e C. In this oper-

ator, λ;+ = — 1 and hence s+ = 0. Therefore, the mapping, L: G°—> G°, is bijec-

tive by Theorem A. This is proved as follows. We consider the equation,

LU(t, x) =F(t, x) in Gi(T, X). Let U(t, x) = Σ Uwt
ιxβ/l\β\ and

tDχι U(t, x) = Σ Viβt!xβ/llβl Then we have Vw = /J7/-ifj8-i. Hence the oper-

ator norm of fZt1 in the space G?(T, X) is estimated by

II W II < TX sun / (/ + 2 j3-3) ! (I + β)\ _ τ χ

S (/ + J8 - 2)! (/ + 2/8)! ~ TX

By this estimate, we can employ the principle of contraction map in Gΐ(T, X)

if \a\TX< 1.

On the other hand, suppose we employ the following norm,

|| Uψjc: = inf {C I Ul8 | < Cβ\/T'Xs}.

This norm seems to be natural than that of Gί(T, X) according to the definition

of G° (see (1.2)), but we can not estimate the operator norm of tDχl since

as i
β

3. Lemmas

Let a(x) = Σaβx
β/βl e ΰ(\\x\\ < pX)(p > 0) and put

(3.1) I | # I U : : = m a x \a(x)\.
Wx\\<pX

Then from the proof of (2.11), we have

MB(3.2) \aβ\ <C(q)\\a \\px~ 101

for some positive constant C(q) depending only on the dimension q of x. Here

[q/2] denotes the integral part of q/2.

Now we prove the following,

LEMMA 3.1. Let a(x) be as above.

(i) Let U(t,x) e GS(T,X; k) (s > 0). Then for any p > 1, a(x)U(t, x) e

G S (T, X; k) and
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(3.3)

(ii) Let U(t, x) e Gs

n(T, X k) (s < 0) and k > n - 1. Then for any p >

e~s/(n+ 1), a(x)U(t,x) e GS(Γ, X; Λ) and

(3.4)
{1 - e~s/(n

Hence, for any holomorphic function a(x) in a neighbourhood of X = 0 and

U(t,x) <Ξ GS(T, X; k) or Gs

n(T, X; k) there is a positive constant Xo(< X) such

thata(x)U(t, x) e GS(T, Y; k) or Gξ(T,Y; k) for any 0 < Y < Xo, and

(3.5) \aU\\< {|fl(O) I + 0(Y)} 1 U

w/iere O(F) > 0 <m<i O(F)/Fts as Π 0.

c. We put a(x)U(t, x) = Σ Vl$t'x
β/llβl Then

V,β = Σ dyUtS-t γUβ- T ) !

(i) The case s > 0. We have

< C (q) || a IL -

x Σ ix

S i n c e Σ i r i - . £ ! / 7 ! ( j 8 - 7 ) ! = \ β \ \ / i \ ( \ β \ - i ) \ a n d (\ β \ - i + s \ l\ + k ) \ \ β

/ ( | j 8 | - t ) ! < ( I i 8 | + s | / | + ft)!, w e h a v e

|αt/ | |<C(ί) |UIU| | ί/ | |Σ-
1 = 0

*\\ II ττ\\ [Q/2]\

(ii) The case s < 0. We have

U\\Vip\<C(q)\\a\lx p ι ] χ l β
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(i + [q/2\)\ {n \
o' {(»

l\ +
-s)

(n

ι\
+
+

0(1/3
n(\β

-i)
-i)

+
+

k)\
ft}!

1/3
H(\β\

I
— / ) !

We consider the following inequality.

{n\l[
{ ( n -

<

Since 1 <

w(l /S
(n

+ (w +
5 ) | / | H-

ί
rr

/-i (» +

x Π Π

(n + 1)-

•.j<i<

\-i +
+ D ( l i £

<

This implies

{ n | / |
{ ( n -

< (n

Hence we

+ (n +
s)|/H-

+ I)" ' (-

have

1)(
-"nT

β —
—

1/31
D d ^ l -

» ( l i 8 | - j
(n + l)

' Π Π
n

1

\β\,ι<

1) H- (w -

M - i + i

- » ( l ^ l -
a »(l|8

, n ( | i S | -
s n(\β

D(\β
-n(\β

n- s\
n )

—

—

<

»)+*} ! \β J
i)+k)\ ( l/Sl-0 !

- i+ι
j+l) +n l\+ k

" + 1) + (n - s) | /
(1 β 1 - y +1) + « /

(I iS | - y + i) + (« -
(« + i)(\β\ - y + 1

/) < n, k > n — 1 anc

-s) /

) + n
+ k-p + l

ι\ + k-p

y + D + ( n _ s ) | /

1 - y +1) + » /| +

y +1) + (w — s) | /
1 - y +1) + n

i)+k)\ \β\\
i) + k } \ (\β\ - i ) \

U<n + l)e-)-.

I, \\U\\ {n / +
«»x

 τ\i\χM {(n-s)

y V

{(r
in

+ k

s)
) +

i s

+
k-

{(n
{n

(n

\ι

u>

i — s)UI
l\ + (n

•-p + i

- k-p

\ι
•~nΊ

+ ft

/I +
< 0, we 1

ft-/> +
-/> + 1

n-s
n

~ s)\l

l\ + (n

+ D l i β |
+ n | 0

'2])! /

+ w
+ 1)

β\
\β\

- / > + l
k-i

lave

1

+ n
+ D

+ k)
+ k)

e's

β\
β\

!

V

+ k}\
+ k}\

+ k}\
+ ft}!

Λn +

and this implies the desired inequality (3.4). D
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Remark 3.2. When s > 1, if a(t, x) e Gs(pT, pX)(p > 1) and U(t, x)

G*(T, X; A), then a(f, *)*/(*, .r) e G s(7\ X; k) and

( \ 2
P l II

(see Miyake [7, Lemma 2.4]). By using this inequality and (3.5), the results in

Theorems A and B hold by assuming the coefficients belong to Gs or G{s) in the

case s > 1.

Next, we shall estimate the operator norm of an integro-differential operator

FDIDS ( σ e N * , j^Zp, a ^ Zq) acting on G s(7\ X; k) (s > 0) or Gs

n(T,

X; k) (s < 0).

LEMMA 3.3. (i) Let s ^ R and (σ, , a) e N^ x Zp x Z 9 sαίts/^

(3.7) s | ; | + ( l - 5 ) | σ | - f - | α | = s ( | ; Ί - | σ ) + k | + | α | = - δ < 0 .

Then the mapping, tσ D{ D£ : GS(T, X; k) -^ G 5 (T, Z ; /c) (s > 0) or fσ/)/ D% :

Gn(T, X; k) —* Gn(T, X; k) (s < 0), is bounded and its operator norm is estimated

by

(3.8) || f D/Ztf I < C(σ,j,a, s, n)Tw-MX~Mk-s.

Here C{o, j , a, s, n) is a positive constant depending only on σ, j , a, s and n.

(ii) Let (o, j , a) satisfy (3.7) with δ = 0. Then the operator norm of Dj D" is

estimated as follows:

(A) Ifs>0, then

(3.9)s \\D{DS\\<T

(B) Ifs<0,then

( W ) β l if l; l + l « l > o ,

( 1 + £ ( B ) ) ί ί < ι / w . i ) Γ ι , i j r - ι < , ι i f | ; | + | α | < o ,

where 0 < ε(n) - > 0 α s κ - > + ° ° .

Proo/ Let ί/(ί,aτ) = Σ U,Bt'x
β/llβl and f DiDS U(t,x) = Σ VmtιxB/l\β\.

Then

V/fl = ( / _ ί !

f f ) r U,+ί-σJ>+a (I ~ σ, I + j - σ e N'; S + α e N«).
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(i) First, we consider the case 5 > 0. In this case we have

V,B ( s | / I + 1,31+ft)!

AMI [1__ML
-σ)ϊ (s

σ | ) + | j 3 | + | a | + fc}!
1 / 8 1 + f t ) !

e/II ( 5 1 / | + |/81 + ft- | < τ | - δ)\
(s 11\ + \ β\ + k)\

In the case s ^ 1, this implies immediately

(3.10) || tσ Dί D% || <

for some positive constant C. In the case 0 < s < 1, there is a positive constant C

such that

(3.ii) | | r z ) / £ " l l ^ Cs-{σlτlσl-y[χ-{a{k-δ.

Next, we consider the case s < 0. In this case we have

II c/ll /! ί w ( | / +
" * yl l-lσl̂ -lαl (/ - σ) \ {{H ~ s) (

y
/

—
-f

σ|) + (n + 1)(
y | — σ|) + w (β

+
+

α
α

) + k)!
) + Λ}!

(n n( |y

By the Stirling formula we have

n(\j\ -
p | g |

(n + D
ft}!

5 + f t } !

{w / + (w + 1 ) i i S | + w ( | y —
{(n — s)\ I + n\ β\ + n(\j\ —

σ\) + (n + 1)
σ|) + (n + 1)

α
α

+
+

σ
σ

+ k)\
+ k)\

< C(σ, y, α, 5, w)A:
ft}!

and hence we obtain (3.8) for s < 0.

(ii) The inequality (3.9)s (s > 0) is obvious from the above proof. To prove
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(3.9)s (s < 0), we first consider the case n \j \ + (n + 1) | a | = n( \j \ + \ a |)

+ \a\ > 0.

- s)\l\+n\β\+k}\
{ ( n - s ) ( \ l \ + \ j \ ) + n ( \ β \ + \ a \ ) + k}\ {n \ I \ + (n + 1 ) | β \ + k)\

π
1 = 1

— 5) | / I +

l/n)M

if

if I;' I + I a = 0.

Next, in the case n\j\ + (n + 1) | a \ < 0 we have

(n + l ) ( \ β + α ) + A:}! {{n- s)\l\ + n β + k } \
{ ( n - s)(\ l\ + \ j \ ) + n ( \ β \ + I a \ ) + k}\ { n \ l \ + ( n + ΐ)\ β

π

n — s
n

l\ + 1 / 1 ) α I) + A: + t

eJ"u^lal)(l - s/n)-]al if \j

(l-s/n)-]al if \j

These imply the inequality (3.9)s (s < 0).

= 0.

D

4. Proofs of Theorems A and B

Proof of Theorem A. In the case s ̂  0 we fix n — 1, and we write Gl(T,

X; k) by GS(T, X; k). Let

A= Σ aσia(x)tσDlDS.

Then Theorem A is obtained by showing that A defines a contraction map in

GS(T, X; k) by a suitable choice of T, X and k.

By Proposition 1.4, we know that the condition s+ < s < s_ is equivalent to

(4.1) s | ; |

for (σ, , α)

facts.

x Z^ x Z9 such that aσja(x) & 0. We also notice the following
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(i) If s+ < s < 5_, then δ = 0 only if | j

(ii) If s = s+, then 5 = 0 only if | σ \ >

(iii) If 5 = s_, then δ = 0 only if | σ | <

= \ σ

Ί
First, we estimate the operator norm of aσja(x)tσD{ D£ acting on GS(T,

X; k) in the case (5 = 0.

(A) The case | σ \ = \ j I = | a \ = 0.

(4.2) || βoyα(:r) D\ D£ \\(f,x;k < I aoja(0) \ + O(X).

(B) The case | σ \ = \ j \ > 0 and | j \ + \ a \ = 0. '

(4.3) \\aσja(x)tσD{D2\\τ)

ιX;k£AσJasX-™-+0 as X ϊ 0.

Here and in what follows Aσjas denote various positive constants independent of

T, X and k.

(C) The case s = s+ e R and

R and

(4.4) 1 do

for any fixed X.

(D) The case s = s_

(4.5) \\aσia(x)tσD>tDϊ

>I;Ί

<ιyi.

as

-\a\ . •0 as T ΐ +

for any fixed X

Next, in the case δ > 0 we have

(4.6) \\aσja(x)tσDί DS\\{τ,X;k < AσjasT
lσl-ljlχ-lalk-δ-+0 as\\τ,X;k +

for any fixed X and T.

Now by using the assumption (1.6), Σ|;ι=iαi=o I doja(0) | < 1, we can prove (i),

(ii) and (iii) in Theorem A, except the cases 5+ = — °° in (ii) and 5_ = + °° in

(iϋ).

Consider the case 5+ = — °° in (ii). Since the Newton polygon N(L) lies in

the lower half plane, we can take 5 such that δ < 0 in (4.1) for any s < s except

the cases (| σ\ — \ j |, \j | + | a |) = (0,0). Then A becomes a contraction map in

GS(T, X; k) for any fixed T > 0 by taking small X depending on s and next

taking large k depending on 5, X and T. This implies the bijectivity of the map-

ping (L)-oo.

In the case 5_ = + °° in (iii), the proof of the bijectivity of the

mapping (L)(+00) is essentially the same as the above, so we omit it.

(iv) The proof is somewhat different from the above. Since | ύ \ > | j \ in this

case, we set
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A=( Σ
σ ι = ! ; i = ! α ί = O ι σ | = i ; i > 0 i σ ! > | ; l

! α : < 0

= Aι + A2 + A3.
put

Let U(t, x) = Σ Uι(x)tι/l\ and Fit, x) = ΣFι{x)tι/l\. Then the equation,

LU{t, x) — F(t, x), implies the following relations.

£//(*) - Σ a0Ja(x) DS Uι+J(x) - Σ
|σi =! ; ! > 0

lα!<0
d-σ)\

aσja(x)D£ Uι+j-a(

+ i? ( / )(x, Dg Uu(x) ;\μ\ <\l\, finite number of a).

Let /| = iV) be a column vector with length d(N) : =

(p + N- IVΛp - l ) ! i V ! ( = # {/ e N* I /| =iV}). Then the above relations

imply a sequence of systems of integro-differential equations of the form,

(4.7) , DS;\a\< 0)}°U(N)(x)

+Wm{x, DS Ui{x)\\l N).

Let G(X; k) (X > 0, k ^ N) be a Banach space of holomorphic functions

with norm

(4.8) Γ A = = sup I xμ

U (x) = Σ Uβj^.

Then Dx (\ a\ ^ 0) defines a bounded operator in G(X\ k) with norm estimated

by

Letc3{N)(X; k) = Ud(N)

(4.9) | | % W ) "

; /c) be a Banach space with norm

\x k . = m a x
i / ί=iV

; ft).

The following lemma is a special case of Lemma 4.4 in Miyake [7].

LEMMA 4.1. Let the condition (1.6) be satisfied. Then there is a positive constant

Xo such that diN)(x, D£; \a\ < 0) becomes a contraction map in C§(N)(X; k) for any

X < XQ and any N <Ξ N by taking large k depending only on Xo and N.
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The bijectivity of the mapping (L)+Oo is now easily proved.

This completes the proof of Theorem A. •

Proof of Theorem B. (i) Let s0 > 0. By Proposition 1.4,

(4 .10) s o l / 1 + (1 - so) I σ\ + I « I = s o ( l i I - \ σ\) + \ σ\ + \ a\ = - δ < 0

for any (σ, j , a) with aσja(jo) ^ 0. We set

(4.11) A=( Σ + Σ + Σ)aσja(x)tσD{DS
5 0 | ; | + |αΊ=0 <5=0,|σ|>0 <5>0

σ=0

= Aι+A2 + As.
put

We shall estimate the operator norm of the mapping,

(4.12) A:GS°(XS°, X)^GS°(XS°, X).

Since χs°^-^χ-M = XM+5t w e h a v e .

(4.13) il^i II < Σ \aoia(0)\ + O(X),
so\j\ + \a\=O

(4.14) IIA II— 0 as X I 0 (i = 2,3).

Hence the assumption (1.8) implies the existence of a positive constant Xo such

that A becomes a contraction map in GS°(XS°, X) for any 0 < X < Xo. This

proves the bijectivity of (Z,) v Indeed, it is sufficient to notice that GS°(T, X)

c GS°{XS\ X) for any T with 0 < T < Xs° and conversely GS»{T, X) 3

GS°(YS°, Y) if we choose sufficiently small Y.

If we employ the space GS°(XS°, X\ k) instead of GS°(XS°, X), we can see

that the existence domain of solutions in (Γ, X)-plane depends only on operators

aσja(x)tσ Dl D£ such that δ = 0 by letting fc—> -j- oo as in the proof of Theorem

A.

(ii) Let So ̂  0. From (3.9)s (s ̂  0) and the assumption (1.9), the operator

norm of the mapping

(4.15) A : G?(Z 5 0 , X; n - 1) — G?(X*\ Z ; * - 1)

is estimated by

(4.16)

where /c < 1, ε(«) —• 0 as «—• oo, and ε ( ^ , I ) ^ 0 as I I 0 for any fixed n.

Hence the mapping (4.15) becomes a contraction map by a suitable choice of n and
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X. This implies the injectivity of the mapping (L)(SQ). The above proof shows that

an equation,

L(t, x\ Dt, Dx) U(t, x) = F(t, x) e Gis°\

has a unique solution U (t, x) ^ Gn°(Xs°, X\ n — V) for sufficiently small X and

large n. This proves the surjectivity of the mapping L: Gs°-+ Gis°\ but not the

surjectivity of (X)(s0), because s0 ^ 0. D

Chapter 2. Operators with Euler type principal part

5. Statement of results

The reasonings in the preceding sections go well for more general operators

of the following form which we called of Cauchy-Goursat-Fuchs type in Miyake

(5.1) Lm = Pm (δt) + ' Σ β baa (x) t°D{ DS,
o,j,a

where m > 1, δt = (tiDtl,
m ,tpDtp) and

(5.2) Pm(δt) = Σ a,δl (a, e C, / e N*),
0< I; I <m

where δί = (tiDtl)
31" ' (tPDtp)

ip for e N*.

Let N(LW) be the Newton polygon of Lm. We assume the following condition.

(B.I) A point (m, 0) is a vertex of N(Lm).

Let k+ (resp. /c_) be the slope of a side of N(Lm) with an end point (m, 0)

which is in the upper (resp. lower) half plane. Let s± be the numbers defined by

(1.5).

We shall study the bijectivity of the mappings,

\Lm)s Lm : Gs > Gs,

a \ T Γ(s) > Γ{s)

m) (s) J^m tr * Lr ,

for s+ < s < S-.

We assume the following additional condition.

(B.2) If I σ I + m(\ σ | - | | - 1) < 0, then | a | + (m + s) (| j | - | σ I) < 0

for (σ, j , a) with bσja(x) 3= 0.
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Now we can prove the following theorem corresponding to Theorem A.

THEOREM C. Let (B.I) and (B.2) be satisfied, and further assume that there is a

positive constant ε0 such that

(5.3) I Pm(l) I > εo(| l\ + l ) m (Poincare condition),

holds for any / ^ N^, and

(5.4) Σ I bσja(0) I τj-σξa < ε0 (Spectral condition),
|σl = | ; | <m

lα|=0

holds for some T ^ R+ and ξ ^ R+. Then we have:

(i) Let s+ < 5 < S-. Then (Lm)(S) is bijective. Furthermore if m + s > 0, then

(Lm)s is bijective.

(ii) (Lm)(S-) is bijective.

(iii) Let s = s+ and m + s+ > 0. // ong 0/ ί/ι<? following conditions is satisfied,

then (Lm)s+ is bijective:

(5.5) bOja(0) = 0 /or I I = — 1 a?^ 5+ | | + | a \ — m.

(5.6) bσja(0) = 0 /or (σ, , a) 5^/ι ίfeiί | σ \ < \j\,

σ I + m(\ σ | - | | - 1) < 0 and | a \ + (m + 5+) (| | - | σ |) = 0 .

We remark that we may assume τ — (1, ,1) and ξ = (1, ,1) in (5.4)

without loss of generality (see Remark 1.2).

Remark 5.1. (i) From the proof, we see that if bσja(x) = 0 when | σ | +
m (I # I ~ I j I ~ 1) < 0, then the same results as in Theorem A hold.

(ii) In the above theorem, some conditions can be weakend. For example, in (i)

if bσja(0) = 0 as in (5.6), then the condition m + s > 0 can be replaced by

another one (see also an example in §7). But we do not discuss such a problem in

this paper.

Combining the arguments in Miyake [7] with the proof of Theorem C, we can

prove the following,

THEOREM D. Let h- — 0 and assume that there is a positive constant So such

that

(5.7) inf I Σ ajr1 \ > ε0 (R+ : = [0, oo)),
reRj,|r| = l \i\=m
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(3.8) Σ I bσja(0) I τ'-"ξa < eo,
\a\=0

for some τ €Ξ Rξ. mid ξ £= R+. T/t̂ w ί/ι̂  mapping,

Lm: G+~/Gs->G+oo/Gs,

is bijective for every s with s+ < s < + °°.

We omit the proof of this theorem, since it is the same as [7, Theorem 1.1]

which studied the case k+ > 0.

6. Proof of Theorem C

The proof is essentially the same as that of Theorem A, so we omit the detail

except different points.

We introduce a Banach space GS(T, X; k\ m) instead of GS(T, X; k)

(s > 0) or Gi(T, X; k) (s < 0) as follows.

Let U(t, x) = Σ Ulβt
ιxβ/l\β! e G+o°. Then U(t, x) e GS(T, X; k; m) if

II & fr.x k m < + °° which is defined below.

(6.1)

(6.2) \υ T,X;k;m
:= sup I Ullβ\ TιXβlί \m

Then it can be proved that

(6.3) Gs = U GS(T,X; k m), Gis> = U Π GS(T, X; k; m),
T,X>0 X>0 Γ>0

for any fixed k and m (see Lemma 2.3 and Miyake [7, §2]).

Corresponding to Lemma 3.1 we can prove the following,

LEMMA 6.1. Let U(t, x) e GS(T, X; k; m) and a(x) e 0( \\x\\< pX)

(p > 0). Then we have

(i) If s > 0, then a(x)U(t, x) e GS(T, X; k; m) for any p > 1 and it holds

that

(6.4) \aU\\< C{q)

Here C{q) is the same constant appeared in Lemma 3.1.
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(ii) If s<0, then a(x)U(t, x) e GS(T, X; k\ m) for any p > (1 - s)/2

and it holds that

Hence for any holomorphic function a(x) in a neighbourhood of the origin, there is

a positive constant Xo such that a(x) defines a bounded operator on GS(T, X; k; m)

for any 0 < X < Xo and we have

(6.6) I aU\\?m < {|fl(0) I + O(X)} I U\\?m,

where O(X)/X is bounded as X I 0.

The proof is similar to that of Lemma 3.1, and it is sufficient to notice the fol-

lowing inequality. Let s < 0. Then for any i with 0 < i < | β | we have

{ ( 1 - s ) \ l \ + \ β \ + k}\ \ β \ l { q + m ) \ ί \ + 2 ( \ β \ - i ) + k}\
{(1 + m)\l\ + 2\β\+k}\ Qβ\-i)\ {(1 - s)\ l\ + \β\ - i + k}\

β\

m ) | Z | + 2(101

x Π

<-

We remark that Pm(δt) defines an invertible operator in both spaces Gs and

G{s) under the assumption (5.3) and its inverse operator Pml(δt) is given by

(6.7) PJiδdUίt, x) = Σ Ut(x) p j ) ) f !

Therefore our problem is reduced to prove the bijectivity of the mapping,

(ϊm)s LmP^(δt):Gs^Gs or

Since LmP^(δt) = I~ Σ bσja(x)tσ Ώ{ D% P^iδ,) = I ~ B, it is sufficient
put

to prove that B becomes a contraction map in a suitable space G S (Γ, X\ k\ m)

under the assumptions of the theorem as in the proof of Theorem A. For that pur-

pose, we have to estimate the operator norm of the mapping,
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(6.8) tσD]

tDSPmι{δt) \GS{T, X; k; m)-^Gs{T, X; k; m).

We note that the assumption (B.I) and the condition that s+ < 5 < s_ imply that

(6.9)

for any (σ, j , a) with bσja(x) =£ 0. We note also,

(6.10)

put

If 5+ < s < s_, then δ = 0 only if | σ \ = \ j |.

If s = s+, then δ = 0 only if | σ \ > \ j .

If 5 = S-, then 5 = 0 only if | σ \ < \ j .

Now we can prove the following,

LEMMA 6.2. Let Pm{δt) be as above and (σ,j, a) e N^ X Zp X Z*

(6.9) and (B.2). Then the operator norm of f D3

t DS Pml(δt) of the mapping (6.8)

estimated as follows:

(i) //1 σ I + m(| σ I - I I - 1) > 0, ί^en

(6.11) \tσD'tDSPmKδt) II < C(m, ε0, 5, σ, , l

(ii) //1 σ I + m{\ σ \ - \ j \ - 1) < 0, then

(6.12) l l Γ D / ^ P m 1 ^ ) || < C(m, ε0, 5, σ, ;

(iii) //1 σ I = I I < m and \a\ = 0 , then

(6.13) Hrβ/^P^^II^ε

(6.14)

Proo/. Put tσD{ DSPml(δt)U(t, x) = Σ Viβt
ιxB/l\β\. Then we have

T, _ /! 1
(/-σ)!

From this expression, the inequality (6.13) is obvious.

(A) The case 5 > 0. In this case, we have

^ l / l y IJSI

' ε o '

( 5 | - I σ\)

In the case | σ \ + m(| σ | — | /1 — 1) > 0, we easily obtain (6.11) since

(s + m) (I I - I σ I) + I a | = w(| | - | σ | + 1) - | σ \ - δ.
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In the case | σ | + m{\ σ \ — \ j \ — 1) < 0, the condition (B.2) implies (6.12) im-

mediately.

(B) The case 5 < 0. In this case, we have

Vιβ I TuιXlβl\ l\\m< C { m y ε 0 , σ , /, a ) τlσl -]a] U \

χ

(_s,l_1) { ( 1 + m)\ l\ + 2 β + k + ( 1 + m ) ( \ j \ -\ σ \ ) + 2 \ a \ } \
i d ~ s)\ l\ + \ β \ + Λ + ( 1 - s ) ( \ j \ - I σ \ ) + I α | } ! *

If I σ I + m{\ σ | - | j \ - 1) > 0, then

TwXm\l\\m < C(m, eo, σ,j, a)Tlσ{-lilχ-M || i/||

{Q. + tn)\l\+2\β\ + k

n$

X
i d -

Now by the relation (6.9), we have

TmXm\l\\m < C(m, ε0, s, σ, j, a

_Ad + m)\l\+2\β

j\ 2 | α | > !
Ί -\σ\) +\a\}\'

x r

{al \\ U\\

j \ - 2 | α | } !
{(1 - +k 2\a\}\

which implies (6.11) immediately.

If I σ I + m(\ σ \ - \ j \ - 1) < 0, then by (B.2) we have

I VιB\ T u ι X { β { \ l \ l m < C ( r n , ε 0 , σ , j ,

x

U\\

{ ( 1 + m ) \ l \ + 2 \ β \ + k + ( 1 - s ) ( \ j \ - \ σ \ ) + \ a \ } \
{(1 - s)\ l\ + \ β\ + k

and this implies (6.12).

- s)(\j\ - \ σ\) + \ a\}\ >

D

Proo/ 6>/ Theorem C. First of all, we have to make clear the meaning of

assumption (B.2). It is a condition for (σ, j , a) with \σ\ ^\j\. Let | σ\ = | ; | .

Then I σ \ < m implies \a\ ^ 0 , and also | σ | > m implies | σ | + | α | < rn by

(B.I). Hence if | σ \ — \ j \ > m, we have | a \ < m — | σ \ < 0.

(ί) Let us consider the case s+ < 5 < s_. In this case, δ = 0 only if | σ

= I j |. We rewrite the operator Z m = L m Pml as follows.

(6.15)

Here,

= I- ΣBt(t,x;Dt,Dx).

= Σ
\σ\ = \j\<m
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B2= Σ bσ

£ 3 = Σ α ) bσia(x)ta Dl DS P^{δt),

where the summation is taken over (σ, j , a) such that (B.2) is satisfied with

iy i>M.

BA = Σ <2) bσja(x) tσ Dl DS i V (<5(),

where the summation is taken over (<τ, j , a) which is excluded in Bt (i = 1,2,3),

and hence in this summation δ > 0, because s+ < s < s_.

Let us estimate the operator norm of each B% acting on GS(T, X; k; m).

(6.1.6) || Si |j < εoλ ( Σ \bσ,a(0)\ + O{X)}.
\σ\ = \j\ <m

\a\=0

(6.17) || B2 II < CXa for some a > 0.

(6.18) \\B3\\< C(X)T~b for some b > 0.

(6.19) || 54II < C(T, X)k~c for some c > 0.

By the condition (5.4), we can take small positive constant X so that || B\ || +

|| B21| < 1. Next we take large T so that || Bι || + || B2 \\ + || B3II < 1, and finally

we take large k so that Σ^ = 1 II Bi || < 1. This proves the bijectivity of (Lm)(S).

In order to prove the bijectivity of {Lm)s, we need more careful estimate for

B3. Let (σ, j , a) satisfy the condition (B.2) with \j\ > \ σ\ and let 0 < d <

m + s. Then the operator norm of the mapping,

f DίDSP^iδt) : Gs(Xd, X; k\ m) — Gs(Xd,X; k; m)

is estimated by

II Γ JJt Ux Γm || ^

Here d{\ σ\ ~ \ j \) ~ \ a | > 0 by the above choice of d. Hence the operator norm

of

Bs: Gs(Xd, X; k; m) -> Gs(Xd, X; k\ m)

tends to 0 as X I 0. This implies the bijectivity of (Lm)s.

(ii) The bijectivity of (Lm)(S-) is obvious from the above proof, since in this

case δ > 0 for any (σ, j , a) with | σ \ > \j\.

(iii) Let us consider the case s = s+. We rewrite the operator Lm as follows.
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(6.20)

Here,

= / - ΣCi(t,x;DhDx).
i=l

Cx = Σ bσ)a(x) V Dί DS P^(δt) (= fix).
\σ\ = \j\<m

]a\=0

C2= Σ bσia(x)tσD{DSPκ1(δt)(=B2).

C3= Σ (1) baia (x) f Dί DS P™1 (δt),
σ,j,a

where the summation is taken over (σ, 7, a) such that | σ | + m{\ a

> 0 and δ = 0.

~ \j\ ~ 1)

C4 = Σ ^(δt)(= B3).

C 5 = Σ ( 3 ) bσia (x) f Dl DS Pm1 (δt),

where the summation is taken over (σ, j , a) which is excluded in

Cι (i = 1,2,3,4), and hence δ > 0 in this summation.

Let || Ct || denote the operator norm of C, acting on GS(T, X; k\ m). As in (i)

we can choose small positive constant Xo such that || C\ || + || C2II < 1 for any

0 < X < Xo and any T > 0. Since || C51| < C ( T , X)k~c for some c > 0, this

term does not play any role in the proof of the bijectivity by letting k—> oo.

First, consider the case where the condition (5.5) is satisfied, that is,

(5.5) bOja(0) = 0 for I ; I = - 1 and s+ I ; I + a \ = m.

This implies || bOja \PX ~ O(X) as X ί 0. Therefore the operator norm of

C 3 : Gs+(Xd, X; k; m) -* Gs+(Xd, X; k; m) is estimated by

II Γ II < Γ(n\ V ( 1 ) Γ II II
II ^ 3 II -̂  ̂  W/' ^ ^σja II

< C(q) Σ{1Λ) Coja

Σ ( l 2) σ

where the summation Σ ( 1 > 1 ) is taken over (0, j , a) which satisfies (5.5), and Σ ( 1 ' 2 )

is taken over (σ, j , a) such that | σ | > | j \ except | σ | = 0 and \ j \ — — 1. Here

we used the relation, — | a \ = s+( \j \ — \ σ |) + | σ \ — m. In the summation

Σ ( 1 ' 2 ) , if I σ\ - \j\ = 1, then | σ\ > 1. Therefore,
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μ •= max! ι i i i (σ, j , a) in the summation Σ(1>2)} < rn.

Hence for any d with s+ + maxim — 1, μ} < d < s+ + m, the operator norm of

C3 tends to zero as X I 0. As in (i), the operator norm of C4: Gs+(Xd> X; k; m)

—> Gs+(Xd, X; k; m) tends to zero as X 1 0, since d < s+ + m. This proves the

bijectivity of (Lm)s+.

Next, we consider the case where the condition (5.6) is satisfied. Note that the

operator norm of

C 3 : \ X;k;rn) d, X; k; rn)

tends to zero as X 1 0 if d > s+ + m. The condition (5.6) assures that we can

choose d > s+ + m so that the operator norm of C 4 : Gs+(Xd, X; k; m) —» Gs+

(Xd, X; k; m) tends to zero as X I 0, as the above.

This completes the proof. Π

7. Example

We consider the following partial differential operator,

(7.1) P = UDt + ΏDf + aUDt + l)Dt Ώl + bD* (a, b e C\(0}).

The Newton polygon N(P) is given as follows.

(i) By Theorem C, the Cauchy problem,

(7.2) (Pu(t,x) =f(t,x) e G\
Uα, x) - w(t, x) = O(t2) (w e G5),

is uniquely solvable in Gs for any s > 2.

(ii) Theorem A implies that the Cauchy problem,

(7.3)
ίPu(t,x) =/(/, x)
U(/, x) - w(t, x) = Gs),

is uniquely solvable in Gs for any 5 < 1.
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(iii) Looking at the vertex (4, —1) of N(P), we consider the Goursat

problem,

\Pu(t,x)=f(t,x)^Gs,
' l«(ί, x) - w(t, x) = O(tx2) (w e Gs).

Let

U = (δ, + 1) + aΉtDf Dχ2 + D, D*2} + <rlbDfl Όl
= (δt + 1)-A.
put

Then the unique solvability of the Goursat problem (7.4) is equivalent to the bijec-

tivity of the mapping

(7.5) U: GS-^GS.

Since s+ = 1 and s_ = 2, let 1 < 5 < 2. The condition (B.2) is satisfied only if

s = 1. In this case, the conditions (5.5) and (5.6) are not satisfied, since ab Φ 0.

So we have to take care to estimate the operator norms for

tDf D;2(δt + I ) " 1 , Dt Dϊ\δt + I ) " 1 and Dfι D2

x(δt + I ) " 1

acting on the space Gι(T, X), and we have:

WtDfDϊHδt + iy'W^T-'x2,
ίlDtDxHδt + l)'1]]^ T~ιX2/2,
WDΓ'Dϊiδt + iy'W^ τχ-\

Now the operator norm of A(δt + I ) " 1 : Gι(X2, X) -> Gι{X2, X) is estimated by

\\A(δt + I ) " 1 II ̂  \a\~1(3/2 + \ b\). Therefore the problem (7.4) is uniquely

solvable in Gι if \a \ > \ b \ + (3/2).
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