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ON A BINGHAM FLUID WHOSE VISCOSITY

AND YIELD LIMIT

DEPEND ON THE TEMPERATURE

YOSHIO KATO

Introduction

Duvaut and Lions [2] studied the field of velocities and of temperatures in a

moving incompressible Bingham fluid endowed with viscosity μ(θ) depending on

the temperature θ and established the existence of a weak solution in the case of a

two dimensional fluid. However, the problem of uniqueness remained unsolved.

The purpose of the present paper is to give an affirmative answer to the problem,

that is, to show the local existence (resp. the global existence) in the time and the

uniqueness of (strong) solutions in three dimensions under the conditions that (i)

the time (resp. the initial velocity and the external force) and (ii) the rate of varia-

tion of the viscosity and the yield limit with respect to the temperature are both

sufficiently small. It will be easily seen that the global existence and the unique-

ness also hold in the two dimensional case whenever the rate (ii) is sufficiently

small.

The general plan of the proof follows the analogous lines as in [2]. Let φ be a

given function. We first find the unique velocity field uφ of a Bingham fluid with

viscosity μ(φ) and yield limit g(φ), employing Theorem 3 of Kato [4], and second-

ly seek the solution θψ of the heat equation θt ~ Δθ = Gψ, the equation of

energy-conservation associated with Uφ, with the aid of the theorem due to Gris-

vard [3]. A desired field of temperature is obtained by a fixed point θ of the map-

ping H\φ-^θφ and UΘ is a desired field of velocity. The crucial point will be in

finding an auxiliary Banach space X to which φ belongs and on which mapping H

becomes compact, and in estimating the right hand side Gφ of the heat equation in

terms of || φ \\χ (see Lemma 2.2) so that a ball in X is transformed into itself by

mapping H under some circumstances.

The main result, Theorem 1, is described in Section 1. The aim of Section 2

is to get uφ and θφ. Section 3 is devoted to the proof of Theorem 1 in which
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Schauder's fixed point theorem will be applied to the mapping H.

§ 1. Preliminaries and results obtained

Throughout the paper we assume that Ω is a bounded domain in three dimen-

sional euclidian space R 3 with a smooth boundary Γ. For an integer k > 0 and

1 <p < °°, Wk>p(Ω) means the usual Sobolev space with norm \\'\\k,ρ. In particu-

lar, we set W°'P(Ω) = LP(Ω) and |HL> = \\'\\p. Given an interval / = [0, 7] and

a Banach space B, let us denote by Wktp(I; B) the set of all //-functions φ of /

into B such that

Σ fT II φU)(t) \\p

Bdt < oo (p < oo) and Σ ess sup || φ{j)(t) \\B < oo (/> = oo)f
; = 0

where 0(O) = 0 and φ(ί),j > 1, is the j-th order derivative with respect to / in the

distribution sense. It is well-known in the literature that if φ & W1>p (/ B) for

p > 1, then we have φ €= C(I ', B), modifying, if necessary, the value of φ on a

set of measure zero. Moreover, we can prove that for any ε > 0 there exists a

positive constant Cε such that

α Γ \l/p / ΓT \l/p

Wψ'WUt) +CΛ I \\φ\\yή .

We now introduce the function spaces:

Vk,p = the closure of Y(Ω) in Wk'p(Ω) with norm || υ \\Vk,P = II v \\k,p,

tfp= {φ£Ξ Lp (I W2'P(Ω)) 0 r e L*(/ L*(fl))} with norm

and in particular we set

V,,2 = H, VhP = Vp and V2 = V,

where Y(Ω) = {(φ\ φ2, φ3) φ1' e C0°°(β), div φ = 0}. Identifying // to its dual

H\ we obtain V c: H = Hf ^ V, where V' is the dual space of V, each space is

dense in the following and the injections are one to one and continuous. It is not

difficult to see that

</, u> = f fudx for / e H and u e V,
J Ω
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where ( , > denotes the duality between V and V\

LEMMA 1.1. For any p such that 1 < p < 2 we set

(12) !_I_iL^I

Then, 1 < β < 6 and ^ <= L 2(/ Wn'/3(i2)). Moreover, for any ε > 0 we can find a

positive constant Kε so that

(1.3) ( / Q II 0 \\lβdt) <ε\\φ \\Xp + Kε(fQ || φ f p d t ) \ φ e # , .

Proo/. Observing the relation p < β < p* = 3p/(3 — p), we have, by the in-

terpolation inequality,

|| ψ \\hB < const. || φ I t / I 0 WtpL

The use of Sobolev's inequality and the inequality

II φ Wlp < c o n s t . || φ \\2,p IIΦIL

which appears in [1, p.79], therefore implies

\\i8 < const. UWίpWφW, Φ<Ξ W2 "(Ω),

from which (1.3) easily follows by using (1.1) with B = LP(Ω) and Sobolev's im-

bedding theorem. Q.E.D.

It is easily verified that \[7 — 1 < p is equivalent to pf — p/(p ~ 1) < β,

and p < 5/3 to p^ = 2p/(2 - p) < 10. From now on we fix p so that

(1.4) /f-l<p<^

and define a by

Putting/)* = 3p/(3 — p), we then have, keeping in mind \/p' 4- 1//)* = 2/3,

(1.6) / > ' < j 8 < 3 < « < / > * , 6 < ^ t < 1 0 and 6 < yS*.

If α's and i's are determined by
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(1.7) h -r = y and ύ — /J*,

it then immediately follows that

nn I+I-l+I
a 6 a z

The relation a < p* implies that the injection of W2 *(β) into W l ι α(β) is

compact. The reason why we claim pf < 10 will be found in the integral

J \\D(u) \\fc dt which appears in (2.13) to be finite it is necessary that r > q in
o

(2.4) and this occurs when and only when q < 10.

For a and Ŝ from (1.2) and (1.5) we introduce the Banach space

(1.9) X= {φ €Ξ C (I Wι'a(Ω)) φf e L2(7 W^(Ω))},

equipped with norm

α Γ \l/2

Wψ'Wlβdή ,

which plays important roles in the paper. Let Yo amd Y\ be two Banach spaces:

(1.10) Yo = {φ e tfp φ; e ^ } and Fi = if 1J)(7 L^β)),

with respect norms,

U T \ l/p

(Il0llί + II0ΊI$)Λ
Since (1.6) guarantees

c ^ ^ ( β ) c Lb(Ω) c

we readily obtain X c: Fi with continuous injection. Furthermore, we can prove,

by virtue of the relation a < p*,

LEMMA 1.2. The space Yo is contained in X in a manner that for any ε > 0

there exists a positive constant Kε such that

(1.11) 110 \\χ £ e || φ |k 4- Ks II ψ Ik 0

Moreover, the injection Yo —* X is continuous and compact.
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Proof. As we have already seen, the compactness of the injection W2>P{Ω) —•

Wha(Ω) follows from Sobolev's imbedding theorem. Therefore, the use of (1.1)

with B = Wha(Ω) yields that for any ε > 0 there exists a positive constant Cε

such that

(1 .12) max || φ(t) \\la < ε Γ (|| φr \\lP + \\ φ \\ίP)dt + Cε Γ || φ

The proof of (1.11) will be thus achieved by adapting (1.3) with φ = φ'.

On account of the compactness of the injection Yo~~* Y\ (for the proof see

[5, p.58]), we can immediately conclude from (1.11) the later half of the lemma.

Q.E.D.

Let μ and g be a viscosity coefficient and a yield limit, respectively, which

are positive functions of λ G R such that

(1.13) μ, g<ΞCι(JΆ), μ,<μ{λ)<μι and go<g(λ)<gi

for some positive constants μt and gj (i = 0,1). We can easily see that

μ{φ) €= X and g{φ) e Wι*(I L2(&)) for 0 e X .

More precisely, it follows from Sobolev's imbedding theorem that

a*T \ 1/2 / Γ*T \ 1/2

UυμJϊΛ) + ( / l^gtfdt) <cω\\φ\\x,
where c is a positive constant, μ = μ(φ), g — g(φ), μt = dμ/dt, gt = dg/dty

v = 1 /μ and

(1.15) ω = ω(μ, g) = sup ^ L^—h sup

The problem we consider here is then formulated as follows. For prescribed

data/, Uo, p and θo\

(1.16) / e P F U ( / ; ^ ) Π I°°(/ ;L3(Ω)3), uo^V, p e Fx and

find a pair {w, <9):

(1.17) u e L°°(/ 10, «7 e L2(/ V) Π L°°(7 ^ ) , ί e F 0

satisfying, the variational inequality corresponding to the equation of motion:
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(1.18) < uf(t) + B(u(t)), v - u(t) > + Φ(θ(t), υ)

-Φ(θ(t),u(t)) > < / ( f ) , υ-u(t))

for υ ^ V and for a.e. t ^ I, the equation of energy conservation:

(1.19) θ' -ΔΘ + w Vθ = F(0, u) + p i n f i x /

and the initial-boundary conditions:

U ' Z U ) 0 = 0 o n f x / ,

where Wo

ι'p(Ω) = {0 e= fl^tf?) (9 = 0 on Γ}, β(κ) = w 7M,

(1.21) Φ(θ, u) = f (μ(θ) I D(u) |2 + g(θ) I /)(«) | rfx
J Ω

and

(1.22) F(β, M) = 2μ(θ) \ D{u) | 2 + g(θ) \ D(u)

This problem will be resolved along the following line. For φ €Ξ X such that

0(0) = θo and ψ = 0 on Γ X I we first seek a vector field u—Uψ satisfying

w(0) = Uo and (1.18) with θ replaced by φ, and then find a solution 00 G Fo of

the heat equation θr — Δ θ = F (ψ, uφ) + p — uφ- V φ subject to condition (1.20)

(see Section 2). Secondly, we show that the mapping H : φ -^ θφ oί X into YQ has a

fixed point θ (see Section 3). It is evident that {UΘ, θ) is a desired solution to the

problem.

To do so we must impose on the initial data {u0, θ0) a condition; they are sta-

tionary solutions of (1.18)-(l.l9), that is, they satisfy

(1.23) CB(MO), v - uo> + Φ(θ0, υ) - Φ(0O, «o) > (χ, v - uo>, υ e 7 ,

for some χ ^ H and

- 4 0 0 + ^o 7 00 = ^(00, Mo) + p ( * , 0 ) inf l ,
( * } 0o = 0 on Γ.

For the existence of such data we refer to Remark 3 in [4], We now ready to state

the main theorem.

THEOREM 1. Suppose that Ω is a bounded domain in R3 with smooth boundary Γ,

that p satisfies (1.4) and that μ, g are functions on R which satisfy (1.13). Let f,

Uo, p and 0o be given as in (1,16), (1,23) and (1,24). If at least one of two quantities
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(1.25) (i) | | χ | | + Γ (H/II + | | / ' | ) Λ + ω and (u) T + ω
J 0

is sufficiently small, then there exists one and only one solution {u, θ) to the problem

(1.18)-(1.20) satisfying

u G U{I Vq) for all r < 4q/(q - 6) and all 6 < q < 10,

ur
 G L\I V) Π L°°(/ # ) and 0 G FO.

(1-26)

Remark 1. Remembering [4, Remark 4], we can easily prove the following

theorem. Suppose that Ω is a bounded domain in the plane with smooth boundary, that

p satisfies \Jb — 1 < p < 2 and that μ, g are functions on R which satisfy (1.13).

Let / G ^ u ( / H), Uo G V\ p G Fj and θ0 G W^CQ), and asswwg (1.23) and

(1.24) to hold. If ω is sufficiently small, then there exists one and only one solution

{u, θ) to the problem (1.18)^(1.20) satisfying u G L°°(/ Vq) for all q < °°, uf G

L2(/ V) Π L°°(7 ;H)andθ*Ξ Yo.

§ 2. The flow uφ and the associated heat equation

Throughout the section we assume the hypotheses mentioned in Theorem 1 to

hold. Taking account of (l.δ), (1.7) and (1.8), we can prove the following lemma by

the same argument as in [4, Theorem 3].

LEMMA 2.1. Let φ G X. If at least one of two conditions

(2.1) (i) (,uo/ro)4 > CoAKi and (ii) μl > TU2K2

2

is fulfilled, then there exists exactly erne vector field U = uΦ satisfying u(0) = u0,

(2.2) (u'(t) + B(u(t)), v - w(0> + Φ(Φ(t), υ)

-Φ(φ(t),u(t)) > <f(t), v-u(t)>,

(2.3) || u'(t) || + yfjo II vu; \\2dή <
\l/2

\\2dή

II Vu(t) \\q < Kq when! <p<6

( Γ || V u \\r

q dt)1/r < Kq for r = 4q/(q - 6) when q > 6
\ J o /

for all V G V and for all t < T, where γ0, c0 are positive absolute constants, Φ the
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τ i

functional defined fry (1.21),

A = (ιuo i2 + /oΊi/iι dt) eχP (fo

τ

and Kq a positive continuous function of the arguments

(2.5) μ0, μu gu II χ ||, Γ (II/II + II / ' II) dt and ω |
*J 0

In particular,

(2.6) /d + ^ - 0 α ί | | χ | |

ω & t̂n̂  defined fry (1.15).

Proof. Following [4], we set

M = Cμψo\ω21 0 II + 1) ω21| 0 ||i, G = ω

/ = ίll/(0) - χ II2 + fΓ 11/' \\dt+{ max || / (t) \\2 + gl) M+G}
J o o<t<τ

x

/ = M exp (/o

Γ || / ' I dt + γψo +

and

E = (lSμλ

0-
2 A1+λ J)1/λ + 18μ0AJ+ U8A( max | | / ( ί ) ||2 + 7)} 1 / 2,

o</<r

where ft and C are some positive constants depending only on a and ί2, and

λ = 3/α - 1/2 < 1/2. Then, we obtain (2.4), provided

^ = const. μoU2Eι/2 when 1 < q < 2

and

Kq = a positive function of argument (2.5) when # > 2.

Consequently, (2.6) is easily concluded.

For the further detail of the proof we refer to [4]. Q.E.D.
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We now treat the initial-boundary value problem, asscoiated with φ €= XOi

for ft

θ'- Δθ + Uφ Vφ = F(φ} uΦ) +p inQ=Ωxl,
( ' ) θ ~ θo = 0 on (Γ x /) U ( β x {0}),

where / denotes the interval [0,Γ], Uψ the velocity field obtained in Lemma 2.1,

F ( 0 , u) the same function as in (1.22) and

(2.8) Xo = {φ e X; 0(0) = θo and 0 = 0 on Γ x /} .

Setting h = θ — θo, we may rewrite (2.7) as

ti - Δh = Δθo + F(φ, uφ) + p - uψ- Vφ in Q,
( } A = 0 o n ( Γ x / ) U ( f l x {0}).

Let us set

G0 = Δθo + ί"(0, w</>) + p — M̂  F 0 for 0 ^ Xo

It is easily seen from (1.24) that the initial value of Gψ vanishes.

There is the key lemma in the present paper.

LEMMA 2.2. Suppose that θo satisfies (1.24). Then, we have Gψ ^ Y\ —

Whp(I LP(Ω)) for any φ €= Xo. Moreover, the following estimate holds:

(2.11) II GΦ In < Cτ I θo l.p + Mi + CAK, + K2) || φ \\x,

where M\ is a positive continuous function of T and the arguments (2.5), and CT is a

positive constant depending only on T such that CT ~* 0 as T—+0.

Proof Using Holder inequality, we can derive from definition (1.22) the fol-

lowing inequalities:

| | F | | # < 2 ^ | | D(u)\\ϊp + gι\\D (u)\\p,

I F' \\p < 2ωμ, || φ' \\b \\D(u)%q + 4μ, \\D(u')\\ \\D{u)\\^

+ ω/μΊ II ψ' I \\D(u)l + g l I D{u')\\p,

where q=3/p<2 and 1 /p*1 = 1/p- 1 /2. Keeping in mind 6 < / < 10 (see

(1.6)), 2p < 6 and 2q < 6, we can compute, using (2.3) and (2.4), as follows:

\\F\\p

pdt) <2μi[J \\D(u)\ψpdή +gι\JQ \\D(u)\\p

Pdt
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and

(2.13) (fo

T\\F'Udt)1/P < 2ωμi [J* WψWldtf'2 (£ \\D{u)%i dtf

+ 4μ, (f* || D{u')ϊ dtj/2 (fo

T \\D(u)\\£ dtf/P

+ ω^( £ || φ' % dt)1/2 ( £ || D(u) \\f dt)UP + gl ( f* I D (uθ III rfί) V ί

= (2μiKl + yfcK,)Tυt\ω II 0 II* + const.C«^o 1 / 2 ^ + giT1'*')^.

In the same manner as above we get the following three estimates:

(2.14) (fo

T || u-Vφt dt)UP < [£ || u I dt)l/P sup || 170 II,

< c o n s t . T1/PK21| φ \\x with l/r=l/p-l/a>l/6,

|| M F 0 ' 112 dt) < ( J o II Fψ' III Λ ) ( J O lU III dt)

< const. T1//)+iί21| φ \\χ with 1 /s = 1 //> - 1 /β > 1 /6

and

|| «'• 7 01|2 ΛJ < ( J o II u' t dt) sup || V φ I

< const. Γ ^ J f i || 0 ||z with l/r= l/p-l/a> 1/6.

Thus, (2.11) easily follows from (2.12)^(2.16). Q.E.D.

LEMMA 2.3. For any φ ^ Xo there exists one and only one solution hψ ^ Yo of

the heat equation (2.9) satisfying

(2.17) \\hφ\\Yo< Cι\\Gφ\\Yl.

C\ being a positive constant depending on T, p and Q — Ω X (0,T).

Proof Let h and k be unique solutions contained in $(p of equations (2.9) and

equation

(2.18) kr ~ Δk = Gr in Q,

k = 0 o n ( Γ x / ) U ( f l x {0}),

satisfying the inequalities

(2.19) || h \\πp <c(fQ

T\\G HI dtf/P and || k \MP < C ( £ II G' \% dst
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respectively. The existence of such h and k is due to [3 Theoreme 9.3]. Because of

Gφ — 0 at t = 0, we have h' — k. Hence, it is easily seen that h = hφ is in Yo and

satisfies (2.17). Q.E.D.

§ 3. Proof of Theorem 1

Lemmas 2.1, 2.2 and 2.3 enable us to introduce a mapping H of Xo into

Fo c= X(see (1.9), (1.10) and (2.8) for X, Yo and Xo, respectively):

(3.1) H :φ^ θ = H(φ) = hψ+ θ0.

Regarding H as a mapping of Xo into itself, we can prove

LEMMA 3.1. The mapping H defined by (3.1) is continuous and compact on Xo.

Proof. The compactness of H is an immediate consequence of Lemma 1.2. In

fact, it is easily seen from (2.11) and (2.17) that H (φ) remains in a bounded set

in Fo when || φ \\x is bounded.

We now prove the continuity of H. For φ and φ belonging to Xo, we have, us-

ing abbreviations μψ = μ(φ) and gψ = g(ψ),

Gφ - Gψ = 2(μφ - μψ) \ D(uφ) |2 + (gφ - gψ) \ D(uφ) \

+ 2μψ {\ D(uφ) I + I D(uψ) I + ^ } ( | D(uφ) \ - \ D(uψ) |)

— (uφ — uφ) - V φ — uΦ' V (φ — φ).

So that, setting 1 /r = 1 /p — 1 /6, we obtain, keeping in mind r < 3 < a < p ,

|| Gψ - Gφ \\p <2\\D (uΦ) \\lr || μφ - μψ ||6 + || D (uψ) \\r \\ gΦ - gφ ||6
+ μΛD (uΦ) ||,t + || D (uψ) \\p* + || gψ | U || V z ||

+ c o n s t . (|| Vφ\\a\\ Vz\\ + \\ VuΦ\\r\\ V(φ~φ)\\),

and hence (2.4) leads to

a Ί .. .. \l/p I ΓT M M \l/2 / ΓT \l/2

\\GΦ- GΨ\\ppdt) <c1[Jo \ \ V ( φ - φ ) \ \ 2 d t ) + c 2 ( J o \\Vz\\2dt) ,
because p[ does not exceed 10. Here, z — uΦ — uφ and d (i = 1,2, . . .) denote

positive constants which depend on φ and φ but remain bounded as far as they

run over a bounded set of X.

On the other hand, by the usual argument it follows from (2.2) that

\ft \\z II2 + μo \\Vz\\2 < < B (z), uΦ > - 2 <(μΦ - μΨ) D(uΦ), D(z)>
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- f (gΦ~ gφ)(\D(uΦ) I - I D{uΨ) I) dx

<γ\\z | |1 / 21| V uφ I I V z ||3/2 + 2\μΦ-μφ || v II Z) («,) ||f t II D (z) I

+ 1 1 ^ - ^

< jμo II F 2II2 + | ( | | z II2 + IIZ) (uΦ) Iβt II ̂  - μ φ ) |||, + II ̂  - ft II2),|
where we used the relation \/pf + l//) f = 1/2. Therefore, we have

(e~ct || z(t) \\2Y + μoe-ct || t 7 £ ||2 < c3(\\ D (uφ) \\% || ^ 0 - ^ , t +\\gψ~ g* II2)

Integrating the both sides of the above from t = 0 to t = T, we obtain

τ \i/ρr

iφWfdή
l ΓΎ , \i/2 / r

(3.2) IU(Oll + (Jo WVzfdt) <c(Jo

Hence,

o I G# - G, III Λ j < C4II φ - ψ) \\χ.

We now return to the proof of the continuity of H. Let {φn} be a sequence in

Xo such that ψn~* ψ in X and set Λ» = /?0n and Gn

 = Gψn. Since the mapping H is

compact, we can find a subsequence {hm} of {/zw} so that hm—+h in X On the

other hand from (2.19) and (3.3) it follows that there exists a positive constant C

such that

\\hφ-hn\\χf<C\\ψ-ψn\\x.

Consequently, we have h = hψ, which implies hn ~> hψ in X as n-^> 00. Q.E.D.

LEMMA 3.2. There exists a positive number R such that the ball in Xo: BR

= {φ e Xo II φ — ΘQ \χ < R} is transformed into itself by the mapping H, if either

quantity^) or (ii) 0/(1.25) is sufficiently small.

Proof Linking (2.11) with (2.17), we get

(3.4)|| θ-θo \\x = II hΦ \\χ < Co II hΦ Ik < f + CodCrCKi + K2) (R + II #0 \\x)

for 0 e β^,

where Co is a positive constant depending only on T, p and Q, and i? is chosen as

y > Cod sup (CΓ II ̂ 0 ||2.ί + Mi + II e0 II x),



BINGHAM FLUID EQUATION 1 3

where the supremum is taken over all arguments such that

T+ IIχ II + Γ (||/I + I/ ' II) Λ + ωII01W < K
J 0

for some K. If the quantity (i) of (1.25) (resp., (ii) of (1.25)) is so small that

ω < K/R, and two inequalities (i) of (2.1) (resp. (ii) of (2.1)) and

CoCiCAKi + K2) <^

hold true, it then follows from (3.4) that H (φ) e BR (cf. (2.6) and (2.11)). Q.E.D.

Since BR is a closed convex and bounded subset of X, Lemmas 3.1 and 3.2

allow us to adapt the Schauder fixed point theorem to get a fixed point θ : H (θ)

— θ. It is easily seen that {UΘ, θ) is a solution to the problem (1.18)^(1.20) satis-

fying (1.26).

Our final goal is to establish the uniqueness of {uθy θ) . Let us suppose

{uψ, φ) be another solution. Then, we have r}f — Δη = GΘ ~~ Gψ, where 7] — θ

— φ. Multiplying the both sides by η and integrating on Ω, we get, using holder's

inequality,

\ft U f + II Vη ||2 = fo η (Gθ - GΦ) dx

< C f V (I D(uΦ) |2 + I D(uΦ) I) + I η I I D(z) | (\D(uΦ) \ + \ D(uθ) | + g,)
J Ω

+ |τ? I \z\ I Vθ\) dx

<C{\\nfP' (\\D(uΦ)\\2

P< + \\D(uΦ)\\Pv2)

+ II η I' II vz i (ιι D(uΦ) ιι,t + ιι D M ιι*t + ιι gt y + n η \\p, \\Z\\\\VΘ t),
where and in the following we denote by C various positive constants and z =

Uβ — Uψ. Integration from 0 to t yields by (3.2)

\ II r, {t) f + £ || V η ψdτ ίc(fi\\η \\P dτ)*"'

+ c(£\\η\\Pdτ)^' ( ( / | | Vzψdτ)1/2+ maxJU(r)||}< c(£\\η\\p

which implies

(3.5) I η (t) f + Γ || V η ||2 dτYn < C Γ \\η \\p dτ.
J o J o

Observing 2 < p' < 6, we obtain by virtue of the interpolation inequality

LHS of (3.5) < C Γ || I? \\ap' \\ η \\lp' dτ,
J o
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where a = (6 - p')/2p', β = 3(p' - 2)/2pf and hence βp' < 2. Setting

k = 2ap7{2 - βp') = 2(6 - />')/(10 - 3/>'),

we have by Holder's, Young's and Sobolev's inequality

/ Γt I. I. \BP'/2 / rt .. .. \(2-jB£')/2

L H S o f (3 .5) < C ( j || F I N ) ( j || I N J
/>V2

and hence

\\η{t)\\k<C f'Wηfdτ,
•J 0

which immediately implies η = 0 and {z/0, W
 = (%, 0). Q.E.D.

The following remark is suggested by Prof. Yoshio Tsutsumi.

Remark. It is evident that the sequence θn — Hn(θo) (w = 0,1,2,.. .) is con-

tained in BR Π FO and satisfies || θn ~ θo II γ0 ̂  R/CQ. Making use of Lemmas 1.2

and 3.1, we can extract a subsequence {θn

r) which converges to a fixed point θ in

X. The uniqueness of the fixed point therefore implies || θn ~ θ\χ-*Q as n—+ oo.

This fact is suggestive of applying the contraction mapping theorem, in other

words, establishing the inequality || GΨ — Gψ \\Yl < ε\\ φ — ψ\\χ for sifficiently

small ε > 0. However, it seems impossible to the author, because of the term

gi(φ) \D{uφ) |.
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