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Introduction

The purpose of this paper is to introduce α-functions and 6-functions
of prehomogeneous vector spaces in the original way of M. Sato and
give a proof of the structure theorem of them. All the results were
obtained by M. Sato when he constructed the theory of prehomoge-
neous vector spaces in 60's. However he did not write a paper on his
outcomes at that time. His theory was distributed through his lectures
and informal seminars. Only small number of people could know it. The
only publication left for us is a mimeographed note of his lecture [Sa-
Shl] written by T. Shintani in Japanese. Sato and Shintani published
the paper [Sa-Sh2] in 1974 on zeta functions associated with prehomoge-
neous vector spaces, but a very narrow class of prehomomgeneous vector
space was dealt with there. In [Sa-Shl], Sato gave the exact definitions
of α-functions and 6-functions for a wider class of prehomogeneous vector
spaces and gave a remarkable theorem of their structures. But it seems
to have been forgotten for a long time.
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This paper stems from the chapter one of [Sa-Shl], or we may say
that all of the part of this paper is a modified translation from [Sa-Shl]
not only in the contents but also in the formulation. However, the
responsibility for this paper rests with the translator. The translator
tried to state faithfully the original idea of M. Sato based on the lecture
note which is left to us by T. Shintani. The proof of the structure theo-
rem is given in English for the first time here. The key of the proof is
the theorem in Appendix; it is useful for clarifying the structure not
only of ^-functions but also more wider class of functions satisfying the
cocycle condition. The idea due to Sato (and partly to Shintani), that
has never been written in a formal publication or widely circulated jour-
nals, appears for the first time in English. In particular, his original
proof is given here for the fact that the 6-functions for relative invari-
ants are divided to a product of inhomogeneous linear forms. This fol-
lows from the theorem (Theorem or its corollary in Appendix) on a family
of rational functions with a cyclic condition, which itself is a useful
proposition. In order to clarify the role of this theorem, the translator
extracts it from the original proof. It can be proved independently from
the theory of prehomogeneous vector spaces. Recently it becomes clear
that it has a fruitful application. See Aomoto [Al] and [A2].

The translator wishes to express his gratitude to Professor M. Sato
for his permission to publish his results in this form. He is also grateful
to Professor Aomoto for his suggestion to publish this paper.

§ 1. Fundamental idea of prehomogeneous vector spaces

Let Ω be a universal domain of characteristic 0 and let V be an n-
dimensional vector space over Ω. Let G C GL(V) be a connected linear
algebraic group defined over β, and we denote by g-x the action of G
on V with geG and xe V. For a point x in V, we denote by Hx the
isotropy subgroup, i.e., Hx :— {geG; g-x = x}. In the theory of algebraic
groups, the following lemma is well-known.

LEMMA 1. Let x be a point in V. The G-orbίt Gx generated by x

can be written as Gx = Ex — Fx where Ex is a G-inυariant algebraic

subset in V and Fx is a G-invariant proper algebraic subset of Ex. Here

dim Ex = dim G — dim Hx. Here dim means the dimension. The totality

of xe V such that the dimension of Ex are maximal is a G-inυariant

Zariskί-open set in V.
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DEFINITION 1 (prehomogeneous vector space). If there exists a point

x e V such that dim Hx = dim G — dim V, then we say that V is prehomo-

geneous with respect to the action of G and call the pair (G, V) a

prehomogeneous vector space. We call the set of points xe V such that

dim Hx > dim G — dim V the singular set and denote it by S.

Henceforth, let (G, V) be a prehomogeneous vector space and let S

be its singular set. Let x e V and put G x = Ex — Fx. Then, from the

definition, the following four conditions are equivalent;

(1) xeF-S,

(2) dim Hs = dim G - dim V

(3) dim £;, = dim V

(4) Ex = V.

Note that dim Ex < dim V. Then, by Lemma 1, V — S is a G-invariant

Zariski-open subset in V, which implies that S is a G-invariant proper

algebraic subset. If x e V - S, then G x C V — S. Since G x = V — Fx,

we have F x 3 S. Now, suppose that Fx — S Φ 0 and y e Fx — S. Then

G j/ = V — F y is a Zariski-open set in V for y £ S. On the other hand,

since y e Fx and since F x is G-invariant, Gy is contained in the proper

algebraic subset Fx of V. This is a contradiction. Therefore we have

Fx - S = 0 , which yields that F Λ = S. This means that G x = V - S

if x e V — S. Consequently V — S is a G-orbit. Arranging the above

arguments, we have the following proposition.

PROPOSITION 1. Let (G, V) be a prehomogeneous vector space and let

S be the singular set. Then S is a G-invariant proper algebraic subset in

V and V — S is a G-orbit in V.

DEFINITION 2 (rational characters and character groups). We call a

rational homomorphism from G to Ωx : = Ω — {0} a rational character.

We denote by X(G) the set of all rational characters which forms a

multiplicative group. Let % be a rational character of G. We call a

non-zero rational function P(x) on V a relative invariant or a relatively

invariant rational function corresponding to the character 1 if P(g x) =

%(g)-P(x) for any g e V. In particular, if P(x) is a polynomial, we also

c a l l i t a relatively i n v a r i a n t polynomial. L e t Xu -'-,Xr b e r a t i o n a l c h a r -

acters belonging to X{G). We say that they are multiplicatively inde-

pendent when they generate a free Abelian group of rank r in X(G).
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PROPOSITION 2. (1) Any relative invariant corresponding to a char-

acter is determined up to a constant factor by the character.

(2) Any prime divisor of a relative invariant is a relative invariant

(3) Relative invariants are homogeneous functions.

(4) Relative invariants corresponding to multiplicatively independent

characters are algebraically independent

Proof. (1) From the definition, the zeros and poles of a relative in-

variant are G-invariant proper algebraic subsets. They are contained in

S. Let Rλ(x) and R2(x) be two relative invariants corresponding to a

rational character X e X(G). Let x0 e V — S and let Q(x) = R2(XQ)R1(X) —

Ri(Xo)Rι(x). Then we have Q(g-x) = X(g)-Qκx) for all ^ e G and all xeV,

and Q(x0) = 0. Therefore, we have Q(x) = 0 for all x in V — S because

V — S coincides with G x0. Thus we have Q = 0. Since Rt(x0) is not 0

or oo, we have R^x) = (Rί(x0)IR2(x0))^Rz(x).

(2) Let i?(x) be a relative invariant corresponding to a character

XeX(G) and let Πί=i^i( χ)π < be the decomposition into prime divisors of

R(x). Namely, Rx(x), •• ,i?fc(x) are mutually different irreducible polyno-

mials and tt/s are non-zero integers such that R(x) = WΊ^R^x)711. From

the definition, we have \\k

i=1 Rt(g-x)ni = X(g) Π t i Rί(x)ni- Since each

Rt(g'x) (ί = 1, , £) is an irreducible polynomial on V, it must coincide

with one of the polynomials i?i(x), , Rk(x) up to a constant factor.

However, since the group G is a connected algebraic group, we have

Ri(g.χ) = Xi(g)Ri(x) for all geG. Here, χf(g) is an βx-valued rational

function on G and evidently is a rational character of G. Thus iϊ^x),

• , Rk(x) are all relative invariants.

(3) Let P(x) be a relative invariant corresponding to a rational

character X e X(G). Let t be an element of flx and define a rational

function Pt(x) : = P(tx). Then we have Pt(g-x) = P(g (tx)) = X(g)P(tx) =

X(g)Pt(x) for all s e G and all * e V. Therefore both P(rc) and Pf(x) are

relative invariants corresponding to X, and hence they coincide with each

other up to a constant factor. Consequently we have P(tx) = c-P(x)

with a constant c depending only on t, which means P(x) is a homoge-

neous polynomial.

(4) Let Xu - , Xr be rational characters in X(G) which are multi-

plicatively independent. Let Rι(x), , Rr(x) be relative invariants corre-

sponding to the characters Xu ••-,%,., respectively. Suppose that Rx(x),

• , Rr(x) are algebraically dependent. Then we may take monomials
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Ui(Ru -,Rr) (ί = 1, , s) in R&), , Rr(x) such that Uu • , Us are

linearly dependent and any (s — 1) of them are linearly independent.

Now, we let W := {(cu •• ,c s )ef i ί ; Σs

i==ι ci^i = 0} Then, from the assump-

tion, W is a one-dimensional vector subspace in Ωs. On the other hand,

each Ui is a relative invariant. We let vt be the corresponding character

of Uiix). If (cu , cs) e W, then we have (c^ig), , csvs(g)) e W for

any geG from the definition. Since dim W = 1, we have vt = = vs.

However, UU-—9U, are different from one another as monomials in

i?!, , i?r, which means vu , vs are different from one another since

Xu - , Xs are multiplicatively independent. This is a contradiction. Thus

jRi(x), , J?r(x) are algebraically independent. (q.e.d.)

DEFINITION 3 (singular set). Let (G, V) be a prehomogeneous vector

space and let S be its singular set. We let S(0) be the union of irreduci-

ble components in S of codimensίon one in V and let S(1) be the union of

irreducible components in S of codimension more than two. Let Su , Sm

be irreducible components of S(0) and let P^(x) be an irreducible polyno-

mial defining the irreducible hypersurface St. Namely;

S = S(o) U S ω and S(0) = St U USm ,

codim S(0) > 2 .

PROPOSITION 3. (1) The defining polynomials P^x), , Pm(x) in Defi-

nition 3 are relatively invariant polynomials of (G, V) and they are alge-

braically independent.

(2) The group of relative invariants under multiplications coincides

with the free Abelian group of rank m generated by P^x), , Pm(x). Here

we consider polynomials modulo constant factors.

Proof. (1) Since G is a connected algebraic group and since St is

an irreducible algebraic subset, the algebraic closure (G SJ of the set

GSi := {g'X; geG, xeSt} is also irreducible. On the other hand, St C

G Si a S implies that St d (G- Sf) c S, and St is an irreducible com-

ponent. Then we have S4 = (G-Si). Thus we have g-Si = S4 for any

geG. Since g St = {xe V; P ^ ^ " 1 x) = 0} and S, = {xe V; P,(x) = 0}, and

since P*(x) is an irreducible polynomial, the two polynomials P^(x) and

Piig'^x) coincide with each other up to a constant factor. Therefore,

there exists a character X^g) such that P^g-x) = Xί(g)Pί(x) for all geG
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and all xeV. This means that Pt(x), -;Pm(x) are all relative invariants.

Since Px{x), , Pm(x) are mutually different irreducible polynomials,

Xl9 , Xm are multiplicatively independent. Thus Pχ(x), , Pm(x) are

algebraically independent by Proposition 2, (4).

(2) Let P(x) be an irreducible relatively invariant polynomial. Since

{x e V; P(x) = 0} is a G-invariant proper algebraic subset, it is contained

in S, and since it is an irreducible hypersurface, it coincides with one

of Sί9 , Sm. Therefore P(x) coincides with one of Pι(x), , Pm(x).

From Proposition 2, (2), any relative invariant is written as a product of

integer powers of irreducible relatively invariant polynomials. Thus any

relative invariant coincides with a product of powers of Px(x), , Pm(x).

(q.e.d.)

DEFINITION 4 (basic relative invariants and their character group

(1) The polynomials of Pt(x), , Pm{x) are called basic relative in-

variants of (G, V). We denote by Xu , Xm the rational characters corre-

sponding to the relative invariants Pλ(x)> , Pm(x), respectively. The set

{Pu , Pm} of all basic relatively invariants is called the complete system

of basic relative invariants.

(2) We denote by [G, G] the commutator group of G. Let xύe V — S

be a fixed point. Then the subgroup of G generated by [G, G] and the

isotropy subgroup HXo does not depend on the choice of x0 e V — S. We

denote it by G1? i.e., Gj : = [G,G]-HX0. The group Gλ is a normal alge-

braic subgroup of G, and GjGγ is a connected abelian algebaric group.

We denote by Xλ{G) the group of rational characters of GjG^ Namely,

X,{G) = {X e X(G); X(g) - 1 for all g e GJ.

PROPOSITION 4. 7%e character group Xt(G) defined in Definition 4 is

the free Abelian group of rank m generated by Xu , %m.

Proof. Let P(x) be a relative invariant corresponding to a character

X(g). Let xeV- S. Then P(£ x) = X(g)P(x) and P(Λ ) ^ O o r o o , Thus

if g e i?s> then X(g) = 1. That is to say, % is trivial on Hx. On the other

hand, since Xig&g^g;1) = 1 for all g1? g2eG, X is trivial on [G, G]. Thus

X is trivial on Gί = [G, G] -fl*. We have X 6 ^(G). Conversely let X be an

arbitrary element of Xt(G). Let xoeV — S. Then % can be viewed as a

rational regular function on G/HXQ ~ V — S. We denote it by P, a ra-

tional regular function on V — S, which is evaluated by P(g x0) := X(g)
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with geG, Here we identify g-xQe V — S with the representative [g] e

GjHXQ of geG. We have P(g x) = X(g)P(x) for any g e G by definition.

The rational function P(x) on x e V — S is extended to the rational func-

tion P(x) o n x e V keeping the relation P(g-x) = X(g)P(x). Namely, there

is a relative invariant P(x) corresponding to the rational character X.

By Theorem 1, the subgroup of X(G) consisting of characters correspond-

ing to relative invariants coincides with the free Abelian group generated

by Xi, ,Xm. Thus we complete the proof. (q.e.d.)

Next we consider the contragredient representation of G on the dual

vector space V*. The action of g e G for yeV* is denoted by g* y.

We have <g x, g* y) = <x, 3>> for all g e G, x e V and 3/ e V*. Here < , >

stands for the canonical bilinear form on V X V* to Ω. The group G is

viewed as a connected linear algebraic subgroup of GL(V*). For a fixed

point jo e V*, we denote by Hyo% the isotropy subgroup at yQ, i.e., ίf^* : =

{ge G;g*>y0 = jo} ?%β rfwα/ pair (G, V*) may not be a prehomogeneous

vector space even if (G, V) is prehomogeneous (see the example at the

end of this section). In this paper, we are interested in the cases that

at least one of (G, V) and (G, V*) is a prehomogeneous vector space.

We give the notations for (G, V*) here when (G, V*) is a prehomogeneous

vector space.

We suppose that (G, V*) is a prehomogeneous vector space. (How-

ever, we do not have to suppose that (G, V) is prehomogeneous.) let S*

be the singular set of (G, V*). By Proposition 1, £* is a G-invariant

proper algebraic subset in V* and V* — S* is a G-orbit in V*. We

denote by Sf0) the union of irreducible components of S* whose codimen-

sion in V* is one. The set Sfυ is the union of irreducible components

of S* of codimension more than two in V*. Let S*, , S* be irreduci-

ble components of Sf0) and let Q4(y) be an irreducible polynomial defining

the hypersurface Sf. Namely;

S* = Sfo) U S?υ and S*o) = S? U U S*, ,

^ :={}/6 7*; Qi( y) = 0} (ί = 1, , mθ,

codim S*) > 2 .

Applying Theorem 1 to the prehomogeneous vector space (G, V*), Qι(y)9

'''>Qm'(y) a r e basic relative invariants of the prehomogeneous vector

space (G, V*), and (Q^ , Qm0 is the complete system of basic relative

invariants of (G, V*). We denote by //„ , μm> the corresponding rational
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characters of the relative invariants Q^y), •• ,QmΌ0> respectively, i.e.,

Qi(g*.y) = μt(g)Qt(y) for all geG and all y e V. Let y o e V ^ - S* be a

fixed point. Then the subgroup G^ \— [G, G]HyQ* does not depend on

the choice of y0 e V* — S*. Here fl^* means the isotropy subgroup of G

at j 0 e V. Gi* is a normal subgroup of G and GjG^ is a connected Abelian

algebraic group. We denote by X^(G) the subgroup of X(G) consisting

of rational characters which is trivia] on GlϊH, i.e., X^(G) ;= {μ e X(G);

μ(g) = 1 for all g e G1#}. Applying Proposition 4 to (G, V*), Xi*(G) is the

free Abelian group of rank m! generated by μl9 ,μm>.

We close this section by giving an examples of prehomogeneous

vector spaces. A systematical classification of prehomogeneous vector

spaces have been done by [Sa-Ki].

EXAMPLE (a prehomogeneous vector space whose contragredient action

is not prehomogeneous). Let G : = Ig = (^ ? ) ; a, beΩ, b Φ 0> and let

V : = ίx = (Xl); xu x2eΩ\. Then G is an algebraic subgroup in GL(V).
I \X2/ )

The Zariski-dense subset V : = {x e V; x2 φ 0} is a G-orbit, hence (G, V)

is a prehomogeneous vector space whose singular set is {x e V; x2 = 0}.
Let V* : = \y = (y1); yuy2e Ω\ be the dual vector space. The contra-

gredient action g* is given by g*-y = ί^~1 ,y. Then each orbit in V* is

parametrized by the value yx. This means there are no Zariski-dense

orbits in V*. Thus (G, V*) is not a prehomogeneous vector space.

§ 2. Quasi regular prehomogeneous vector space

Let V be an n-dimensional vector space defined over the universal

domain Ω and let V* be its dual vector space. Let G be a linear alge-

braic subgroup of GL(V), which naturally acts on V* by the contra-

gredient action. We suppose that (G, V) (resp. (G, V*)) is a prehomoge-

neous vector space defined on Ω. We use the same notations as in § 1.

Let g be the Lie algebra of G and let & (resp. &*) be the Lie algebra

of G{ (resp. G1Hί). Let gv be the dual vector space of g. We denote by

A'X (rsep. A*-y) the action of an element A eg for xeV (ye V*), i.e.,

A x : = (d/dt)(exp (tA)>x)\tm0 (resp. A*-^ : = (d/Λ)(exp (iA)*-x)|ie0). We

have the relation <A x, ;y> + <x, A* ;y> = 0 for all A e g and xe V, ye V*.

Let 9? (resp. ψ) be a rational map from V to V* (resp. V* to V). In

other words, ψ (resp. ψ) is a V*-valued (resp. V-valued) rational function
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on V (resp. V*). We say that φ (resp. ψ) is a G-admissible map if £>

(resp. ψ) is a regular function on 7 - S (resp. V* — S*) and φ(g-x) =

g*-φ(x) (resp. ψ(g* y) = g'Ψ(y)) for a 1 1 £ e G-

Let ω e gv. When a G-admissible map p (resp. ψ) satisfies the con-

dition <A x, p(jc)> = <A, ω) (resp. <A* y, ψ(;y)> = — <A, ω}) for all A eg

and xe V — S (resp. j e V * - S*), we denote it by φω (resp. ψω). We

denote by Xj (resp. X1Hί) the totality of the elements in gv which are null

on g! (resp. g1Hί). In other words, Xj (resp. X1Hί) is the dual space (g/gi)v

(resp. (g/gi*)v). For an element X e Xi(G) (resp. μ e X1Hί(G)), we define an ele-

ment dXeXi (resp. δμeX^) by 3X(A) : = (d/dt)X(exp(tA))\t=0 (resp. δ/i(A) : =

(c?/dί)jtί(exp(ίA))|ί=0) for A e g. The map <5 gives an injective homomor-

phism from Xi(G) (resp. X1H.(G)) to Xi (resp. Xi^). We call the infinitesimal

character of X.

PROPOSITION 5. Jτι order that there exists a G-admίssίble map φω

(resp. ψ j satisfying the condition <A x, φω(x)y = <A? ω) (resp. <A* y, ψω(y)}

= — <A, ω » /or all A e g α^rf x e V — S (resp, y e V * - S*), 7*ί is neces-

sary and sufficient that ω e Xj (resp. ω e Xi*) Ϊ7ιe map >̂ω (resp. ψω) is

determined uniquely if it exists.

Proof. We shall give the proof only for the map φω since almost the

same proof for ψω can be obtained easily.

(Necessity). Let φω be a G-admissible map satisfying the condition

<A x, φω(x)} = <A, ω> for all A e g and ω e V — S. Let xe V — S and we

denote by §x the Lie algebra of Hx, i.e., ί̂  = {A e g; A-x = 0}. Then

<ω, A) = 0 for all A e | r On the other hand, since φΦ(g-x) — g*-φω(x)

for all x e V — S and g e G, we have <co, Ad (g) A> = <ω, A) for any

^ e G and A e g. Here Ad means the adjoint representation of G on g.

Indeed, <ω,Ad(^) A> = <ω,gAg-ιy = ( ^ A ^ - 1 ^ , ^ ) ) = <A£-1 *,g*. f£
1(*)>

= (Ag~ι-x, φω(g~ί'X)} = {(o, A). Thus we have <ω, [g, g]> = 0. This means

that ω is null both on §x and on [g, g]. The Lie algebra gt is the Lie

algebra generated by §x and [g, g], and hence ω is null on &.

(Sufficiency) Suppose that ω e gv is null on g^ Take an element x

in V — S. Since dim g — dim ^ = dim V, the map A *-> Ax from g/^ to

V gives a one-to-one linear map. Since ω is null on ^ , there exists an

element φ(x) e V* satisfying {A x, φ(x)y = {A, ω) for all A e g and it is

determined uniquely. On the other hand, since ω is null on gt, we have

<ω, Ad (^) A) = <ω, A) for all A e g and g e G. Therefore we have
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(φ(g-x), Ag x} = <ω, A> = <ω, Ad(g~ί)Ay = <g*p(*)> Ag x). Thus

= g* φ(x) for all x e V — S and geG. Since it is clear that ^ is a re-

gular rational function on V — S, φ is a G-admissible map from V to V*

which satisfies the condition in <A x, φω(x)y = <A, ω> for all A e g and

x 6 V — S. At the same time we have proved that φ is determined

uniquely by ω. (q.e.d.)

For xe V — S (resp. y e V* — S*), we define dφω(x) (resp. dψw(y)) to

be the linear map from V ~ T.V (resp. V* ~ TyV*) to V* - T9a{x)V*

(resp. V ~ T^^V) given by

u i • dφω(x)(u) : = (-—-

resp. υ i (^ 6

Let (xl9 - - , xn) and (y1? , y j be the coordinates on V and V*

respectively, such that they are dual coordinates to each other. The

map φω (resp. ψω) is written as ((<pω)u , (φω)n) (resp. ((ψji, , (ψj«))

with respect to the coordinate (JΊ, , yn) (resp. (x1? •••,xj). Let φω(x)-

dx := ΣS=Λ<P»(x))tdXt ( r e s P Ψ i ^ Φ : = Σ?=i ( Ψ i ^ ) ) ^ ) ) , a G-invariant

differential form on V — S (resp. F* — S*). This definition does not

depend on the choice of the coordinate. Each component (φω(x))i (resp.

(ψω(y))i) is a homogeneous polynomial of degree one with respect to ω.

PROPOSITION 6. Let (G, V) resp. (G, V*)) be a prehomogeneous vector

space.

(1) Let ω e Xx (resp. ωeX^) and let dφω(x) (resp. dψω(y)) be the linear

map defined above. Then dψω(g- x)(g* u) = g*-{dφn(x)(ύ)} (resp. dψω(g* - y)

-(g'v) = g-{dφω(y)(v)}) for all geG, xeV — S and ueV (resp. ye V*

- S* and v e V*).

(2) The differential form ψω(x) dx (resp. ψω(y) dy) defined above is a

closed form on V (resp. V*). Hence, the map (u, v) e V X V *-> (u, dφω(x)(v)}

e Ω (resp. (u, v) e V* X V* •-» <w, dψω(y)(v)y e Ω) is a symmetric bilinear

form on Vx V (resp. V* X V*).

Proof. We shall prove this theorem for φω. The proof for ψω is ob-

tained in a similar way.

(1) It is clear from the definition.

(2) We take coordinates (xl9 -- ,xn) and (yu •• ,jn) on V and V*

respectively, such that they are dual to each other. We may identify
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them with the same vector space Ωn. The linear actions of G and g on

V = Ωn are represented as n X n matrices by g = (g^) and A = (A^).

Then the i-th coordinates of (g x) and (A-x) are given by

When we let ψω(x) : = (φω(x)i9 , ̂ ) B ) f° r # = (#1, , #n) £ V, we have

from the definition Σ?,y=i ψ<λχ)iAnxi = <ω, ^> f° r all -4 e g and x =

(x1? , xn) e V — S. Therefore we have

Σ ? y - i - * ^ Λ Λ + Σ?-ip W Λ , - o.

On the other hand, since φω(g-x) = g*ωω(x), we have:

Thus we have:

for all A e g and x e V - S . The vector (Σ*-i A i ^ , , Σy-i AnjXj) may

take every value in V — Ωn when A runs through g. We get:

for all i, Z = 1, , n. Thus

ential form. Lastly, note that

x = Σ?=i ψω(χ)idXi is a closed differ-

Then we have that d<oω(x) gives a symmetric bilinear form. (q.e.d.)

The commutative connected algebraic group (G/G^ (resp. (G/G&)) is

the direct sum of its torus subgroup (GIGt)t (resp. (G/Glίk)t) and its unipo-

tent subgroup (GjG^)u (resp. (G/G1Hί)ω). Then we have the corresponding

decomposition of the Lie algebra (g/gO = (g/g^ 0 (g/g^ (resp. (g/gO =

(β/βi)ί θ (β/8i)«). Then the dual vector space Xx = (g/δi)v (resp. XlJ|e =

(δ/&*)v) decomposes into two parts; Xx = (X^)t θ (Xi)u (resp. Xlϊk = (Xî )̂  θ

(Xi*)tt), where (Xj), : = {ω e X,; ω|(q/gi)tt == 0} (resp. (X^)t : = {ω e X1#; ω|(q/βl)u

= 0}) and (XOu : = W € X^ ω| ( ί/β l ) l = 0} (resp. (Xlsls)tt : = {ω e X1#; ω|(β/ί l ) t = 0}).
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PROPOSITION 7. Let [Px(x\ -,Pn(x)} (resp.

complete system of basic relative invariants and let li (ί = 1, , m) {resp.

μ. (y = 1, , m')) &<? the corresponding character of Pt(x) (resp. Qj(y)).

(1) 7%e vector space (Xt)έ (resp. CXΊ*),) is £/ιe subspace of Xt (resp. Xt#)

spanned by δXl9 •• ,δXm (resp. fy/u •• ,δ/v) and hence it is an m-dimen-

sίonal (resp. m!-dimensional) vector space.

(2) For ω = ΣΓ-i*i « ieCXi) t (resp. α> = Σ?-i β? tyi e (X^)t) we have

φ.(x)'dx = Σ?-ΛsiIPi(x))dPi(x)) (resp. ψω(y)'dy = - Σ ^ i W/Q/^dQ/y))-
morris, (p.(*))fc = ΣT=i(SilPi(x))(dPildxk) (resp. (ψω(y))t = -

Proof. (1) Any rational character of (G/G^ is trivial on

Thus any element of (XJX is given by a linear combination of δXl9 , ^%m.

(2) We identify V and V* by their dual bases. From that Pf(g-x)

= Zi {g)Pt(x) (i = 1, , m), we have the following equation: Σ?,/=i (dPJdχι)

Άljxj = β%ί(A)Pί(x) for all Aeg . Thus if x e V - S, then ω(Λ) = Σf=1 s,

δXi(A) = Σw-i ΣΓ-i W V f M 3 Λ W } A , Λ for all Aeg. Thus from the

definition we have (φω(x)\ = ΣΓ=iSi(l/^(*))(9iV9*ι). Therefore we have:

The similar proof is possible for the dual space V*. (q.e.d.)

Let xe V - S (resp. y e V* - S*) and let ωe^ (resp. ( o e ΐ j , If

the linear map dφω(x) (resp. d\\rω(y)) from V to V* (resp. from V* to V)

is invertible, we say that dφω(x) (resp. dψω(y)) is non-degenerate. By

Proposition 6, the set {xe V— S; dφω(x) is non-degenerate} (resp. {ye

V* — S* dψω(y) is non-degenerate) is a G-invariant subset in V — S

(resp. V* - S*). Then it coincides with V - S (resp. V* - S*) itself or

the empty set 0 . When it coincides with V — S (resp. V* — S*), we

say that ^ω (resp. ψ j is non-degenerate.

The set {ωeXi; ^ω is non-degenerate} (resp. {ωeX^; ψω is non-

degenerate}) is a Zariski-open set in Xλ if it is not an empty set. Indeed,

let ω e Xx be an element such that φω is non-degenerate. Let x e V — S.

When we write the linear map dφω(x); V —> V* by an n X n matrix with

respect to suitable bases of V and V*, each component is a polynomial

of degree one with respect to ω. Then the determinant of dcpω(x) is a

polynomial in ω. Thus {ω e Xx ψω is non-degenerate} = {ω e Xx det (rf̂ ?ω(x))

^ 0}, and hence it is a Zariski-open set in Xx if it is not empty. We

can prove the parallel fact for the map ψω in the same way. In addition,
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we can prove that the set {ωe(X1)t;φω is non-degenerate} (resp. {ωe

(XifcX ψ1* it non-degenerate}) is Zariski-dense in (Xt)t (resp. (X1 %)t) if it is

non-empty similarly.

DEFINITION 5 (quasi-regular prehomogeneous vector space). We say

that the prehomogeneous vector space (G, V) (resp. (G, V*)) is quasi-

regular if there exists ω e Xx (resp. ω e X1Hί) such that φω (resp. ψ j is non-

degenerate.

PROPOSITION 8. If (G, V) (resp. (G, V*)) is a quasi-regular prehomo-

geneous vector space, then (G, V*) (resp. (G, V)) is also a quasi-regular

prehomogeneous vector space. Moreover we have Xt = X^ and Gx = G^.

Let ωeXx be an element such that φω (resp. ψ J is a non-degenerate map

from V (resp, V*) to V* (resp. V). Then φω (resp. ψω) gives a biholomor-

phic rational map from V — S to V* — S*. Moreover ψω = φ~x.

Proof. Since (V— S) is a G-orbit in V and since φω is G-admis-

sible, φω(V — S) is a G-orbit in V*. Then there exists an algebraic

subset J5* and a proper algebraic subset .F* in 12* satisfying φω(V — S)

— E* — F*. On the other hand the linear map dφω(x) from V to V*

is invertible at any point x e V — S, which means the dimension of the

image of φω is the same as the dimension of V — S. Hence we have

dim(S*) = dim(V— S) = n, which yields that E* = V*. This means

that (G, V*) is a prehomogeneous vector space with respect to the con-

tragredient action of G and F* coincides with the singular set S*.

Thus we have φω(V- S) = F * - S*. For a point xeV- S, we let

y := Ψω(x) e V * - S * and Hv* := {geG;g* y = y). Then since Hv* 3 Hx

and dim Jΰ^* = dim G — dim V* = dim Hx, the Lie algebra of Hx coincides

with the Lie algebra of Hy*. Thus when we let G1H. : = [G, G ] - ^ * , the

Lie algebra g1Hs of Gl5li coincides with &. Then we have Xί — (G/^I)V =

(δ/9i*)v = Xi* Since ω e X1Hί, there exists a G-admissible map ψω from

y* to V satisfying (ψm(y), A*-y) = - (ω, A) for all j / e V ^ - S * and

A e g by Proposition 5. Then the map ψω is determined uniquely. On

the other hand, from (φω(x)y A x} = <ω, A>, we have (x9A*-φΛ(x)y = —

<α>, A> for all x e V — S nad A e g and hence y = ^ω(x) implies x = ψβ(y)

and the converse is true. That is to say, φω and ψω are the inverse

maps of each other. Thus ψω gives a biholomorphic rational map from

V — S onto V* — S*. At the same time, we have proved that Hy* — Hx

if y = φω(x) and hence G1Hί = Gγ. (q.e.d.)
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COROLLARY. Let (G, V) be a quasi-regular prehomogeneous vector

space and let (G, V*) be its dual prehomogeneous vector space. Then the

number m! of irreducible components in S* of codimension one in V*

coincides with the number m of irreducible components in S of codimension

one in V.

Proof. By Theorem 1, m (resp. mf) coincides with the rank of the

character group of the abelian algebraic group (G/G^ (resp. (G/G1Hί)). We

have proved that G1Hί = Gt in the proof of Proposition 7. Thus we have

m — m!. (q.e.d.)

DEFINITION 6 (regular prehomogeneous vector spaces). Let (G, V)

(resp. (G, V*)) be a quasi-regular prehomogeneous vector space. If there

exists ω e (Xι)t such that φω (resp. ψ J is non-degenerate, we say that

(G, V) (resp. (G, V*)) is a regular prehomogeneous vector space.

The following proposition is easily proved.

PROPOSITION 9. (1) In order that (G, V) is a regular prehomogeneous

vector space, it is necessary and sufficient that there exists a relative in-

variant P(x) whose Hessian det (dP/dXidXj) does not vanish on V — S.

(2) If (G, V) is a regular prehomogeneous vector space, then (G, V*)

is a regular prehomogeneous vector space.

§ 3. The α-functions ax(ω) and the ^-functions bx(ω)

In this section we suppose that (G, V) is a quasi-regular prehomoge-

neous vector space and we denote by (G, V*) the dual prehomogeneous

vector space. Let [Px{x), , Pm(x)} (resp. {Qx(y\ , Qm(y)}) be the com-

plete system of basic relative invariants of (G, V) (resp. (G, V*)) and let

Xi (resp. μt) be the corresponding character of P^x) (resp. Qi(y)) for i =

Let xeX^G). Since ^ ( G ) = X1*(G), we can write X = ΠΓ=i^ =

117-1)"?' where rcέ and n, are integers. We let P χ(x):= Hf^P^x)71' and

Qz(y):= Π7=iί?/3')n* T h e n py.(χ) (resp. Qχ(y)) is a relative invariant of

(G, V) (resp. (G, V*)) corresponding to the character X. When Px(x) (resp.

Qx(y)) is a polynomial, we say that (X) (resp. (%)*) is non-negative and

write polynomial, we say that (X) (resp. (%)*) is non-negative and write

(X) > 0 (resp. (X)* > 0). Namely, (%) > 0 (resp. (%)* > 0) if and only if

nl9 , nm > 0 (resp. n*, , n* > 0).
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PROPOSITION 10. Let XeX1(G) and let ωeX,. Then Px(x)Qx-i(φω(x))

(resp. Qχ(y)Px-i(ψω(y)) is a homogeneous rational function with respect to

ω, which does not depend on xeV (resp. j>eV*). If (X"1)* > 0 (resp.

(X-1)* > 0), then Pz(x)Qx-i(φΛx)) (resp. Qx(y)Pχ-i(ψw(y)) is a homogeneous

polynomial whose degree coincides with the degree of Qx~x(y) (resp.

Proof. Let x e V — S and let g eG. Then we have:

Pχ(g x)Qχ-i(φ.(g x)) = *(g)Pχ(x)Qχ-ι(g*'φ.(x))

Since V — S is a G-orbit, Px(x)Qx~x(φω(x)) (xeV—S) coincides with a

constant which depends only on X and ω. Since Qx-x(y) is a homo-

geneous rational function with respect to y e V* and since each compo-

nent of φω(y) is a homogeneous function of degree one with respect to ωf

Pχ(x)Qχ-ι(φω(xϊ) is a homogeneous rational function on ω. The degree

coincides with the degree of Qx-i(y). The similar proof is possible for

af(ω). (q.e.d.)

DEFINITION 7 (α-function ax(ω)). For a rational character X e Xi(G), we

define a homogeneous rational function in ωeXx\ αχ(ω):= Px(x)Qx-i(φω(x))

and α*(ω):= Qx(y)Px-i(ψω(y)) a n ( i c a ^ them a-function. It is determined

up to a constant factor, but if we fix the complete systems of basic

relative invariants {Pt(x), , Pm(x)} and {Qι(y)9 , Qm(y)}9 then a-function

is determined uniquely.

In particular, ax(ω) = α*_x(ω). Indeed, if φω is non-degenerate and

xeV—S, then by substituting y = ψω(x) to the definition of ax(ω), we get

the definition of af-^ω). Thus αχ(ω) = αf-i(ω) if ^ is non-degenerate.

Since the set ωeXi such that φω is non-degenerate is Zariski-dense in Xu

ax(ω) = α*-χ(ω) for all ω e Xx.

PROPOSITION 11. Let χo(g):= deg(g). Then X2

0eXx(G) and there exist

homogeneous polynomials C(ω) and C*(ω) of degree n satisfying

J.(*) := detdΨω(x)) = C(ω)(Pxl(x))-\

J*(y):= άet(dψω(x)) = C ^

/or any ωeXx such that <pω is non-degenerate (ψω = (^J"1). C(ω) and C*(ω)

are determined uniquely up to a constant factor.
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Proof. Suppose that ψω (ω e Xx) is non-degenerate. We identify V

and V* with Ωn by their dual bases and regard dφω(x) (x e V — S) as a

linear transformation from Ωn to Ωn. When we let Jω(x): = det{dψω(x)}9

J,0(x) is a rational function on x e V, which is regular and non-zero on

V — S. Moreover, Jω(x) is of homogeneous degree n with respect to ω

as we have proved in §2. From Proposition 6, (1), we have dψω(g-x) =
t(g)~1'dψω(x)'(g)~1 for all geG and xeV — S, hence we have Jω(g-x) =

deg(g)-2Jω(x). Namely when we let XQ(g):= άet(g) e X(G), Jω(x) is a

relatively invariant rational function corresponding to the character Xό2.

Thus we have XleX^G). The rational functions Jω(x) and (P^x))'1

coincide with each other up to a constant factor. Therefore, there exists

a homogeneous polynomial C(ω) of degree n such that Px*(x)Jω(x) = C{ω).

(q.e.d.)

For ωeXu we define a linear differential operator Dω(x):= gradτ +

ψω(x) (resp. D*(y):= grad^ + ψ(y)) from the linear space of rational func-

tions on V (resp. V*) to that of y*-valued (resp. V-valued) rational

functions on V (resp. V*) in the following way. Let (xu — ,xn) be a

coordinate of V and let (yu •• ,yn) be its dual coordinate of V*. We

denote by (<pω(x))i (resp. (irω(y))i) the i-th coordinate of the value ψω(x) e V*

(resp. ψω(j>) e V). Let / be a rational function on V (resp. V*). We let

(Dω(xM(x) = ΦJΪx)f(x)\\={dldXi)f(x) + Ψ.(x)ιf(x) (resp. (O ίyJλΛy) =
(D*(y)f(y))t:= (d/dy)f(yt) + ψm(y)tf(y)) for / = 1, .. , n. Then this defini-
tion does not depend on the choice of the coordinates.

LEMMA 2. Let f be a function on V (resp. V*).

(1) D.(g.χ)fβ(x) = g* Dm(x)nx)

(resp. D*(g*.y)f(y) = g'D*(y).f(y)), for all geG.

(2) Le* x e X,(G). Then we have

Dm(x)(Pt(x)f(x)) = Pt(x)(Dm+n(x)f(*))

(resp. Dt(y)(QAy)f(y)) = P.(y)(DtUy)f(y))\

Proof. (1) We denote by [f(x)}g the function f(g-x). Let x' = g-x.

Then
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We can prove D*(g* y)f(y) = g-(D*(y)f(y)) in the same way.

(2) Dω(x)(Px(x)f(x)) = grnάx(Px(x))f(x) + Pz(x)(grad, + Ψω(x))f(x)

= P*(xHφn(x)f(x)) + Pχ(x)(gT8idx + Φω(x))f(x)

= Pχ(x)(gradχ + <pδx+ω(x))f(x)

= Pt(x)(Dm+n(*)f(x))

We can prove D*(y)(Qx(y)f(y)) = Qx(y)(D*+δx(y)f(y)) in the same way.

(q.e.d.)

Recall that the i-th component of Dω(x) (resp. Dt(y)) with respect to

the coordinate (yu -,yn) (resp. (xl9 , xn)) is denoted by (Dω(x))ι (resp.

Φt(y))i) (i = 1, , n). Then the differential operators (Dω(x))u , (Dω(x))n

(resp. (U*(y))i, , (D*(y))n) commutes with one another. Then, for a

polynomial R(y) (resp. R(x)) on V* (resp. V), R(Dω(x)) (resp.

is well defined as a differential operator on V (resp. y*).

PROPOSITION 12.

(1) LetxeX^G). If ( r 1 ) * > 0 (resp. ( r O > 0 ) , *AeΛ P ^

(resp. Qχί^Pχ-iί-Dίίj))) is a differential operator on V (resp. V*). The

application of this operator to the constant function 1: Px(x)Qχ-1(Dω(x)) Ί

(resp. Qχ(y)Pχ-1(D^(y))Ί), is a polynomial of the same degree as Qx-i(x)

(resp. Pχ-1(y)). We denote it by bx(ω) (resp. b*(ω)).

(2) The highest degree part of bx(ω) (resp. b*(ω)) coincides with ax(ω)

(resp. a*(ω)).

(3) Let X and t be two elements in XX(G). If (χ-1)* > 0 and (lf~ψ

> 0 (resp. (χ-1) > 0 and (X'~ι) > 0), then we have

(#) δχ.χ'(ω) = bx(ω)bΓ(ω - δl)

(resp. bf.Aω) = b*{ω)b*.(ω - δX)).

Here δX is a corresponding infinitesimal element in Xx of X.

Proof First we shall prove (1) and (2). Let F(x):= Px(x)Qx-1(D(x))Λ.

Then, by Lemma 2, (1), we have

= Pz(g x)Qz-i(g* Dm(x)).l

= X(g)X-Kg)Pz(x)Qi^(Dm(x)) l = F(x).

Then F(x) is a G-invariant rational function on V. Hence it is a con-
stant function which depends only on I e Xι(G) and ω e Xt. We denote
it by bx(ω).
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If (5C""1)* > 0, then bχ(ω) is a polynomial in ω since Qχ-1(y) is a poly-

nomial and each component of grad .̂ + φω is a polynomial of degree one

in ω. By a direct computation of Px(x)Qx-1(Dω(x)) 1, the highest degree

term of it coincides with αχ(ω) = Pχ(x)Qχ-i(#>ω(x)). Since ax(ω) is the homo-

geneous function of the same degree as Qχ-i(y), bx(ω)9s degree is that of

Qx-i(y) Thus we get (1) and (2) for bx(ω). We can prove those for b*(ω)

in the same way.

Next we shall prove (3). By Lemma 2, (2), we have Px(x)'Dω'Pχ(x)~ί

= Dω_δx. Then, for χ, Z'eZ^G) satisfying ( r 1 ) * > 0, (X'-1)* > 0, we have

= Pz, (*)Qr

= PΛx)Qv-1(Dm-n(x))Pt(x)Qx-1(Dω(x)) 1

= 6z,(ω - «)6z(α>) = bt(ω)bt.(ω - « ) . (q.e.d.)

DEFINITION 8 (6-function bx(ω)).

(1) For 1 e Xί(G) with (Z"1) > 0 (resp. (Z"1)* > 0), we define

(resp. bf(ω):=

(2) For % e Xi(G), we can write % = ^ " ι by using ^ e XX(G) satisfy-

ing (λ~ι) > 0 and (i;-1) > 0 (resp. (λ~1)* > 0 and (v"1)* > 0). Then we define

6z(ω):= bλ(ω)lbv(ω - δλ + ^ )

(resp. 6*(ω):= bf{ω)/bf(ω - δλ + δv))

PROPOSITION 13.

(1) For any X, t e Xί(G\ we have

(#X bxv(ω) = 6z(ω)6z,(ω - « )

(resp. 6* ,(ω) = 6*(ω)6J(ω -

(2) Lei {&z(^)}zezl(G) (resp. {bf(ω)}xeXl(G)) be a family of rational func-

tions such that bx(ω) is the one defined by Definition 8, (1) if (X~x) > 0

(resp. (X"1)* > 0). // we suppose the relation (#/, then bx(ω) (resp. b*(ω))

is determined uniquely for all X e XX(G).
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Proof. We shall prove these propositions for {bχ(ω)}χeXliG). The same

propositions for {b*(ω)}χeχliG) can be proved in the parallel way.

Let X = λv-1 and t = λV"1 where λ, v, λ', v' e X,(G) with ( r 1 ) , (v~%

(λ'"1), (1Λ1) > 0. Then

bXΓ(ω) = bn,(ω)lbvv,(<*> - δλ - δλ' + δv + δv')

= bλ(ω)bv(ω - δλ)lbAω - δλ - δλ' + δv + δv')bυ(ω - δλ - δλ' + δv)

= {bλ(ω)lbv(ω - δλ + ^^)}{6^(ω - δλ + δv)lbv,(o> - δλ + δv - δλ' + δv')}

X {bv(ω - δλ + δv)bλ,(a> - δλ)}{bλ,(<*> - δλ + δv)bv(ω - δλ - δλ' + δv)}-1

= £λjv-i(ω)&rι/'-i(ω — δv)bvλ,{ω — δλ + δv)bλ,v{ω — δλ + δv)'1

= 6z(ω)6χ,(α> - « )

(2) is clear since we obtain bx(ω) = bλv-x{ω) = bλ(ω)/bv(ω — δλ + δv) if

χ = χv-ι by substituting 1 = λ and X' = ^ in (#)7. (q.e.d.)

The δ-function on a quasi-regular prehomogeneous vector space given

in Definition 8 is a rational function in ω e Xx. This is a more general

definition than the one we usually use, for example, in [Sa-Sh2]. When

we suppose that Ω is the complex number field C and restrict bx(ω) to

ω e (Xt)t, we obtain the usual definition. Namely we have the following

theorem.

PROPOSITION 14. We suppose that Ω is the complex number field C.

Let ω be an element of (Xdt- Then ω is written as XlΓ-iM** (resp. Σu=is?δμj)

where each steC (resp. sfeC). We let P J x ) : = f l Γ - i W * (resP- Q (y): =

Π7=iQj(<y)β*), which is well-defined as a function on the universal covering

space ofV-S (resp. V* - S*). IfXe X,(G) such that ( r 1 ) > 0 (resp. ( r 1 ) *

> 0), then we have Q ^ (gradJPJx) = bx(ω)Pω_n(x) (resp. Pz-i(gradv)Q.(y) -

Proof. Let (*„ ••-,*„) and (yt, • • •, yn) be the coordinates of V and

V*, respectively, which are supposed to be dual to each other. Then, by

Proposition 8,

= P.{x)(Σ*-i8t(llPt(x))(dPtldxi) + (3/9*,))

= PSx)({dldxs) + (φJix)),)

Suppose that (Z"1) > 0. Then,
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Qx^(gmάx)Pω(x) = Pω{x)Qx.x{Dω(x))Λ

= Pω_δx(x){Px(x)Qx-ADω{x))Λ}

= bx(ω)Pω_δx(x).

In the same way, we have

Q.(:y) = 6?(ω)Qω_δχ(y). (q.e.d.)

Remark. The α-function ax(ω) and the 6-function bx(ω) are well defined

without the assumption "quasi-regular". Suppose that both (G, V) and

(G, V*) are prehomogeneous vector spaces. For 1 e Xι(G) Π XX*(G) and for

ωeXu we can define ax(ω):= Pχ(x)Qλ-i(φω(x)) and bx(ω):= Px(x)Qω-1(Dmΐ) Ί.

Then they do not depend on x e V and satisfy the following properties.

(1) If ax(ω) ~Φ 0, then aλ(ω) is a homogeneous function whose degree

coincides with that of Qx-X(y). The highest degree term of bx(ω) is

ax(ω).

(2) For χ, ΛeX^GXΊX^G) with (X"1), ( r 1 ) > 0, we have bu(ω) =

bx(ω)bλ(ω — δX).

% 4. The structure theorem of α-functions and ^-functions

In this section we suppose that (G, V) is α regular prehomogeneous

vector space. In the preceding section, we have defined the α-function

ax(ω) and the 6-function bx(ω), which are rational functions on the vector

space Xt. The purpose of this section is to give the structure theorem

of ax(ω) and bx(ω); we shall prove that the restrictions of ax(ω) and bx(ω)

to (Xi)t decomposes into a product of polynomials of degree one. We do

not say nothing about ax(ω) and bx(ω) on the whole Xu but if {X^)t = Xu

then we get a complete structure theorem. In fact, a lot of important

examples satisfy this condition.

Recall that -Xi(G) is the group consisting of rational characters of G

which is null on Gx. Let Xχ(G) the set of homomorphisms from XX(G)

to the additive group Z. Then XY(G) is a Z-module. Let (XJY be the

dual vector space of (XiX, which is isomorphic to Ωm. For an element

eeXY(G) we define an element e in (Xt)Y by e(Σt?-iSi Wi)-= Σ ^ i ^ βft)

where 2]Γ=i5< (5%ί is an expression of an element of (Xj)£ (see Proposition

7 (1)). Then we may identify XY(G) with a lattice in ( X ^ by the corre-

spondence e ^ e . Hereafter we regard XY(G) as a discrete subset in
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THEOREM 1. Let (G, V) be a regular prehomogeneous vector space and

let X e Xt(G).

(1) The restriction of the a-function to (Xι)t, flz(ω)Uαi),> is written

by:

Here eu , ep e Xϊ(G) such that eu , ep are different linear forms; C(X) is

a homomorphίsm from X^G) to Ωx; p and mt (ί — 1, ,p) are natural

numbers.

(2) Each ei e XY(G) (ί — 1, , p) satisfies the following two condi-

tions: if (X) > 0 or (X~ψ > 0, then we have et(X) > 0 (i = 1, ,p) and

ΣUmi-etiX) - ΣΓ-iJVdegίP,) - Σ ? U ^ deg(QJ /or % = ΠΓ-i^ = ΠΓ-i/#.
(3) T/ιe restrictions of «*(ω)|ωe(Zl) ί is

α*(α))|. e ί f l ) ί = c*(χ) Π?

= -et(X) and C*(Z) =

Proo/.

(1) Let X e X^G). From the definition of α-function,

(4.1)

for all ωe (XJt, since the set {ωeCZJί; ^ω is non-degenerate} is a Zariski-

open subset of (Xj)x (see §2). Since αz.Z/(ω) = αz(α)) αr(α>) for every X, Xf e

X^G), Z = ΠΓ-i Z?' (Λ, € Z) implies that ax(ω) = Π?-i «Zί(ω)%ί. Let /• (ω), ,

/p(α>) be mutually different prime divisors appearing in one of the rational

functions αZl(ω), , aχm(ω). Then there exists a suitable element e e Xi(G)

satisfying aχ(ω) = Πf-i/iί^)*''^- T h u s w e h a v e

if (x, ω) belongs to the Zariski-open set of U:= (V — S) X {ω e (Xι)t φω

is non-degenerate} in V X (Xi)t.

By taking the 'logarithmic differential" of the above equation, the

left hand side is

"-i (dPι(x)/dxj)dxJ
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by Proposition 7, (2), and the right hand side is

UfMe^) = Σ?=iΦ)'(dft(ω)lfάω))

Let X = Π ?=!*?' where each jijβZ. Then δX = ΣT-I^J'^J
 a n d

Thus

Σϊ-i%(Wj) dfMlfi(<») = ψnjW'dx + ψn,(y) dy,

for each j = I, - -, m. Since e'( ), 9><o(*) and ψ(0(y) are all linear forms,

we have, for all ω' = Σ?=i 5 r $χj e (Xi)ί with (s1? , s j e β*1,

ΣUZWWάωWάω)) = ^(x) dχ + ψΛyMy.

In particular, we may take ω7 = ω. Then we have

d(x, y} = <x, φ > + <y, dx}

On the other hand, substituting ω = Σ ? = i s i # ^ t o ( x ' φ«(χ)}> we have

Then

- Σ?-ι (Σf-i (eί

This means that /€(ω) is a divisor of e;

i(ω)'{dfi{ω)ldsj) since /i(ω), •• ,/p(α>)

are prime divisors which have no common divisors. Hence ft(ω) is a

divisor of β (ω). Then ft(ω) coincides with β (ω) up to a constant factor.

Therefore e (ω) (i = 1, , k) are mutually different linear forms on

and we have

Here, C(X) is a constant which depends only on X. We can take a natural
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number m£ such that e (Xi) = m^Z. Let e^.— l/#vβ for each i = 1, ,p.

Then e£ gives a homomorphism from X^G) to Z and we have the equation

ax(ω) = C(X) Π?=i ̂ ( ω ) W i e ί ( χ )

Here the map X «-> C(X) gives a homomorphism from X^G) to flx.

(2) By (4.1), if Px(x) or Qx-i(y) is a polynomial, then ax(ω) is a

polynomial in ω. That is to say, if (X) > 0 or (5T1)* > 0, then et(X) > 0

(i = 1, , m). By comparing the degrees with respect to ω of the both

sides of (4.1), when X= Wΐ^XV = ΠΓ-iO^S we have ΣΓ=i^ deg(P,) =

ΣT=ιn*-degiQi). It is the degree of the polynomial Px(x) (resp. Qx-i(y))

if (X) > 0 (resp. (Z"1)* > 0) and coincides with the degree of ax(ω). Thus

we have

(3) Since αf(ω) = αz-i(ω), we have

= C*(χ)Πf-i(Λ(ω))m</ί(ϊ). (q e.d.)

COROLLARY. Lβί C(ω) ατιd C*(ω) 6e polynomials in ωeXλ introduced

in Proposition 11. // (G, V) is a regular prehomogeneous vector space, then

for ω e (XΊX we have:

C(ω)|ω e ( j r i ) ί = C Π ί - i ^ ) 1 * « ^ C*(ω)|β 6 ( Z l ) ί = C* Πf=i^(ω)e*

where C, C* efl x α̂ irf εi? εf (i = 1, , ̂ ) are positive integers satisfying

ε. + εf = mMXl) with XQ(g):= det(g).

Proof. From the definition, if ω e (XiX, then we have C(ω)C*(ω) =

αχ2o(ω) = C(Xξ) Πtiβ i(ω)miβί(χa°). Note that C(ω) and C*(ω) are polynomials.

Then, we have:

C(ω) = C Πf-i ei(ω) * and C*(ω) = C* Π t i βi(ω)fϊ,

where C, C* are constants in β x and εί9 εf are non-negative integers

satisfying εt + εf = m^^Xl). We suppose that ε4 = 0 for some i. Note

that C(ω) ^ 0 is a necessary and sufficient condition in order that φω is

non-degenerate. Take an element ω e (X^ such that et(w) = 0 and e^ω)

Φ 0 for all j which are different from i. Such element ω exists because



24 MIKIO SATO/TAKURO SHINTANl/MASAKAZU MURO

ex(ω), - - , ek(ω) are linear forms which have no common divisors. Since

Si = 0, we have φω is non-degenerate. On the other hand, taking an

element X e Xx satisfying et(X) > 0, (such character X always exists.) we

have aχ(ω) = C(X) l\tieMmieίω = 0. Thus we have Px(x)Qx-i(φω(x)) =

aχ(ω) = 0 for x e V — S. When φω is non-degenerate, y>ω(x) e V* — S* for

x e V — S. Thus P(JC) ^ 0 and Qx-x(ψω(x)) Φ 0, which yields a contra-

diction. Then each εt is a positive integer. We can prove that εf is

positive. (q.e.d.)

THEOREM 2. Let (G, V) 6e a regular prehomogeneous vector space and

let X e Xλ(G). The restriction of bχ(ω) (resp. b*(ω)) to (Xt)t is written in the

following form:

(4.2) bx(ω)\ωeiΣlU = COO Πf-i (Πe:t(ίχ)-V.fe(ω) - u) .

(resp. 6*(ω)|# e ( Z l ) ί = C*(*) Πf-i ίΠJί^-^f ίΛίω) - )̂ )

iίere, C(%) (rβsp. C*(X)) α zrf ^(X) (resp. /,(%)) is α map from XX(G) to Ωx

given in Theorem 1; eαc/i ψ% (resp. <pf) is a rational function of One variable

on Ω of degree mu where mt is the natural number defined in Theorem 1;

for non-positive I — 1, the product \\ι

vz\f(x — ιί) means 1 if I = 1 and i£

sίands /or Πv"iJ(^ + v) i/ Z < 1.

Proo/. In the Corollary to Theorem in Appendix, we can take

Xλ(G) = 5, (X,)t = Ωm and define the map δ: X^G) -> (X^ to be the map

given in § 2. Proposition 7, (1) says that the map δ satisfies the condition

required by the Theorem in Appendix. Since bχ(ω)\ωeiΣl)t (resp. bf(ω)\ωeiΣί)t)

satisfies the relation bx.Γ(ω) = bx(ω)bΓ(ω — δX) (resp. bf.χ,(ω) = b*(ω)bχ,(ω —

δX)), we can apply the Theorem in Appendix to our case. In addition,

bx(ω) (resp. b*(ω)) is a polynomial if ( r 1 ) * > 0 (resp. (X"1) > 0), which

means that bμ-i(ω) (resp. 6*-i(ω)) is a polynomial for each i = 1, « ,m

where {̂ , , ̂ m} (resp. {%x, , %w}) are the set of generators of XX(G)

defined in § 1. Then by the Corollary to the Theorem in Appendix, we

have the expression like (A.15). Namely we have,

bx(ω) =

(resp. 6*(ω) =

by replacing C(f) with C(X) (resp. C*(%)), ψt with p t (resp. φf) and et

v

with ê  (resp. f^ in the formula (A.15). By comparing the leading term

of bx(ω) with ax(ω) (resp. bf(ω) with α*(ω)), we see that φ^z) (resp. ^f(z))

is a rational functional function of degree mt. (q.e.d.)
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COROLLARY. (1) Let {/ij}j=if...,,•(« be the set of all the locations of

poles and zeros of φi which are not congruent to one another modulo 1.

Then we can write φt(x) = Πy=ί ΓLez(* — fa + μ)niJ{μ) where μ-+ntj(μ) is

a map from Z to Z such that each ntJ(μ) is zero except for a finite number

of μ; r(i) is a positive integer. Let X eXx(G). If (x"1)* > 0 and if e^X) =

I > 0, then J^z] ntj(μ + v) > 0 for all μeZ. In particular, if there exists

XeXx(G) such that (X"1)* > 0 and et(X) = 1, then φj^z) is a polynomial.

Moreover Σr/:l Σ ^ z ^ / i " ) = m* for i = I, >,k.

(2) In particular, we assume that Ω = C. For the rational function

ψi(z) = (UaAi(z — cij)l\Vj=i(z — dij)) with ai — βt = mίy we define the cor-

responding gamma-factor

γ(ω) = Πf-idlr-i Aβ*(ω) - ctj + lVΠfίiΓfeίω) - dtJ + 1),

where Γ(z) is the gamma function. Then bχ(ω)\ωeiΣl)t = C(X)-(Y(ώ)/Y(ω — δX)).

Proof. (1) We suppose that (X-1)* > 0 and et(X) == / > 0. Then bτ(ω) is

a polynomial in ω and it is written as bx(ω) = C(X) []f=1 Π^o^Vίί^ί^) "" y)

If i φjf then Π ^ ' ^ f e ί ω ) — v) a n ( i Π^o^^/β/α)) — ι>) have no common

divisors. Then each {"[^"^(^(ω) — v) for i = 1, , m is a polynomial

in ω. That is to say,

= ΠίΏ ΓLβzfe(ω) - Λ, + Λ)Σi=δ *y«+o

is a polynomial in ω. Since fi} (j — 1, , r(i)) are not congruent to one

another modulo 1, we have 2]ί~Jni5(μ + v) >0 for all μeZ. In particular,

if there exists XeXx(G) such that (X"1)* > 0 such that et(X) = 1, then

P<(*):= Π5Ώ Π/.ez(^ -fa + μ)nij{μ) is a polynomial since ntj(μ) > 0 for all

μeZ. Lastly, since the highest degree part of bx(ω) coincides with

az(ω) = C(χ) Πf-iβ*(ω)m'β'(ϊ), we have Σ y Ώ Σ . e z ^ ^ ) = mt.

(2) It is clear. (q.e.d.)

Remark. For the function 6*(ω), we have the same result as the

corollary to Theorem 2.

Appendix. Sato's theorem on a family of rational functions
satisfying the cocycle conditions

In this appendix, we shall prove a theorem concerning a family of

rational functions satisfying some condition. This theorem can be under-

stood without any knowledge on prehomogeneous vector spaces.
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Let 3 be an abelian group generated by ξu , fm; an element ξ e 3

is written by ξ?.ξ? ξ*• with (nu ni9 , n j € Zw. Let <5f 1? 3£2, , δξm

be linearly independent elements in an ra-dimensional vector space Ωm;

the map

(A.I) δ: θ:=ξT'ξψ' 'ξn™\ >δθ:=Σΐ=inί δξί,

gives an injective homomorphism from 3 to Ωm. The elements δξu , δξm

form a basis of the vector space Ωm. We denote by Rx(Ωm) the abelian

group consisting of rational functions on Ωm under the multiplication law.

For f(ω) e Rx(Ωm), we define the action of ξ e B by fξ(ω):= f(ω - δξ) for

f(ω) e Rx(Ωm). Let {fξ(ω)}ξes be a family of elements in Rx(Ωm) with a

parameter ξ e 3. If {fξ(ω)}ξes satisfies the condition

(A.2) /€.r(ω)=Λ(ω)./|,(ω)

for all f, f' e Ξ, we say that it satisfies the cocycle condition. The purpose

of this section is to prove the following theorem; the proof given here

is essentially due to M. Sato.

THEOREM (M. Sato). Let {fξ(o))}ξe3 be a family of non-trivial rational

functions on Ωm with the parameter ξ. We assume that {fζ(ω)}ξe3 satisfies

the cocycle condition (A.2). Then fξ(ω) is written in the following form;

(A.3) Uω) = C(ξ)• UU Π S Γ ' " 1 Ψ<(eϊ(ω) - k)

X Π?-i ΠJ'-i {K<f» - SWWfhiω - δUJ) - Sξ)}niU)

Here, C(ξ) is an Ω-valued function depending only on ξ e 3 which satisfies

C(ξ-ξ') = C(£) C(£0; eY(ω), , e%(ώ) are linear forms on ω e Ωm which are

integer-valued on the Z-lattίce δ(B) in Ωm; ΨΊ(Λ ), , ψp(x) are rational

functions of one variable x e Ω ^i(ω), , hq(ω) are irreducible polynomials

in ωe Ωm which are not converted to one another by the action of 3; p, q and

tί9 - , tq are positive integers; λi(j) (1 < i < q, 1 <j < tt) are elements in

3; n^j) (1 < i < q, 1 < ; < ί<) are integers. The product ΓϋUoψΛ* — *)

means 1 if I = 0 and it means Y\ι<k<-iΨi(x + k)~ι if I is a negative integer.

Proof. First, we prepare some notations before starting the proof.

Let θ be a group and let A be an abelian group. We assume that θ

operates on A as an automorphism group of A, that is to say, for an

element θ e θ, a map a >-> aθ from A to A is defined and satisfies (α b)θ

= aθ-bθ and a{θ'τ) = (aθ)τ with a, b e A and θ, τβθ. Let α ω : θ »-> aiβ) be
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a map from Θ to A. When the map α ( 0 satisfies a(θ.τ) = a{θya[τ) for any

0, r e θ, we say that α ( 0 is a cocycle. Cocycles form a module under the

multiplication law in A. We denote by Z(θ, A) the module of cocycles.

In particular, a map α ω is a cocycle if it is written as a{θ) =̂= bθ -6"1 by

using an element 6 e A. We call such an α ( 0 a coboundary. Coboundaries

form a subgroup of Z(θ, A). We denote it by B(θ, A). The first coho-

mology group Hι(θ, A) is defined by Z(θ, A)/B(θ9 A). The action of θ on

A is extended to the action of the group algebra Z[Θ], in the following

way: for α:= Σ L ^ ^ e Z M , we let α* = Πi=i(α'Om<; h e r e ^ e Z and

^ e θ for each i in 1 < ί < m. That is all what we have to prepare

before the proof.

In the above situation, we take Ξ as the group θ and Rx(Ωm) as the

abelian group A. Then, for an element ξ e Ξ, we associate an automor-

phism of Rx(Ωm): f(ω) ^fξ(ω):= f(ω - δξ). The group Ξ acts on Rx(Ωm)

as an automorphism group of Rx(Ωm) and it is extended to the action of

Z[Ξ] on Rx(Qm) in the above way. The assumption (A.2) indicates that

this action satisfies the cocycle condition: /^^(ω) = fξ,(ω) fξ,(ω — δξ)

for each ξ, ξf e B. This means fξ belongs to the module of cocycles

Z(Ξ, Rx(Ωm)).

Any element ξ in Ξ is written as an integer power of ξu •• ,fw.

Let ht(oj) and h2(ω) be two polynomials. We say that hx(ω) is converted

to h2(ω) by Ξ if there exists ξ e Ξ such that hi = h2. Together with the

cocycle condition (A.2), fζ is written by an integer power of fξl, , fξm

and their conversions by the actions of Ξ. However there may be dupli-

cation among the divisors appearing in fξl, , fξm. In order to reduce

the duplication, we choose non-constant irreducible polynomials hx{ω), ,

ht(ω) on Ωm such that

1) each h5 (j = 1, , I) is a prime divisor of one of the rational

functions fξl9 , fξm and they are not converted into one another

by the action of Ξ up to a constant factor.

2) any prime divisor appearing in fξl, , fζm is obatined by con-

verting one of the h/s by the action of an element of Ξ up to a

constant factor.

Then we have,

(A.4) fξ(ω) = (const.) X Π U hV{ζ\ω),

by taking suitable maps <*i( )> ,#ί( ) from Ξ to Z[Ξ].
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We shall calculate each terms /ι"ί(ί)(ω) in (A.4). Before the calcula-

tion, we need to show some properties of αf(f) and related lemmas. We

devote the following until Lemma A-4 to them. First, we shall show

that each #*(•) satisfies a cocycle condition in a different form. We let

^•\:= {σβZ[Ξ]; hi is a constant function}. Then &Ί is an ideal in Z\B],

Indeed, once hi becomes a constant function by an element σeZ[Ξ], it

remains to be a constant function after the action of any element a e Z[B],

We denote by (σ)i the image of σ e Z[Ξ] under the natural projection map

Z[B] -> Z\B\\9*%. Then we may write

(A.5) fξ(ω) = (const.) X Πϊ-i hiΛtiξ)U(ω),

and, conversely, we can determine the map (#«(•))« from Ξ to

uniquely so that the equation (A.5) is established.

We say that a map a(>) from Ξ to Z\3\\J'i is a cocycle if a(ξ-ξ') =

«(£) + (?)i α(fθ is satisfied. We denote by Z(5, Z\B\\FΪ) the subalgebra

of cocycles in the algebra of the maps from 3 to ZIB]/^^ In this case,

a coboundary in Z(5, Z[B]l3Γτ) means a map α( ) given by α(f): = (£)<•( —jS)

_ (_0) = (1 — (I).).|8 with an element βeZiS]/^^ The cocycle condition

(A.2) is transformed to the cocycle condition for

(A.6J (α4(£ f'))« = («*(f )λ + (? )* («*(? 0)*

for ξ, ξ' e S7, which means that (^(OX e

Next we let £ , : = {f e 5 ; /if = ht}. Then ^ is a subgroup of £. We

have the following lemmas.

LEMMA A-1. Bt is a proper subgroup of Ξ.

Proof. Suppose that 3 — Ξi. Then hi is a ^-invariant polynomial.

From the assumption 5(3) is a Z-lattice of rank m in Ωm. Therefore

hi(ω) is a rational function on the m-dimensional torus Ωmlδ(3), which

means ht is a constant function. This is a contradiction.

(q.e.d. of Lemma A-l)

LEMMA A-2. The following sequence is exact,

(A.7) 0 — • r% — • Z[B] - ^ > ZIB Bi] — • 0.

Hence we have Z[BjB^\ is isomorphic to Z[S]l^i.

Proof. Let SC be an element of Z[3] which is given by 3£:= Σs

k=ink'λk
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with nk-Z and λk eg. Let {λί9 , λt} be the set of all the non zero ele-

ments appearing in flr^), , 7r<(̂ m). Then we have π(X) = 2]!Li Af/A with

Nk:=Σ ni where; runs through the set {j; π(λ,) = λk} and Af = ΠUiCA?*)**.

If πi(gr) = o, then iV& = 0 for all β in 1 < k < t. Then Af is a constant

function and hence 3£ ̂ 3Γ%. Conversely, if % £2Γi9 then A? = ΓK=i(^*)**

must be a constant function. Note that πt{ξ) = π^μ) if and only if Af = A?

for £, μe Ξ. Since Aί is an irreducible polynomial, Af and A? coincide with

each other if they have a non-trivial common divisors. Thus any two

of hi1, - , hi1 have no non-trivial common divisors. This implies that

Nk = Q for each k in 0 < k < t and hence π(X) = 0.

(q.e.d. of Lemma A-2)

Then we can identify Z(Ξ, Z[B]l&*t) and Z(Ξ, Z[£/£J). The natural

projection map (")< from Z[Ξ] to Z[Ξ]/&'i is identified with the above

map TΓiί )- In particular, (~)4 is the natural porjection map from 8 to

8IBi when we restrict it to 8 from Z[Ξ].

LEMMA A-3. BjBi is a free abelian group for i = 1, , L

Proof. Let ξ e 8 and suppose that ξk e ϋ^ for a non zero integer k.

Then hi(ω — k-δξ) = hi(ω) for all ωeΩm. For any integer n, we have

/^(ω — (nfή-δξ) = Aΐ(ω). Since Λf is a polynomial, we have Λ€(ω — cδξ) =

hi(ω) for all cefl. Thus Af(ω) = ht(ω — 5f) = A^ω), and hence ξ e Ξit

Therefore B/Bi is torsion free. (q.e.d. of Lemma A-3)

LEMMA A-4. If a( )eZ(89 Z{BIB& and ξ e Bt, then <x(ξ) = 0.

Proof Take an element such that μ is not contained in Bt. This is

possible by Lemma A-l. Then for an element ξ e B, since (ξ)t = 1 if and

only if ξeBt9 we have a(ξ μ) = a(ξ) + (ξ)t-a(μ) = a(ξ) + a(μ) and a(ξ-μ)

= a(μ-ξ) = a(μ) + (p^-aiξ). Then we have (1 - (ρ)Mξ) = 0. Note that

Z[ΞIΞi\ has no zero divisor for B/Bt is torsion free. Since (μ)i Φ 1 for

μ & Bi9 we have a(ξ) = 0. (q.e.d. of Lemma A-4)

Now we begin the calculation on hlaiiξ))ί(ω) appearing in (A.4). We

shall compute hlaiiξ)u(ω) in the following two cases.

(A.8) 1)

2) rank (Ξ/Ξ,) > 2.

First we consider the case that rank(5'/5τ

ί) = 1. We denote by Ξv

the group of homomorphisms from Ξ to Z. Take the element eY e Ξv
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such that eY\Bi = 0 and which gives an isomorphism from B\Ξi to Z ;

it is uniquely determined. Let eY be the linear form on Ωm satisfying

eY(Σu=i M f i) = Σ?=i o,fiY(ξs) for (al9 , am) e Ωm. It is also determined

uniquely. It is easy to see that eY is invariant when we regard it as an

element in Rx(Ωm). From the definition of 3i9 hi(ω) is an irreducible

polynomial which is invariant under the action of Bt.

LEMMA A-5. If rank (B/BJ = 1, then hi(ω) is written by an irreducible

polynomial of one variable, that is to say, hι(ω) = (const.) X (eY(ω) — c^)

with a constant ct.

Proof. Let rx{ω) = eY(ω), r2(ω), , rm(ω) be linearly independent linear

forms on Ωm. Then they form another linear coordinate system on Ωm.

The polynomial hi(ω) is a polynomial of m-variables r^ω), , rm(ω). Since

rank (ΞIΞt) = 1, the functions r2, , rm are not invariant by the action

of Bt. If hi(ω) depends on rk (k > 2), then ht is a periodic function with

respect to the variable rk. Therefore hi does not depend on r2, •• ,rm.

This means that hi is an irreducible polynomial of the one variable Γj =

eY(ω). (q.e.d. of Lemma A-5)

Let λt be an element in Ξ such that eY(Xt) = 1.

LEMMA A-6. For any ξeΞ, ξ'λϊ~e^nύ belongs to Bt.

Proof. We may take elements v2y •• ,v m e£ ' i such that lt,v^ , vm

form generators of the group Ξ. An element ξ e B is written by ξ =

(λi)lxMH ''' ( O l m where Z/s are integers. Since

eϊ(δξ) = eYQMi + hδv2 + + / > J = heϊiδλ,) = /,,

we have f-(Λ)"8r( ί° = Mh ( O ί m belongs to 51,. (q.e.d. of Lemma A-6)

Thus we have, for any ξeΞ, we have

from the cocycle condition. By Lemma A-4 and Lemma A-6, this implies

(α<(f))ί = (αi((^^(3°))i Applying the cocycle condition (A.6) repeatedly, we

have

(A.10) (at(ξ))i = (1 + Qi\ + ••• + ftF(ί{1-') (*,α» 4 if βy(ίf) > 0 ,

= 1 if eϊ(δξ) = 0 ,
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We shall calculate (#*(£))*. From the definition, (at(ξ))i is an element

in Z[ΞIΞt]. Since 8I8% is generated by {λt)u (ajiλjfri is regarded as a
polynomial in Q^ and ftX"1 of integer coefficients. Therefore we can
write

(A.ll) OT3), = Σjez Λ*(Λ Qt)ί,

where n^JYs (j e Z) are integers and all of Πi(jYs (j e Z) except for finite
ones are zero. Together with (A.IO) and (A.ll) and Lemma A-5, we have

Λ<««<«»«(α>) = (const.) X (eϊ - c$

= (const.) X UZo^"1^ -ci~ kyaiiλi)U(o>)

and

(eϊ - c, - Λ)<-«««»'(α>) = Πi6z(β*v(ω - M ) - c, - *)»'«>

= Π i β z ( ( δ y ( ω ) - * ) - ; - c 4 ) ' ϋ ) .

After all, if rank (8/81) = 1, then by putting ^ ( x ) : = Πiez(^ - J - c4) *ϋ),
we have,

(A.12) Λ{-««»«(ω) = (const.) X Π ' i Γ " 1 ^ ^ " *>

Here, the product γ[ι

kz\ψi(x — k) means 1 if / = 0 and it stands for

Ψί(χ + k)~ι if / is a negative integer.
Next we consider the case of rank {ΞjΞ^ > 2.

LEMMA A-7. If rαnk{B\Ξ^>% then Hι(B, Z[5/5J) = 0. In other

words, for all a(-)eZ(Ξ, Z[Ξ/Ξi]), there exists an element βeZ[Ξ/Ξi\ such

that α( ) = ( l - Γ ) i ) i8.

Proof Let a( ) eZ(Ξ, Z\Ξ\E& and put r:== rank(£/£*). We take
ξu—-,ξre8 such that (Iλ, , (f Λ generate the abelian group
For positive integers s and t satisfying 1 < s < t <C r, we have

ft) = α(ft) + (fΛ α(f.),

from the cocycle condition. Then we have

(A.13) (1 - (ξt)i)' a(ξs) = (1 - (f Λ) «(ft)

Note that Z\E\Ξ^ is isomorphic to the ring of polynomials generated by
(?iX> * •> (fr)i a n ( i (fi)ι

7l

> *> (fr)t71 with Z-coefficients. Then, as an example,
in the equation (A. 13), a(ξs) and αr(ft) are such polynomials. Let jS be the
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greatest common divisor of a(ξs) and a(ξt). Then we have a(ξ8) = (1 — (ξa)t) β

and a(ξt) = (1 — (ξt)t)-β. We may take any s and t as they are different.

Then we have

a(ξk) = (1 - (ξJd-β for all k in 1 < k < r.

SUBLEMMA 1. Lei α< )eZ(5 r, Z\B\B& and let ξ,μeΞ. If a(ξ) =

(1-(£),)• j8 αrcd αr(/i) = (1-(/*),) */3 with βeZlB/Bi]. Then aiξ μ-1) =

Proof. From the cocycle condition we have

α(l) = αί^ Λί-1) = α(i") + CαX-αCi"-1) = αC""1) + O^^-αOi). Then we

have (l-ijr^.aiμ)^ (l-iβ^-aiμ-1) and hence (1 - {β\) ct{μ-1) =

(1 — (/ί"ι)ί) (l — (ρ)i)'β. Since ΊJ\Ξ\Ξ^ has no zero divisor, we have

-1) = (1 - QJΓ^ό β. Then we have

= (1 - (fTΓ1)*)^ (q.e.d. of Sublemma 1)

We proceed the proof of Lemma A-7. Let Ξι be the subgroup of Ξ

generated by &, , fr. From Sublemma 1, we have a(ζ) = (1 — (ζ)t) β

for any ζeB*. From Lemma A-4, if ζ e B* and λeBi9 then we have

^ • ζ ) = α(i) + Q)ra(ζ) = α(0 == (1 - (ζ),)^ = (1 - (FζX)^. Since 5 is a

direct product of B* and 5"̂ , we have a(ξ) = (1 — (?)*) jS for all £ e S'.

Thus we have a(-)zB(Ξ,2\E\Ξ& if <*(•) eZ(B, Z[S/5J), which implies

that iP(5, ZlΞIΞi]) = 0. (q.e.d. of Lemma A-7)

Now we go back to the calculation of /^αί(O)ί(ω). By Lemma A-7, if

rank (B/Bi) > 2, then we can write as (at(ξ))t = (1 — (l)<) ft by taking a

suitable element ft e Z[£7£J. Then

We can write ft = J^f=ini(J)'*i(J) by using suitable λt(j)B B and nt(j)eZ.
After all, if rank (B/Bt) > 2, we have
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From (A.12) and (A.14), we have the result. (q.e.d. of Theorem)

COROLLARY TO THEOREM. We use the same notations as Theorem.

Suppose that {fζ}ξe3 satisfies the condition: there exists a set of generators

{μl9 , μm} of Ξ such that each fμi(ω) is a polynomial in ωβΩ. Then fξ

is written in the following form:

(A.15) fζ(ω) = C(ξ) WU Wl^-1 Ueϊico) - v).

Proof. In the expression (A.3) of fξ(ω), all the terms appearing in

the left hand side are polynomials if fζ(ω) is a polynomial in ω since they

have no common divisors from the definition. From the assumption, if

? = μΐ1 ' μnm where n19 , nm are non-negative integers, then fξ(ω) is a

polynomial, and hence

is a polynomial for each i = 1, , q. However it is necessary that

nt(j) = 0 for j = 1, , tt since there exists ξ e Ξ such that ht(ω — δλiij))

Φ hi(ω — δi(j) — δξ) for all j = 1, , tt. This means that the term of the

form (A. 16) does not appear in the expression (A.3). Then we obtain

(A.15).
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