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GENERAL SOLUTIONS DEPENDING ALGEBRAICALLY
ON ARBITRARY CONSTANTS
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§ 1. Introduction

In his famous lectures [7] Painleve investigates general solutions of
algebraic differentia] equations which depend algebraically on some of
arbitrary constants. Although his discussions are beyond our under-
standing, the rigorous and accurate interpretation to make his intuition
true would be possible. Successful accomplishments have been done by
some authors, for example, Kimura [1], Umemura [8, 9]. From differential
algebraic viewpoint in [5] the author introduces the notion of rational
dependence on arbitrary constants of general solutions of algebraic differ-
ential equations, and in [6] clarifies the relation between it and the
notion of strong normality. Here we aim at generalizing to higher order
case the result in [4] that in the first order case solutions of equations
depend algebraically on those of equations free from moving singularities
which are determined uniquely as the closest ones to the given. Part of
our result can be seen in [7].

Let K be an algebraically closed ordinary differential field of char-
acteristic zero. In what follows we tacitly assume every differential field
extension of if is a finitely generated one and is contained in a fixed
universal differential field extension of K. In order to reckon the degree
of algebraic dependence of a differentially algebraic element, we begin
with explaining an ordinary ordering among multi-indices. By a multi-
index we mean a sequence J = (jn), where n runs through all nonnega-
tive integers and the / s are nonnegative integers, being zero except for
a finite number of the j's. Let I = (in) and J = (jn) be two multi-indices.
We say I is lower than J or J" is higher than I if there is an integer
m with im < jm and in — jn for all n> m. Let £ be a differential field
extension of K and E{Y} denote the algebra of differential polynomials
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with coefficients in E. The element A of E{Y} is expressed as A =
2 CLJ YJ, where J runs through all multi-indices, the α's are in E, being
zero except for a finite number of the α's, and YJ = Πô π Y£n The rank
of nonzero differential polynomial A is defined as the highest multi-index
J with aj Φ 0. Let x be a differentially algebraic element over E. Then
there exists a nonzero differential polynomial A over E such that A(x)
= 0 and the rank of A is the lowest one among all the ranks of non-
zero differential polynomials over E which vanish at x. Now we define
the rank of x over E as the rank of the above A and denote it by
ranktf (x). Note that this definition does not depend on the choice of
such an A. For a differentially algebraic element x over K by a symbol
r(x) we denote the lowest rank among all r a n k ^ ^ (x), where E denotes
any differential field extension of K from which K(x} is linearly disjoint
over K and CB<X> denotes the field of constants of E(x}. Clearly r(x) is
lower than rank^ (x). From the definitions it is seen that r(x) = (jn)
with Jo = 1 and j n = 0 for other n means the differential field extension
K(x} of K depends rationally on arbitrary constants.

THEOREM. Let x be a differentially algebraic element over K. Then
there exists a differential field extension S of K which is included in
K(x} and depends rationally on arbitrary constants with r(x) = rank5 (x).
Moreover any differential field extension of K which is included in K(x}
and depends rationally on arbitrary constants is included in S.

In particular if r(x) = (jn) with j n = 0 for positive n we say K(x}
depends algebraically on arbitrary constants, which is in conformity with
intuition. In this case and additionally if x satisfies a first order alge-
braic differential equation over K, the entry j0 of r(x) indicates in fact
the degree of K(x} over S, and S is a differential function field of one
variable without movable singularities (see Matsuda [3]). Thus our theo-
rem is thought to be a generalization of the theorem in [4].

§2 Two lemmas

Let U denote a universal differential field extensipn of K. For any
intermediate differential field L between K and £7, we denote by CL the
field of constants of L.

LEMMA 1. Let L and M be intermediate differential fields between K
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and U. Suppose M is a finitely generated differential field extension of L

which is contained in LCV. Then M = LCM.

Proof, By our assumption there is a subfield D of Cυ such that D

is a finitely generated field extension of CL and LD contains M. Since

D and L are linearly disjoint over CL9 it follows that

tr.deg. LD/L = tr.deg. LD/M + tr.deg. M/L

^ tr.deg. D\CM + tr.deg. CM/CL

- tr.deg. Z)/CL

= tr.deg. LD/L,

and hence

tr.deg. M\L == tr.deg. C3//CL .

Put iV == LD Γl iCjtf. Then it is of finite degree over LCM. The algebraic

closedness of CN in D implies that of LCM in LD. Thus N = LC^. We

conclude Λf = LC1f because

[iV: M] ^ [ C : C J - [LCN: LCM] - [iV: LCi¥]

^ [iV: M] .

From this lemma we have immediately the fact: Let R be a differ-

ential field extension of K depending rationally on arbitrary constants

and S be an intermediate differential field between K and J?. Then S

depends rationally on arbitrary constants. In fact let E be a differential

field extension of K such that E and R are free from over K and ER —

ECER. Then ES is contained in ECER and therefore by Lemma 1 ES =

ECES, which justifies our assertion.

LEMMA 2. Let R and S be two differential field extensions of K de-

pending rationally on arbitrary constants. Then the comositum RS depends

rationally on arbitrary constants.

Proof. By assumption there are finitely generated differential field

extensions E, F of K such that E and R are linearly disjoint over K,

ER == ECER, F and S are linearly disjoint over K9 FS = FCFS. There is

a differential field extension L of K being differentially isomorphic to E

over K such that L and JPi?S are linearly disjoint over K. Since L and

R are linearly disjoint over K and hence LR and ίLR are differentially

isomorphic over R, we get LR — LC^. It is seen easily that LF and

LS are linearly disjoint over L and
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LFLS = LFS = LFCFS =

There is a differential field extension M of L such that M and LF are

differentially isomorphic and linearly disjoint over L. We find M and

RS are linearly disjoint over K. Since MS and LFS are differentially

isomorphic over LS and LFLS = LFCLFLS, it follows MS = MCMS. This

derives

MiϊS = MSLR = MCMSLCLR = M C W

and completes the proof.

We remark that if R and S are strongly normal over K and CRS =

C^ then the compositum i?S is also strongly normal over K (cf. [2]).

§ 3. Proof of Theorem

By our assumption we have a differential field extension E of K

which is linearly disjoint from K<x> over K with r(x) = r a n k * ^ ^ (x).

Let i? = r(x). Let F be any differential field extension of E from which

K(x} is linearly disjoint over K. The minimality of r(x) implies R =

rankj .^^ (x) since r a n k ^ ^ ^ (x) is not higher than τamls.FCF<x> (x) from the

definition of the rank. The element x annuls a nonzero differential poly-

nomial A over ECE<X>: A = ΣcijYJ, where α,j = 0 or all J higher than

R and αR = 1. Since each α^ is contained in F(x} we have a repre-

sentation:

where xJ? ^ , Λ are in K(x} and αJf^, bJth are in F. Among such repre-

sentations we select one which is subject to the following conditions: the

quantities (Xj) are linearly independent over K, the number of nonzero

terms bJthyJth appearing in the denominator is taken as small as possible.

In this case by dJfF we denote the number of nonzero terms bJthyJfh.

In what follows we fix a multi-index 7. Let Eτ be a differential

field extension of E such that Ez and K(x) are linearly disjoint over K

and dI>El is the minimum. There exists a differential field extension F

of K which is differentially isomorphic to EΣ over K and from which

Ej(x} is linearly disjoint over K. This follows from the fact that the

differential fields EΣ and .EΊ<x> are spontaneously embedded into the

quotient field of EI®κEI{x), which is a finitely generated differential

field extension of K and therefore embedded into the universal differ-
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ential field extension of K. Let / be the differential isomorphism of 2?7

onto F. It can be extended to a differential isomorphism, say the same

/, of i?z<x> onto F(x} over K(x} since K(x} and H = FEr are linearly

disjoint over K. Since each aj lies in ECE<X>, each /(α7) lies in HCH<X>

according to Lemma 1. The f(aj) satisfy B(x) — 0, where B is a differ-

ential polynomial over HCH<X}: B =y£xf(aJ)YJ. Since R = rank#CH<X>(x)

it follows that a,j = /(α^). The representation of a, reads

0,1 + az Σih bIfhyIlh - ΣIJ ai,jχj = °

Applying f to this equality we have

α, + α, Σ*/(6/fΛ)y/.Λ - Σsf(°iJx* = °

Hence

α, Σ Λ <*/.» - f(bIth))yIth - Σ J (<*M - /(α/,j))^ = 0 .

The minimality of dI)El implies bIth = f(bIfh) and therefore aItj == f(aIfj)

since (x̂ ) are linearly independent over H. Thus aIfj and 6/>/t are both

common elements of EΣ and F, and hence belong to K. This concludes

α7 is in K(x}. Since we have assumed I to be arbitrary, the differ-

ential field extension L of K generated with all a,j is included in K(x).

The inclusion relation EL c ECE<X> implies EL = J5JC L̂ according to

Lemma 1, that is to say, L depends rationally on arbitrary constants.

Let S be a maximal differential field extension of K which is inculded

in K(x} and depends rationally on arbitrary constants. E M is a differ-

ential field extension of K which is included in K(x} and depends

rationally on arbitrary constants, then MS depends rationally on arbi-

trary constants according to Lemma 2. The maximality of S implies MS

= S, that is, M is included in S, particularly so is L. Hence R is not

lower than rank s (x). By the assumption on S there is a differential

field extension V of K such that VS = VCrs and V and S are linearly

disjoint over K. There exists a differential field extension W oΐ K such

that V and W are differentially isomorphic over K and i?<x> and W are

linearly disjoint over K. Since FCVs = VS is differentially isomorphic

onto WS over S it follows WS = WCWS, using again Lemma 1. The

differential field extension EW of E is linearly disjoint from K(x} over

if and hence R = r a n k ^ ^ ^ (*). The tower S C EWS C £WCV5 c

EWCEW<X> implies rank5 (x) is not lower than τaΏkEWCEW<x> (x) = i?, which

concludes i? = rank5 (x) and completes the proof of our theorem.
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