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A TERNARY CHARACTERIZATION OF
AUTOMORPHISMS OF B(H )

ALI TAGHAVI JELODAR, MOHAMMAD SAL MOSLEHIAN,

AND ABOLFAZL SANAMI

Abstract. If H is a Hilbert space, φ is a (not necessary linear) ∗-surjective
mapping on B(H ) and φ preserves the spectrum of operators of the form ABA∗,

then φ is either an algebra automorphism or an algebra anti-automorphism.

1. Introduction

The preserver problems deal with mappings on specific subsets of algebras that

preserve certain relations, sets and so on. The theory of spectrum preserving linear

mapping originated from Hua’s theorem on fields. Later, Kaplansky [11] asked “If

φ is linear, satisfies φ(1) = 1 and maps invertible elements into invertible elements,

then is it true that it is a Jordan morphism, that is, φ(x2) = φ(x)2 for every x?”.

By Lemma 4 of [3] one can observe that this question is equivalent to the study of

linear mappings preserving the spectrum. Jafarian and Sourour [8] proved that if

φ : B(X ) → B(Y ) is a linear surjective spectrum preserving linear mapping, then

either there exists a bounded invertible linear operator A from X into Y such that

φ(A) = TAT−1 for every T ∈ B(X ), or there exists a bounded invertible operator

B from the dual X ∗ of X into Y such that φ(A) = TA∗T−1 for every T ∈ B(X ).

Molnár [15] proved that if H is an infinite dimensional Hilbert space, and φ :

B(H ) → B(H ) is a surjective function with the property that sp(φ(A)φ(B)) =

sp(AB) for every A and B in B(H ), then φ is either an algebra automorphism or

the negative of an algebra automorphism. Furthermore, if ψ : B(H ) → B(H ) is

a surjective function with the property that sp(ψ(A)∗ψ(B)) = sp(A∗B) for everyA

and B in B(H ), then ψ is an algebra ∗-automorphism of B(H ) multiplied by a

fixed unitary element, see also [14, 21].

There are some related works in the literature dealing with ternary structures;

cf. [9, 19] and references therein. Molnár and Šemrl [17] proved that if A , A ′
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are (not necessarily uniformly closed) subalgebras of B(H ) containing the finite

rank operators and ϕ is an order isomorphism, then either there is a linear bijection

T : H → H satisfying ϕ(x ⊗ y) = Tx ⊗ Ty (x, y ∈ H ) or there is a bijective

conjugate-linear map T ′ : H → H satisfying ϕ(x ⊗ y) = T ′y ⊗ T ′x(x, y ∈ H ).

Furthermore, if A contains an ideal of B(H ) different from the ideal of compact

operators and A is generated by its positive elements, then the above T and T ′

are bounded and ϕ(A) = TAT ∗, respectively ϕ(A) = T ′A∗T ′∗, for A ∈ A . If

ϕ is a triple isomorphism, then either there are unitary operators U , V on H

such that ϕ(A) = UAV (A ∈ A ) or anti-unitary operators U ′, V ′ on H such that

ϕ(A) = U ′A∗V ′(A ∈ A ). Lu [12] showed that if A is a standard operator algebra

(i.e., an algebra containing all finite rank operators) on a Banach space of dimension

> 1, and if B is an arbitrary Q-algebra, then a bijective mapping ϕ : A → B which

satisfies ϕ(kABA) = kϕ(A)ϕ(B)ϕ(A) for all A,B ∈ A , where k is a fixed nonzero

rational number, is additive; see also [16].

In addition, many mathematicians have obtained valuable results in this topic;

see [4, 5, 7, 20, 22] and references therein.

Following some ideas of [15], we prove that if H is a Hilbert space, φ is a ∗-
surjective (not necessary linear) mapping on B(H ) and

sp(φ(A)φ(B)φ(A)∗) = sp(ABA∗) (1.1)

then φ is either an algebra automorphism or an algebra anti-automorphism. We

also show that if φ : B(H ) → B(H ) is a ∗-surjective mapping with the property

that

sp(|φ(A)|2φ(B)) = sp(|A|2B), (1.2)

where A,B ∈ B(H ), then φ is either an algebra automorphism or an algebra anti-

automorphism. In the case where H is a one dimensional Hilbert space we have

H ≃ C ≃ B(H ) and it is easy to see that φ(I) = I and φ is the identity map.

From now on, we assume that H is of the dimension greater than one.

2. Preliminaries

Throughout the paper H stands for a complex Hilbert space with dimension greater

than one. The spectrum of an operator A is denoted by sp(A). If x and y are in

H , then x⊗ y stands for the rank one operator defined by

(x⊗ y)(z) = ⟨z, y⟩x = y∗(z)x. (2.1)

Note that

spp(x⊗ y) = {0, y∗(x)}, (2.2)

— 2 —



where spp means the point spectrum. Recall that the point spectrum spp(A) of an

operator A is {λ ∈ C : Ax = λx for some x ̸= 0}. Note that by the Fredholm

alternative theorem [18, P.25], for any compact operator A ∈ B(H ) we have

spP(A)− {0} = sp(A)− {0}. (2.3)

Moreover recall that sp(AB)− {0} = sp(BA)− {0} for every A and B in B(H ).

Obviously, every finite rank operator A ∈ B(H ) is a finite linear combination

of such operators and the ideal of compact operators is the closed linear span of

finite rank operators. On the finite rank elements of B(H ), one can define the

trace functional tr by tr(A) =
∑n

j=1 y
∗
j (xj), where A =

∑n
j=1(xj ⊗ yj). Then tr is a

well-defined linear functional with the property tr(TA) = tr(AT ) for any finite rank

operator A ∈ B(H ) and for any T ∈ B(H ).

If B ∈ B(H ) and tr(ABA∗) = 0 for every rank one operator A, then

B = 0. (2.4)

In fact, for any nonzero x, y ∈ H by considering A = x⊗ y we have

sp(ABA∗) = sp(⟨By, y⟩(x⊗ x)) (2.5)

= {0, ⟨By, y⟩∥x∥2}. (2.6)

Hence 0 = tr(ABA∗) = ⟨By, y⟩∥x∥2, whence B = 0. Furthermore recall that (see

[15]):

A is rank one ⇐⇒ A ̸= 0, 0 ∈ spp(AB), Card
(
spp(AB)

)
≤ 2 (B ∈ B(H )). (2.7)

In this matter, Brits, Lenore, and Raubenheimer in [6, Corollary 2.4 ] proved that

A is rank one ⇐⇒ A ̸= 0, and Card (sp(AB)− {0}) ≤ 1 (B ∈ B(H )). (2.8)

3. Main result

We begin our work with some lemmas.

Lemma 3.1. Suppose A ∈ B(H ). Then A is rank one if and only if so is A∗A.

Proof. If A is rank one, then it is clear that A∗A is also rank one.

Conversely, if dim ran(A) ≥ 2, where ran(A) denotes the range of A, then we can

find at least two linearly independent elements z1, z2 in ran(A). Since dim ran(A∗A) =

1, there exist scalars α, β ∈ C with αβ ̸= 0 such that

αA∗z1 + βA∗z2 = 0. (3.1)

Now, if we assume that αz1 = y1 and −βz2 = y2, then the elements y1, y2 are in

ran(A) and are linearly independent. Now, from (3.1) we have y1 − y2 ∈ ker(A∗) =
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ran(A)
⊥
. On the other hand, since y1, y2 ∈ ran(A), we infer that y1 = y2. This is a

contradiction. �

Lemma 3.2. If φ : B(H ) → B(H ) is a surjective mapping satisfying (1.1), then

ker(φ) = {0}.

Proof. Let φ(A) = 0. Then sp(φ(A)φ(B)φ(A)∗) = 0. It follows from property (1.1)

that sp(ABA∗) = 0 for every B ∈ B(H ). In particular, sp(A∗A) = 0, whence

A = 0. Furthermore, since φ is surjective, then there exists an operator A such that

φ(A) = 0. It follows from the first part of the proof that A = 0. Note that φ is not

necessarily linear. �

Remark 3.3. Under conditions of Lemma 3.2 we conclude that

A∗A = 0 ⇔ A = 0 ⇔ φ(A) = 0 ⇔ φ(A)∗φ(A) = 0

for any operator A ∈ B(H ).

Lemma 3.4. Suppose that φ : B(H ) → B(H ) is a surjective mapping satisfying

(1.1). Then

(i) φ is injective,

(ii) φ preserves rank one operators in both directions.

Proof. (i) If φ(B) = φ(B′), then sp(φ(A)φ(B)φ(A)∗) = sp(φ(A)φ(B′)φ(A)∗) for

every A in B(H ). So, we have sp(ABA∗) = sp(AB′A∗) for every A in B(H ). If we

put A = x ⊗ y, where ∥x∥ = 1, then by using (2.5), ⟨By, y⟩ = ⟨B′y, y⟩ (y ∈ H ).

Therefore B = B′.

(ii) If A is rank one operator, then by Lemma 3.1 A∗A is rank one operator and

by (2.7), we have

A∗A ̸= 0, 0 ∈ spp(A
∗AB), Card spP (A

∗AB) ≤ 2 (B ∈ B(H )).

It follows from the Fredholm alternative theorem and conditions (1.1), (2.2), (2.3)

and (2.7) that

Card spP (A
∗AB) = Card sp(φ(A)∗φ(A)φ(B)) ≤ 2 (3.2)

spP (A
∗AB)− {0} = sp(φ(A)∗φ(A)φ(B))− {0}. (3.3)

Remark 3.3 implies that φ(A)∗φ(A) ̸= 0 and we deduce from (3.2) and (3.3) that

φ(A)∗φ(A) ̸= 0 and Card sp(φ(A)∗φ(A)φ(B))− {0} ≤ 1 (B ∈ B(H )).

By (2.8), φ(A)∗φ(A) is rank one operator and again by applying Lemma 3.1, we

deduce that φ(A) is rank one. Due to φ is bijective, φ preserves rank one operators

in both directions. �
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Lemma 3.5. Suppose that φ : B(H ) → B(H ) is a surjective mapping satisfying

(1.1). Then

(i) if A is a rank one operator, then tr(φ(A)φ(B)φ(A)∗)=tr(ABA∗) for every

B ∈ B(H ),

(ii) φ is a linear mapping.

Proof. (i) Let B ∈ B(H ). Since A is rank one operator, there exist elements

x and y such that A = x ⊗ y. By Lemma 3.4, φ(A) is also rank one. Due to

sp(φ(A)φ(B)φ(A)∗) = sp(ABA∗) (B ∈ B(H )) we have tr(φ(A)φ(B)φ(A)∗) =

tr(ABA∗).

(ii) Taking (i) into account, if A is rank one operator, then

tr(φ(A)(φ(B) + φ(B′))φ(A)∗) = tr(φ(A)φ(B)φ(A)∗ + φ(A)φ(B′)φ(A)∗)

= tr(φ(A)φ(B)φ(A)∗) + tr(φ(A)φ(B′)φ(A)∗)

= tr(ABA∗) + tr(AB′A∗)

= tr(A(B +B′)A∗)

= tr(φ(A)φ(B +B′)φ(A)∗).

Hence tr(C (φ(B+B′)−φ(B)−φ(B′)) C∗) = 0 for every rank one operator C, since φ

preserves rank one operators in both directions. By (2.4), φ(B)+φ(B′) = φ(B+B′).

One can check that φ is homogeneous in a similar way. �

Before we prove our main result, we notice a remark. If A is a positive operator in

B(H ), that is an operator of the form T ∗T for some T ∈ B(H ), then sp(φ(A)) ⊆
[0,∞). Indeed, since φ is a surjective map, there exists an operator B ∈ B(H ) such

that φ(B) = I. Thus

sp(φ(A)) = sp(φ(B)φ(A)φ(B)∗)

= sp(BAB∗) by (1.1)

= sp((BT ∗)(BT ∗)∗)

⊆ [0,∞).

We now ready to state the main result.

Theorem 3.6. If φ : B(H ) → B(H ) is a ∗- surjective mapping satisfying (1.1),

then φ is either an algebra automorphism or an algebra anti-automorphism.

Proof. By Lemmas 3.4 and 3.5 φ is a linear bijective mapping preserving rank-one

operators. There are some characterizations of such mappings. It follows from the

arguments in [8, Theorem 2] that

(i) there exist bijective linear operators T : H → H and S : H → H such

that φ (x⊗ y) = Tx⊗ Sy where x, y ∈ H ;
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or

(ii) there exist bijective linear operators T ′ : H → H and S ′ : H → H such

that φ (x⊗ y) = T ′y ⊗ S ′x, where x, y ∈ H .

Assume (i) holds. Let x ∈ H . According to Lemma 3.5 (i), if we put A = B = x⊗x
with ∥x∥ = 1, then

⟨x, x⟩⟨x, x⟩⟨x, x⟩ = ⟨Tx, Sx⟩⟨Tx, Sx⟩⟨Tx, Sx⟩.

Now, since A = x⊗ x is positive by the remark above, sp(φ(A)) = sp(Tx ⊗ Sx) =

{0, ⟨Tx, Sx⟩} ⊆ [0,∞). So ⟨Tx, Sx⟩ = ⟨x, x⟩, whence T ∗S = I that is S = (T−1)∗.

Hence

φ(x⊗ y) = Tx⊗ Sy

= Tx⊗ (T−1)∗y

= T (x⊗ y)T−1.

Therefore φ (A) = TAT−1 for every rank one operator A.

Next, letB be an operator in B(H ) andA be a rank one operator. By Lemma 3.5 (i),

tr (φ (A)φ (B)φ (A)∗) = tr (ABA∗)

= tr
(
TAT−1TBT−1TA∗T−1

)
= tr

(
φ (A)TBT−1φ (A)∗

)
.

Hence φ(B) = TBT−1 by (2.4).

Assume now that (ii) holds. By the same argument as in (i) one can prove that

T ′ : H → H is a bounded invertible linear operator and

φ(x⊗ y) = λT ′(y ⊗ x)T ′−1,

where x, y ∈ H . We can similarly show that φ is of form φ(A) = λT ′A∗T ′−1 where

A is a rank one operator. Just as above, we infer that λ = 1, and A can be assumed

to be an arbitrary operator in B(H ). �

Theorem 3.7. If φ : B(H ) → B(H ) is a ∗-surjective mapping satisfying (1.2),

then φ is either an algebra automorphism or an algebra anti-automorphism.

Proof. By modifying our arguments we can show that Lemmas 3.4 and 3.5 are true.

Let A be a positive operator. Due to φ is a surjective map, there exists an operator
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B ∈ B(H ) such that φ(B) = I. Hence

sp(φ(A))− {0} = sp(φ(B)∗φ(B)φ(A))− {0}
= sp(B∗BA)− {0} by (1.2)

= sp(BAB∗)− {0}
= sp((BT ∗)(BT ∗)∗)− {0}
⊆ [0,∞)− {0}.

Thus sp(φ(A)) ⊆ [0,∞). By the same argument as in Theorem 3.6, in case (i)

we can conclude φ (A) = TAT−1 for every rank one operator and can easily check

that equality φ(AS) = φ(A)φ(S) holds for any rank one operator A and arbitrary

operator S ∈ B(H ). Hence if A is rank one operator, then

tr(φ(A)φ(SUS∗)φ(A)∗) = tr(ASUS∗A∗)

= tr((AS)U(AS)∗)

= tr(φ(AS)φ(U)φ(AS)∗)

= tr(φ(A)φ(S)φ(U)φ(S)∗φ(A)∗).

Thus, φ(SUS∗) = φ(S)φ(U)φ(S)∗ by Lemma 3.5 and (2.4). Now if we set S = U =

I, then we can deduce that φ is unital and by (1.2) sp(φ(B)) = sp(B) for every

B ∈ B(H ). Therefore, 0 ∈ sp(ABA∗) ⇔ 0 ∈ sp(φ(ABA∗)) = sp(φ(A)φ(B)φ(A)∗).

If (ii) holds by utilizing a similar argument we can conclude the result. �
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[5] M. Brešar, Commutativity preserving maps revisited, Israel J. Math., 162

(2007), 317–334.

[6] R.M. Brits, L. Lindeboom and H. Raubenheimer, On the structure of rank one

elements in Banach Algebras, Extracta Mathematicae, 18 (2003), 297–309.

— 7 —



[7] M. Dobovisek, B. Kuzma, G. Lesnjak, C.K. Li and T. Petek, Mapping that pre-

serve pairs of operators with zero triple Jordan product, Linear Algebra Appl.,

426 (2007), 255–279.

[8] A.A. Jafarian and A.R. Sourour, Spectrum-Preserving linear maps, J. Funct.

Anal., 66 (1986), 255–261.

[9] J. Hu, C.-K. Li and N.C. Wong, Jordan isomorphism and maps preserving

spectra of certain operator products, Studia Math., 184 (2008), 31–47.

[10] J.P. Kahane and W. Zelazko, A characterization of maximal ideals in commu-

tative Banach Algebras, Studia Math., 29 (1968), 339–343.

[11] I. Kaplansky, Algebraic and Analytic aspects of operator Algebras, CBMS Re-

gional Conf. Ser, in Math. Soc., Providence, 1970.

[12] F. Lu, Jordan triple maps, Linear Algebra Appl., 375 (2003), 311–317.

[13] M. Mbekhta, L. Rodman and P. Semrl, Linear maps preserving generalized

invertibility, Integral Equations Operator Theory, 55 (2006), 93–109.

[14] T. Miura and D. Honma, A generalization of peripherally-multiplicative sur-

jections between standard operator algebras, Cent. Eur. J. Math., 7 (2009),

479–486.

[15] L. Molnár, Some characterizations of the automorphisms of B(H) and C(X),

Proc. Amer. Math. Soc., 130 (2002), 111–120.

[16] L. Molnár, Selected preserver problems on algebraic structures of linear oper-

ators and on function spaces, Lecture Notes in Mathematics, 1895, Springer-

Verlag, Berlin, 2007.
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