Nihonkai Math. J.
Vol.9 (1998), 227-232

Another Proof of decomposability of Nambu-Poisson tensors

Kentaro Mikami*

Abstract. Although Nambu-Poisson bracket is a natural generalization of Poisson
bracket, a very distinguished property of Nambu-Poisson bracket comparing Poisson
bracket is decomposability of its tensor. This is first conjectured in [1] and is given
affirmative answers by [2] and [4] independently. In this paper, we shall show another
proof to decomposability of Nambu-Poisson tensor, which is more elementary and
more direct to the property of decomposability comparing that of [2] or [4].

1 Introduction

In contrast to Poisson bracket being a binary operation, Nambu-Poisson is a multi-fold operation
provided with the same properties of Poisson bracket and the fundamental identity which is a
natural generalization of Jacobi identity. We recall the precise definition of Nambu-Poisson
bracket. Let M be a n-dimensional C*°-manifold. An order p Nambu-Poisson bracket on M is

a p-fold skew-symmetric R-multilinear operation

{...}: C®(M)P := C®(M) x -+ x (M) — C°(M)

p-times

provided with Leibniz rule for each argument, and the fundamental identity (or generalized

Jacobi identity):

{f’{g}} = Z{gl’--- ’{-7:791})--' ’gp}

=1
where‘ F= (fls ER ,.fp-—l) € CN(M)p—I, Gg= (91, v ’gp) € COO(M)P'
If order p = 2, then the fundamental identity is just Jacobi identity and order 2 Nambu-Poisson

brackets are Poisson brackets. Like as Poisson brackets, every order p Nambu-Poisson bracket
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is defined by the unique p-multivector field = as

{fi,...  fp}t = (mdfiA---Ndfy) .

For a p-fold skew-symmetric bracket {-: -} defined from a p-multivector field =, let
P P
Jac(F;6) == {F {61} = Y Ag1,--- {F, 9} 6} = {F, {G}} + D_(-1){{F, 9}, 5[]}
=1 L=1

where F € C®(M)* !, G = (¢91,-.. ,9p) € C®°(M)?, G[€] := (91,-.- ,t5 - - - ygp)for=1,...,p,
and the symbol ~ means that the term is omitted. Then, Jac = 0 if and only if the p-fold skew-
symmetric bracket {---} defined from a p-multivector field = satisfies the fundamental identity.
Analogy of Hamiltonian vector fields, we can consider.the vector field Hr := {F,-} for each
F € C=(M)?P~! for a given Nambu-Poisson bracket. It is known that the distribution spanned
by Hx’s is involutive from the fundamental identity of Nambu-Poisson bracket.

For a given p-fold skew-symmetric bracket defined by a p-multivector field (does not necessarily
satisfy the fundamental identity), we plug the product of f,—; and f, into the (p — 1)-th entry

of Jac. Then we have

Jac(E, fo-1£piG) = Jac(E, fp-1:G)fp + fo-1Jac(E, fp-15G)
P P
+ 3 (—1YE, fo-1,9eH o, G1A} + I (-V)E, for 9e}H{ -1, G161}

=1 =1
for £ € C*(M)P~2 and G € C°(M)P (cf. [1]).
If the p-fold skew-symmetric bracket {...} satisfies the fundamental identity, then

D (1) ({E, fo1,9eH For G} + {E, fp, 9} fp-1,G1€1})

=1

must vanish. We put the above by ®(&; fp—1, fp; G). Gautheron ([2]) adds the trivial term
{&, fo—1, fpHG} + {E, £y, f-1H{G}
to ® above and gets
 B(E; fp-1,£:G) = B(E, fo-1, 3, G) + B(E, fo, fp-1,6)
where B is equal to the symbol B in ([2]). By using the relation

B(F,G) = (“(d}-[PL ) A ”)(dfp’ ag)
= n(dF)x(G) + Y _ x(dFlp), 92)m(fp, G[€))

=1
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where ,G € C*°(M)? and dF = (df,...,dfp) for F = (f1,..., fp), he shows if & = 0 then
B is full skew-symmetric and gets B = 0 by restricting B on each 2p-dimensional subspace of
T*(M). Then it turns out =« is decomposable. “Decomposability of 7” at a point, say = means
e =v1 A -+ Avp for some v; € T.M (5 =1,...,p). By using this fact, the following result is

obtained.

Theorem 1 ([2] or [4]) If 7 is an order p(> 2) Nambu-Poisson structure, and 7 is not zero
at a point x, then w, ts decomposable and the characteristic distribution of ® at * has dimension

p whose basts gives decomposition of «.

We state a little remark about the discussion above.

Remark 1.1 If p = 2, then & = 0 automatically.

For any p, we do not get any new relation even if we deal with Jac(F;g1,... ,9p—1,9pgp+1)-

2. Another proof of decomposability

Since the discussion hereafter is local, we can take a local coordinate system (z!,... ,z") around
each point of M.

We abbreviate &(z", ... ,z?-2;z%-1 ;2 ..., 29) by ®(i1,- .. 3p—2;ip—1,%p; J1s--- »Jp)-

It was observed in [1] that @ is related to decomposability conditions of =.

We also use multi-index notation #! for each multi-index I = (31,--- »ip) € {1,... ,n}?, namely,

ol = a1 =< x, de™ A - Adz? >= {f,... 2%}
2.1 Decomposability of multi-vectors

We recall here the decomposability condition of multi-vector at the tangent space T(M) for a -

fixed € M. For a p-vector (p > 2) , we define the following tensor ¥ by

P
‘I’(ila"' ’ip—l;jOsjl,--- ,jp) = z(_l)tﬂ.bt”.’m
£=0
where I = (iy,...,ip1), J = (jo,d1s- -+ »Jp)s and J[€] = (o, f1s--- +Jts--- »Jp). Of course,
¥(I,J) is skew-symmetric in I or J.

The following result is well-known.

Proposition 2 (cf. [3]) Let #/ # 0 for some J. Then = is decomposable if and only if
¥(I; jo,J) = O for each (p — 1)-tuple I and jo.

The following observation is obtained in [1].
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Theorem 3 ([1]) The relation ®(I;k,6;J) = ¥(I,4;k,J)+ ¥(I,k;¢,J) holds for each (p —2)-
tuple I, p-tuple J, k, and (.

Thus, if ¥ = 0, namely if = is decomposable, then & = 0, namely the second order property of

the fundamental identity holds for the bracket defined by =.

2.2 Decomposability of Nambu-Poisson tensors

The conjecture stated in [1] is that & = 0 implies ¥ = 0. We shall show it, namely, the

fundamental identity yields the decomposability of Nambu-Poisson tensor.

Theorem 4 Let 7 be a p-multi vector satisfying ®(I; k,£; J) = 0 for each (p—2)-tuple I, p-tuple
J,k, and £. Then ¥(I,k,J) =0 for each (p — 1)-tuple I, p-tuple J, and k.

Proof: Let us find and fix some multi-index B so that #8 # 0. Put B = (by,..., bp) as an ordered
set. We assume that the indices u;, v; run between 1 to n and )j, ui run outside of B. Our
final goal is to see that ¥(U;u,, B) = 0 for each U = (u,,... ,u,_;) and u, under the condition
® = 0. Hereafter the abbreviation “something = 0 (mod #)” means that something = 0 holds
if ® = 0. Since

Q(ula"' )up—2;up—l’bl;B) = \I’(ul,"' 1up—2’up—l;bliB)'+ ‘I’(ul’-" sup—%bl;up—l’B)

‘I’(uly oo ’up—2,bl;up—l’B) ’

we see that

W(by,uz,... ,up—2;up—1,B) =0 (mod &) .
Thus, the relation we have to see is
¥(A1y..- 32p-1;2p,B) =0 (mod &) .
We observe that

®(A1,. .., Ap—2; Ap—1, bp; Blp], Ap)
‘I’(Al’ ceey A}’—2’ AP"'I; bpa B[P], Al’) + \I’(Ala ey A}:—2, bp; Ap—-la B[PL '\p)
—¥(A[p]; ApB) + (—1)P*'¥(A[p — 1, p], bp; Blp], Ap—1, Ap)

where A[¢ — 1, £] means the multi-index which first was omitted the ¢-th entry, and then omitted
the (£ — 1)-th entry from A.
After proving

$(Alp — 1,5}, bp3 Blph Ap-1, 4p) = 0 (mod &)
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in the next Lemma, we get

U(Alp); ApB) =0 (mod &) .

Lemma 1

U(Alp — 1,7],b; Blpl, Ap—1,Ap) =0 (mod &)

Proof of Lemma:
For each C = (c1,... ,cx) where k > 1 and ¢; € B and U = (ugy1,--.,up) with Up
(¥k+1,--- yup—1), we have already seen that ¥(C,Up; up, B) =0 (mod @)

We write down the definition of ¥ and get a recursive relations as follows:
aCU = __—_ Z( l)l CUob, ;upBls] (mod Q)

We finally get the required property as follows.

\I’(A[p - I,P], bp; B[p], Ap—ls Ap)
p—1
= E(_l)a-}-lﬂ_l\[p—l,p],b,,b.WB[:,p],A,_g,A,

s=1
+(—1)P~1xAlP—1plEp A1 £ BlplAp (__1)pﬂ.A[p——l,p],b,,,\,WB[p],A’_l
p—1
= Z(—1)‘+l1ernbl1Ab—l!P]"B[‘0P]vA?—11AP + WbrnA[P],’er].Ap - ﬂ.bp,A[p—l]wBb;],A,_l
s=1
= Z( 1)c+lﬂ—"r b..A[P—-l-P] Z( l)t Bls,p].Ap-1,bt £ Ap,Blt]
s=1
+"‘ Z( 1)*xberAlp=1p}b0 g Ap—1,Ble] 1 BlplAp _ _—__1. E( 1)* e Alp—181bs 5 3p.Blol Blel Dy -2

c—l s=1

= BZ( 1)*+1xbeibeiAlo—1.0] (( —1)° 7 BlerlAr—1.80 109, Ble] 4 (_1)Pr B2l As-15p 12 Blp]
1r s=1

—(=1)P"1xte-1:Blelp BlplAs 4 (_1)1’—1,,’\,-3['],,3[?].%—1)

= WB Z( 1)‘+11rbp 1bsiA[p—1.p) ( P—I’B[P] Ap,Bls] + 1‘.:\,_1,3[0]7(3’,3[?]
=1
_7'./\;-1.3[!]7'.&;.3[?] + 7‘-*?’3[']1‘-"?—1 fB[P—ll)

0 (mod @) .
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