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Abstract

In this paper we study random behaviour systems with a finite
number of states from the point of view of optimal transition from
a state of the system to another one. We use entropic decision cri-
teria like the Shannon entropy and the entropy of a Markov chain
with a finite number of states. Our results are obtained by using the
principle of maximum entropy according to Charnes [3], Gerchak [6],
$G\dot{m}a\S u$ and Shenitzer [7] and generalize some results on linearly con-
strained entropy optimization problems from Gerchak [6], Erlander
[4]. We determine an optimal strategy of transition of a finite num-
ber states system from a state to another one by a dual approach on
a linearly constrained optimization problem folowing the line from
Ben-Tal [1], [2], Fang, Tsao [5], [9], our objective function being de-
fined as a weighted combination of the expected transition utihity and
the entropy of a Markov chain. Several pairs of dual problems with
entropic criteria will be considered in order to determine the optimal
transition probabilities from a state of the system to another one.
AMS Subject Classiflcation: $49K45,60J99$ , 94Al7

Keywords: Shannon entropy, entropy of a Markov chain, transition
probabilities, entropy optimization problem, duality.

1 Introduction
In many fields of the operational research as well as in pattem recognition
we can identify random behaviour systems with a finite number of states for
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which it is important to determine an optimal way of transition from a state
to another one.

Let $Z=\{z_{1}, \ldots, z_{\mathfrak{n}}\}$ be the set of the states of a random behaviour system.
We note $N=\{1, \ldots,n\}$ . Let us suppose that the probabilities $\pi_{i},$ $i\in N$, of
the states, the utilities $u_{i},$ $i\in N$, of the states and the transition utilities
from the state $z_{i}$ of the system to the state $z_{j}$ , denoted by $u_{ij},$ $i,j\in N$ , are
apriori known.

The evolution of the system is described by the transition probabilities
$p_{ij},$ $i,j\in N$ , where $p_{ij}$ represent the probability of transition from the state
$z_{i}$ to the state $z_{j},$ $i,j\in N,$ $satisfy\dot{i}g$ the following conditions:

(1.1) $p_{ij}>0,$ $i,j\in N,\sum_{j=1}^{\mathfrak{n}}p_{ij}=1,$ $i\in N;\sum_{i=1}^{\mathfrak{n}}\pi_{i}p_{ij}=\pi_{j},$ $j\in N$.

Certain observations made usualy on such a system provide a set of explicit
constraints on the vdu\’e of the transition probabilities $p_{ij},$ $i,j\in N$ , ex-
pressed by equaJities and inequalities. In this paper we shall suppose that
the transition probabilities satisfy the following set of linear constraints

(1.2) $\sum_{i=1j}^{\mathfrak{n}}\sum_{=1}^{n}w_{k,ij}p_{ij}=d_{k},$ $k=1,$ $\ldots,m$,

where $w_{k,ij},d_{k},i,j\in N,$ $k=1,$ $\ldots,m$ are given real constants.
We suppose, without loss of generality, that the constraints (1.2) imply

(1.1).
Let $p=\zeta p_{11},$ $\ldots,p_{1n},$ $\ldots,p_{nn})^{\ell}$ be the vector of the transition probabilities.

We also use the notations $d=(d_{1}, \ldots,d_{m})^{\ell},$ $\mathcal{P}=\{p=(p_{ij})^{\ell},$ $i,j\in N|p_{ij}>0$ ,
$i,j\in N,$ $p$ satisfying (1.2)}.

The expectd utility of the transition of the considered system from a
state $to\cdot mother$ is given by

(1.3) $U(p)=\sum_{i=1j}^{n}\sum_{=1}^{n}u_{ij}p_{ij},$ $p\in \mathcal{P}$ .

Let $\{X_{\ell}|t=0,1, \ldots\}$ be a stationary Markov chain with the states $Z$ having
the probabilities $\pi_{i}$ and the utilities $u_{i},$ $i\in N$. The entropy of such a Markov
$cha\dot{i}$ is defined by

(1.4) $H(p)=-\sum_{i=1j}^{n}\sum_{=1}^{\mathfrak{n}}u_{i}\pi_{i}p_{ij}p_{ij}$ .
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Each vector $p\in \mathcal{P}$ defines a strategy of transition of the system from a state
to another one. An optimal transition probability vector will be, for us, one
maximizing the following weighted combination of $U(p)$ and $H(p)$

(1.5) $F(p)=\lambda_{1}U(p)+\lambda_{2}H[p),$ $\lambda_{1},$ $\lambda_{2}>0,$ $p\in \mathcal{P}$ .

We are interested in finding a Markov chain, among all admissible ones,
attaining the maximum of the function $F(p)$ given by (1.5).

In section 2 we shall give some results on pairs of dual problems with
the Shannon entropy in the expression of the objective function of primal
problems. In section 3, we formulate explicitly our entropy optimization
problem and determine the optimal transition probabilities from a state of
the considered system to another one and section 4 contains conclusions.

2 Preliminary results
Let $x=(x_{1}, \ldots,x_{n})^{\ell}$ be a probability distribution defined on the set of states
$Z$ , satisfying the folowing linear constraints

(2.1) $W\cdot x=d$, with $x>0$ ,

where $W=(w_{k,i}),w_{k,i}\in R,$ $k=1,$ $\ldots,$
$m,i\in N,$ $d=(d_{1}, \ldots, d_{m})^{\ell}$ . We assume,

without loss of generality, that the constraints (2.1) include $\sum_{i=1}^{n}x_{i}=1$ .

Let $X$ be the set of probability distributions $x>0$ satisfying (2.1). For
$\lambda_{1},$ $\lambda_{2}>0$ and $u_{i}\in R_{+},$ $i\in N$ , let us consider the optimization problem

(P) $\max_{x\in X}F(x)=\max_{x\in X}(\lambda_{1}\sum_{i=1}^{n}u_{\ell}x_{i}-\lambda_{2}\sum_{i=1}^{n}x_{i}\ln x_{i})$ .

Theorem 2.1 The prvblem (P) is a conv $\infty$ optimization with linear restric-
tions one and it admits an optimal unique solution for every pair $\lambda_{1},$ $\lambda_{2}>0$ .
Proof. We shall show that the Hessian matrix of $F(x)$ , denoted by $\nabla^{2}(F)$ ,
is negatively defined. We have

$\frac{\partial F(x)}{\partial x_{i}}=\lambda$

$\frac{\partial F(x)}{\partial x_{i}\partial x_{j}}=\{$

$1u-\lambda_{2}(1+\ln x_{\{})$ , $i\in N$,

$-\lambda_{2^{\frac{1}{x_{i}’}}}$ if $j=1$ ,
$i,j\in N$ .

$0$ , if $j\neq i$ .
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Let $v=(v_{1}, \ldots,v.)^{t}$ be a vector with $v_{i}\in R,$ $i\in N$. We have

$v^{\ell}\cdot\nabla^{2}(F)\cdot v=\sum_{i=1}^{\mathfrak{n}}v_{i}^{2}(\nabla^{2}(F))_{ii}=-\sum_{i=1}^{n}v_{i}^{2}\cdot\lambda_{2}\cdot\frac{1}{x_{i}}<0$

for $v\neq 0$ . It follows that the objective function of problem (P) is strictly
concave. Since its domain is compact and convex, we obtain that (P) admits
a unique optimal solution. $\square $

Lemma 2.1 For any $x\in X,$ $\lambda_{1},\lambda_{2}>0$ and for any $u_{i}\in R_{+},$ $i\in N$,
$y=(y_{1}, \ldots,y_{m})\in R^{m}$ the follounng $ine\varphi dity$ holds

$\lambda_{1}\sum_{i=1}^{n}u_{i}x_{i}-\lambda_{2}\sum_{i=1}^{n}x_{i}x_{i}\leq$

(2.2)
$\leq\lambda_{2}\sum_{1=1}^{n}\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}w_{ki})-1)-\sum_{k=1}^{m}d_{k}y_{k}$ .

Proof. Let us apply the inequality $z\leq z-1$ , vdid for every $z>0$ with
equality if and only if $z=1$ , to the positive numbers $\alpha,$

$\iota\in N$, defined by

$a_{i}=\frac{1}{x_{i}}\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}w_{ki})-1)$ .

It follows that

Summing by $i,$ $i\in N$, one obtains

$\sum_{\leftarrow-1}^{n}Xi(kki1ii$

(2.3)
$-\lambda_{2}\sum_{i=1}^{n}\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}w_{ki})-1I\leq\lambda_{2}\sum_{i=1}^{n}x_{i}x_{i}$ .

The inequality (2.3) is equivalent to (2.2) because since $W\cdot x=d$, we can
write
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Using Lemma 2.1 we can associate to problem (P) with fixed $\lambda_{1},$ $\lambda_{2}$ the
following unconstrained dual problem

$\min_{y\in R^{m}}G(y)=$

(D)
$=m\dot{m}y\in R^{m}\{\lambda_{2}\sum_{i=1}^{n}$ exp $(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}w_{ki})-1I-\sum_{k=1}^{m}d_{k}y_{k}\}$ .

Hypothesis Hl. The matrix $W$ has full row-rank.
Hypothesis H2. Int $ X\neq\emptyset$ .

Theorem 2.2 In the hppotheses Hl and H2, the problem (D) admits only
one optimd solution $y^{0}=(y_{1}^{0}, \ldots,y_{m}^{0})\in R^{m}$ for any ffied pair $\lambda_{1},$ $\lambda_{2}>0$ .
Moreover, its corresponding $pr\dot{\tau}md$ problem (P) admits the optimd solution

$x^{0}=(x_{1}^{0}, \ldots,x_{\mathfrak{n}}^{0})^{\ell}$ , where $x_{i}^{0}=\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}^{0}w_{ki})-1),$ $i\in N$, and

the optimol vatues of the two duat problems coincide.

Proof. We show that in the hypothesis Hl the Hessian matrix of $G(y)$ ,
denoted by $\nabla^{2}(G)$ , is positively defined. We have

$\frac{\partial G(y)}{\partial y_{j}}=-d_{j}+\sum_{i=1}^{n}w_{ji}\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}w_{ki})-1)$ ;

$\frac{\partial^{2}G(y)}{\partial y_{j}\partial y_{\ell}}=\frac{1}{\lambda_{2}}\sum_{i=1}^{n}w_{ji}w_{\ell i}\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}w_{ki})-1I\cdot$

For $v=(v_{1}, \ldots,v_{m})^{\ell}\in R^{m}$ , we have

$v^{t}\nabla^{2}(G)v=\frac{1}{\lambda_{2}}\sum_{i=1}^{n}\exp(\lambda_{2}^{-1}(\lambda_{1h}+\sum_{k=1}^{m}y_{k}w_{ki})-1I\cdot(\sum_{k=1}^{m}v_{k}w_{ki})>0$ ,

for $v\neq 0$ , if we take into $ac$count Hypothesis Hl.
Since the Hessian matrix of $G(y)$ is positively defined according to a

characterization $th\infty rem$ of a first degree differentiable function on an open
convex domain one obtains that $G(y)$ is strictly convex, therefore problem
(D) has no more than an optimal solution.
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$iFrom$ Hypothesis H2 and from the Fenchel’s theorem (Rockafellar [8]),
we have that between the two dual problems (P) and (D) there is no duality
gap. According to Theorem 2.1, the problem (P) has always a finite optimum
and since $G(y)$ is strictly convex it follows that the problem (D) admits only
one optimal solution $y^{0}=(y_{1}^{0}, \ldots,y_{m}^{0})$ . Since $G(y)$ is of the class $C^{2}(R^{m})$ we
deduce that the first order optimality conditions hold at $y^{0}$ , that is

(2.4) $\sum_{i=1}^{n}w_{ki}$ exp $(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}^{0}w_{ki})-1)=d_{k},$ $k=1,$ $\ldots,m$ .

If we use the notation $x_{i}^{0}=\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}^{0}w_{ki})-1)=d_{k},$ $i\in N$,

we note that the equality (2.4) means $W\cdot x^{0}=d$, so $x^{0}\in X$ . We apply now
the Fenchel’s dualty $th\infty rem$ . $\square $

Theorem 2.3 For any $\beta ed\lambda_{1},$ $\lambda_{2}>0$ and any $u_{i}\in R_{+},$ $i\in N$,

(i) (weak dudity) $\max_{x\in X}F(x)\leq\min_{y\in R^{m}}G(y)$ ;

(ii) (strong dudity) In Hypotheses Hl and H2 the problem (D) has a unique
optimd solution $y^{0}\in R^{m}$ and $x^{0}\in X$ given by

$x_{i}^{0}=\exp(\lambda_{2}^{-1}(\lambda_{1}u_{i}+\sum_{k=1}^{m}y_{k}^{0}w_{ki})-1),$ $i\in N$,

$\dot{u}$ the optimd solution of Problem (P); moreover, $F(x^{0})=G(y^{0})$ .

Proof. The conclusion of (i) follows from Lemma 2.1 and the form of the
dual problem (D).

The conclusion of (i1) folows $hom$ Theorem 2.2. $\square $

Now we define a bijection $B$ : $NxN\rightarrow N$ ; any previous simple sum may
be written then as a double sum based on the folowing relation

$\sum_{i=1j}^{n}\sum_{=1}^{n}x_{ij}=\sum_{\ell=1}^{n}x_{B^{-1}(\ell)}$ .
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We can associate to Problems (P) and (D), on the base of the definition
of the bijection $B$ , the following pair of dual problems:

(P) $\max_{x\in X}F^{\prime}(x)=\max_{x\in X}\{.X_{\dot{2}j}$ ,

where $X^{\prime}=\{x=(x_{ij})_{i,j\in N}^{t}|x_{ij}>0,i,j\in N,$ $\sum_{i=1j}^{n}\sum_{=1}^{n}w_{k,ij}x_{ij}=d_{k},$ $k=1,$ $\ldots,m\}$ ;

$\min_{y\in R^{m}}G^{\prime}(y)=$

(D)
$=\min_{y\in R^{m}}\{\lambda_{2}\sum_{i=1j}^{n}\sum_{=1}^{n}\exp(\lambda_{2}^{-1}(\lambda_{1}u_{ij}+\sum_{k=1}^{m}y_{k}w_{k,ij})-1I-\sum_{k=1}^{m}d_{k}y_{k}\}$ .

Theorem 2.4 For any fxed $\lambda_{1},$ $\lambda_{2}>0$ and $u_{ij}\in R+’ i,j\in N$,

(i) (weak dudity) $m\alpha F^{\prime}(x)x\in X\leq y\in R^{m}\dot{m}nG^{\prime}(y)$ ;

(ii) ($8trong$ dudity) If the matrix $W$ has fidl row-rank and int $ X^{\prime}\neq\emptyset$ ,
then the $pm$blem (D) has a unique optimd solution $y^{0}\in R^{m}$ and
$x^{0}=(x_{ij}^{0})_{i,j\in N}^{\ell}\in X^{\prime}$ given by

$x_{ij}^{0}=\exp(\lambda_{2}^{-1}(\lambda_{1}u_{ij}+\sum_{k=1}^{m}y_{k}^{0}w_{k,ij})-1I$ $i,j\in N$

$is$ the optimd solution of Problem $(P)^{\prime}$ ; moreover, $F^{\prime}(x^{0})=G^{\prime}(y^{0})$ .

Proof. The conclusion folows immediately from $Th\infty rem2.3$ . $\square $

3 Optimal transition probabilities
The optimal transition probabilities from a state of the system to another
one appear as the optimal solution of the optimization problem having its
objective function defined by (1.5) with $U(p)$ and $H(p)$ given by (1.3), (1.4)

(P1) $\max F\zeta p$)$p\in \mathcal{P}=\max p\in P\{\lambda_{1}\sum_{i=1j}^{n}\sum_{=1}^{\mathfrak{n}}u_{\ell j}p_{ij}-\lambda_{2}\sum_{i=1j}^{n}\sum_{=1}^{n}u_{i}\pi_{i}p_{ij}\ln p_{ij}\}$ .
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We shall determine the optimal solution of this problem by a dual approach
using the results obtained in the previous section regarding the problems (P)
and (D) expressed by $Th\infty rem2.4$ .

We apply to Problem (P1) the transformation defined by

(3.1) $x_{ij}=\frac{8k^{\pi_{i}}}{c}p_{ij},$ $i,j\in N$, where $c=\sum_{i=1}^{n}u_{i}\pi_{i}$ .

We use the folowing notations:

$x=(x_{ij})_{i,j\in N}^{\ell},\overline{H}(x)=-\sum_{i=1j}^{n}\sum_{=1}^{n}x_{ij}$ In $x_{ij},$ $v_{i}=\frac{u.\pi_{l}}{c},$ $i\in N$,
(3.2)

$v=(v_{1}, \ldots,v_{n})$ and $H(v)=-\sum_{i=1}^{n}v_{i}\ln v_{\ell}$ .

Lemma 3.1 For any $p\in \mathcal{P}$ and $x$ defined by (3.1) the equality

(3.3) $H(p)=c\overline{H}(x)-cH(v)$

holds, where the notations (3.2) are used.

Proof. Indeed,

$H(p)=-\sum_{i=1j}^{\mathfrak{n}}\sum_{=1}^{n}u_{i}\pi_{i}p_{ij}p_{ij}=-\sum_{i=1j}^{n}\sum_{=1}^{\mathfrak{n}}u_{i}\pi_{i}p_{1j}\ln\frac{u_{i}\pi_{i}p_{ij}}{c}+$

$+\sum_{i=1j}^{n}\sum_{=1}^{n}u\pi_{i}p_{ij}\frac{u_{i}\pi_{i}}{c}=-c\sum_{i=1j}^{\mathfrak{n}}\sum_{=1}^{n}x_{ij}\ln x_{ij}+c\sum_{i=1}^{n}\frac{u_{i}\pi_{i}}{c}(\frac{u_{i}\pi_{i}}{c})=$

$=c\overline{H}(x)-cH(v)$ . $\square $

Lemma 3.2 The transformation induced by $v_{i},$ $i\in N$, by the $fo’ mulae$

(3.4) $\overline{w}_{k,ij}=\frac{1}{v_{i}}w_{k,ij;}\overline{ek}j=\frac{1}{v_{i}}u_{ij},$ $i,j\in N,$ $k=1,$ $\ldots,m$

has the follounng properties:

(3.5) $\left\{\begin{array}{ll}\overline{w}x=wk,ijpij’ & i,j\in N, k=1, \ldots,m;\\\overline{u}_{ij}x_{ij}=u_{lj}p_{ij}, & i,j\in N.\end{array}\right.$
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Proof. Indeed, for $k=1,$
$\ldots,$

$m$

$(\overline{W}x)_{k}=\sum_{i=1j}^{n}\sum_{=1}^{n}\overline{w}_{k,ij}x_{ij}=\sum_{i=1j}^{n}\sum_{=1}^{n}(\frac{c}{u_{i}\pi_{i}}w_{k,ij})\cdot\frac{u_{i}\pi_{i}p_{ij}}{c}=(Wp)_{k}$ .

Therefore, $\overline{W}x=Wp$ . Similarly, we prove the second relation (3.4). $\square $

$iFrom$ Lemma 3.2 it follows that

(3.6) $\sum_{:=1j}^{n}\sum_{=1}^{n}\overline{w}_{k,1j}x_{ij}=d_{k},$ $k=1,$ $\ldots,m$

that implies $\sum_{i=1j}^{n}\sum_{=1}^{n}x_{ij}=1$ . According to Lemmas 3.1 and 3.2, one obtains

$\lambda_{1}\sum_{i=1j}^{n}\sum_{=1}^{n}u_{\ell j}p_{ij}-\lambda_{2}\sum_{i=1j}^{n}\sum_{=1}^{n}u_{i}\pi_{i}p_{ij}\ln p_{ij}=$

(3.7)
$=\lambda_{1}\sum_{i=1j}^{n}\sum_{=1}^{n}\overline{u}_{ij}x_{ij}-c\lambda_{2}\sum_{i=1j}^{n}\sum_{=1}^{n}x_{ij}x_{ij}-c\lambda_{2}H(v)$ .

We remark that $c\lambda_{2}H(v)$ from (3.7) is a constant. Let us note $\overline{\lambda}_{2}=c\lambda_{2}$ and
$\overline{X}=$ {$x=(x_{ij})_{i,j\in N}^{\ell}|x_{ij}>0$ , with $x$ satisfyin$g(3.6)$ }.

Let us consider the optimization problem in the variable $x=(x_{ij})_{i,j\in N}^{\ell}$

$(\overline{P}1)$ $ma_{\frac{x}{X}}x\in\{\lambda_{1}\sum_{i=1j}^{n}\sum_{=1}^{\mathfrak{n}}\overline{u}_{\ell j}x_{ij}-\tilde{\lambda}_{2}\sum_{i=1j}^{n}\sum_{=1}^{\mathfrak{n}}x_{ij}\ln x_{ij}\}$ .

The transformation defined by (3.1) and (3.4) assures, according to (3.7), the
equivalence of the problems (P1) and (P1).

It is obvious that $p$ is an admissible solution for the problem (P1) if and
only if $x$ defined by (3.1) is an admissible solution for the problem (P1).

Now, taking into account the existent analogy between the problems $(P)^{\prime}$

and (P1), the dual of the problem (P1) is

(D1) $\min_{y\in R^{m}}\{\tilde{\lambda}_{2}\sum_{i=1j}^{n}\sum_{=1}^{n}$ exp $(\overline{\lambda}_{2}^{-1}(\lambda_{1}\overline{u}_{ij}+\sum_{k=1}^{m}y_{k}\overline{w}_{k,ij})-1)-\sum_{k=1}^{m}d_{k}y_{k}\}$ .
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According to Theorem 2.4, if the objective function of problem $(\overline{D}1)$ gets its
minimum in $y^{0}\in R^{m}$ and if $x^{0}$ given by

$x_{ij}^{0}=\exp(\overline{\lambda}_{2}^{-1}(\lambda_{1}\overline{u}_{ij}+\sum_{k=1}^{m}y_{k}^{0}\overline{w}_{k,ij})-1),$ $i,j\in N$ ,

belongs to $\overline{X}$ then $x^{0}=(x_{ij}^{0})_{i,j\in N}^{\ell}$ is an optimal solution for the problem (P1)
and the optimal values of the objective functions of the problems (P1) and
(D1) coincide.

$iRom$ this $duality\cdot and$ the relations (3.1), (3.3), (3.4), (3.5) it follows
that the dual of the problem (P1) is

$\min_{y\in R^{m}}G(y)=$

(D1) $=m\dot{i}y\in R^{m}1^{c\lambda_{2}\sum_{i=1j}^{n}\sum_{=1}^{\mathfrak{n}}}$ exp $((u_{i}\pi_{i}\lambda_{2})^{-1}(\lambda_{1}u_{\ell j}+\sum_{k=1}^{m}y_{k}w_{k,ij})-1)-$

$-\sum_{k=1}^{m}d_{k}y_{k}+c\lambda_{2}\sum_{i=1}^{n}\frac{u\pi_{i}}{c}\frac{u\dot{.}\pi_{i}}{c}\}$ .

The duality of the problems (P1) and (D1) is given by

Theorem 3.1 If the matrix $W=(w_{k,ij})_{i,j\in N},$ $k=1,$ $\ldots,m$ has fidl mw-rark
and int $\mathcal{P}\neq\emptyset$ then

(i) (weak duality) If $p=(p_{ij})_{i,j\in N}^{\ell},$ $y=(y_{1}, \ldots,y_{m})\in R^{m}$ are admissible
solutions for the pmblems (P1), respectively (D1), then $F(p)\leq G(y)$ ;

(ii) (strong duaJity) $If\dot{m}nG(y)y\in R^{m}$ is reached in $y^{0}\in R^{m}$ and $p^{0}$ given by

(3.8) $p_{ij}^{0}=\frac{c}{u_{i}\pi_{i}}$ exp $((u_{i}\pi_{i}\lambda_{2})^{-1}(\lambda_{1}u_{ij}+\sum_{k=1}^{m}y_{k}^{0}w_{k,ij})-1),$ $i,j\in N$,

belongs to int $\mathcal{P}$, then $p^{0}$ is an optimd solution for the problem (P1)
and $F(p^{0})=G(y^{0})$ .

${\rm Re} mark3.1$ The formula (3.8) from Theorem 3.1 defines the optimal tran-
sition way of a random bchaviour system from any of its states to another
one.
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4 Conclusion
In this paper we have studied the problem of the optimal transition from a
state to another one into a random behaviour system having a finite number
of states by means of entropic criteria. We obtained the optimal transition
probabilities in the hypothesis that these probabilities satisfy a set of explicit
linear constraints of the equality type. The case without explicit constraints
is a particular one, the corresponding optimal transition probabilities being
obtained from (3.8) by talcing for $i,j\in N,$ $w_{k,ij}=1,$ $d_{k}=1$ for $k=1,$

$\ldots,$
$n$

and $w_{k,ij}=\pi_{i},$ $d_{k}=\pi_{j}$ for $k=n+1,$ $\ldots,$

$2n$ .
The pairs ofdual problems considered here differ in their form and number

from those used in Gerchak [6], Erlander [4], ours being extensions of them.
Our results can be applied in every real life field where a random behaviour
system with a finite number of states is identified for which it is important
to maximize simultanously the expected utility and the entropy associated
to transition from a state to another one during the time.
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