Entropic decision criteria for random behaviour systems

Rodica Brânzei

Abstract

In this paper we study random behaviour systems with a finite number of states from the point of view of optimal transition from a state of the system to another one. We use entropic decision criteria like the Shannon entropy and the entropy of a Markov chain with a finite number of states. Our results are obtained by using the principle of maximum entropy according to Charnes [3], Gerchak [6], Guiaşu and Shenitzer [7] and generalize some results on linearly constrained entropy optimization problems from Gerchak [6], Erlander [4]. We determine an optimal strategy of transition of a finite number states system from a state to another one by a dual approach on a linearly constrained optimization problem following the line from Ben-Tal [1], [2], Fang, Tsao [5], [9], our objective function being defined as a weighted combination of the expected transition utility and the entropy of a Markov chain. Several pairs of dual problems with entropic criteria will be considered in order to determine the optimal transition probabilities from a state of the system to another one.

AMS Subject Classification: 49K45, 60J99, 94 A17
Keywords: Shannon entropy, entropy of a Markov chain, transition probabilities, entropy optimization problem, duality.

1 Introduction

In many fields of the operational research as well as in pattern recognition we can identify random behaviour systems with a finite number of states for
which it is important to determine an optimal way of transition from a state to another one.

Let $Z=\left\{z_{1}, \ldots, z_{n}\right\}$ be the set of the states of a random behaviour system. We note $N=\{1, \ldots, n\}$. Let us suppose that the probabilities $\pi_{i}, i \in N$, of the states, the utilities $u_{i}, i \in N$, of the states and the transition utilities from the state z_{i} of the system to the state z_{j}, denoted by $u_{i j}, i, j \in N$, are apriori known.

The evolution of the system is described by the transition probabilities $p_{i j}, i, j \in N$, where $p_{i j}$ represent the probability of transition from the state z_{i} to the state $z_{j}, i, j \in N$, satisfying the following conditions:

$$
\begin{equation*}
p_{i j}>0, i, j \in N, \sum_{j=1}^{n} p_{i j}=1, i \in N ; \sum_{i=1}^{n} \pi_{i} p_{i j}=\pi_{j}, j \in N . \tag{1.1}
\end{equation*}
$$

Certain observations made usually on such a system provide a set of explicit constraints on the values of the transition probabilities $p_{i j}, i, j \in N$, expressed by equalities and inequalities. In this paper we shall suppose that the transition probabilities satisfy the following set of linear constraints

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} w_{k, i j} p_{i j}=d_{k}, k=1, \ldots, m \tag{1.2}
\end{equation*}
$$

where $w_{k, i j}, d_{k}, i, j \in N, k=1, \ldots, m$ are given real constants.
We suppose, without loss of generality, that the constraints (1.2) imply (1.1).

Let $p=\left(p_{11}, \ldots, p_{1 n}, \ldots, p_{n n}\right)^{t}$ be the vector of the transition probabilities. We also use the notations $d=\left(d_{1}, \ldots, d_{m}\right)^{t}, \mathcal{P}=\left\{p=\left(p_{i j}\right)^{t}, i, j \in N \mid p_{i j}>0\right.$, $i, j \in N, p$ satisfying (1.2)\}.

The expected utility of the transition of the considered system from a state to another is given by

$$
\begin{equation*}
U(p)=\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i j} p_{i j}, p \in \mathcal{P} . \tag{1.3}
\end{equation*}
$$

Let $\left\{X_{t} \mid t=0,1, \ldots\right\}$ be a stationary Markov chain with the states Z having the probabilities π_{i} and the utilities $u_{i}, i \in N$. The entropy of such a Markov chain is defined by

$$
\begin{equation*}
H(p)=-\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \pi_{i} p_{i j} \ln p_{i j} . \tag{1.4}
\end{equation*}
$$

Each vector $p \in \mathcal{P}$ defines a strategy of transition of the system from a state to another one. An optimal transition probability vector will be, for us, one maximizing the following weighted combination of $U(p)$ and $H(p)$

$$
\begin{equation*}
F(p)=\lambda_{1} U(p)+\lambda_{2} H(p), \lambda_{1}, \lambda_{2}>0, p \in \mathcal{P} \tag{1.5}
\end{equation*}
$$

We are interested in finding a Markov chain, among all admissible ones, attaining the maximum of the function $F(p)$ given by (1.5).

In section 2 we shall give some results on pairs of dual problems with the Shannon entropy in the expression of the objective function of primal problems. In section 3 , we formulate explicitly our entropy optimization problem and determine the optimal transition probabilities from a state of the considered system to another one and section 4 contains conclusions.

2 Preliminary results

Let $x=\left(x_{1}, \ldots, x_{n}\right)^{t}$ be a probability distribution defined on the set of states Z, satisfying the following linear constraints

$$
\begin{equation*}
W \cdot x=d, \text { with } x>0 \tag{2.1}
\end{equation*}
$$

where $W=\left(w_{k, i}\right), w_{k, i} \in \mathbb{R}, k=1, \ldots, m, i \in N, d=\left(d_{1}, \ldots, d_{m}\right)^{t}$. We assume, without loss of generality, that the constraints (2.1) include $\sum_{i=1}^{n} x_{i}=1$.

Let X be the set of probability distributions $x>0$ satisfying (2.1). For $\lambda_{1}, \lambda_{2}>0$ and $u_{i} \in \mathbb{R}_{+}, i \in N$, let us consider the optimization problem

$$
\begin{equation*}
\max _{x \in X} F(x)=\max _{x \in X}\left(\lambda_{1} \sum_{i=1}^{n} u_{i} x_{i}-\lambda_{2} \sum_{i=1}^{n} x_{i} \ln x_{i}\right) \tag{P}
\end{equation*}
$$

Theorem 2.1 The problem (P) is a convex optimization with linear restrictions one and it admits an optimal unique solution for every pair $\lambda_{1}, \lambda_{2}>0$.
Proof. We shall show that the Hessian matrix of $F(x)$, denoted by $\nabla^{2}(F)$, is negatively defined. We have

$$
\begin{aligned}
& \frac{\partial F(x)}{\partial x_{i}}=\lambda_{1} u_{i}-\lambda_{2}\left(1+\ln x_{i}\right), \quad i \in N \\
& \frac{\partial F(x)}{\partial x_{i} \partial x_{j}}=\left\{\begin{array}{cl}
-\lambda_{2} \frac{1}{x_{i}}, & \text { if } j=1, \\
0, & \text { if } j \neq i,
\end{array} \quad i, j \in N\right.
\end{aligned}
$$

Let $v=\left(v_{1}, \ldots, v_{n}\right)^{t}$ be a vector with $v_{i} \in \mathbb{R}, i \in N$. We have

$$
v^{t} \cdot \nabla^{2}(F) \cdot v=\sum_{i=1}^{n} v_{i}^{2}\left(\nabla^{2}(F)\right)_{i i}=-\sum_{i=1}^{n} v_{i}^{2} \cdot \lambda_{2} \cdot \frac{1}{x_{i}}<0
$$

for $v \neq 0$. It follows that the objective function of problem (P) is strictly concave. Since its domain is compact and convex, we obtain that (P) admits a unique optimal solution.

Lemma 2.1 For any $x \in X, \lambda_{1}, \lambda_{2}>0$ and for any $u_{i} \in \mathbb{R}_{+}, i \in N$, $y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$ the following inequality holds

$$
\begin{equation*}
\lambda_{1} \sum_{i=1}^{n} u_{i} x_{i}-\lambda_{2} \sum_{i=1}^{n} x_{i} \ln x_{i} \leq \tag{2.2}
\end{equation*}
$$

$$
\leq \lambda_{2} \sum_{i=1}^{n} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right)-\sum_{k=1}^{m} d_{k} y_{k} .
$$

Proof. Let us apply the inequality $\ln z \leq z-1$, valid for every $z>0$ with equality if and only if $z=1$, to the positive numbers $a_{i}, i \in N$, defined by

$$
a_{i}=\frac{1}{x_{i}} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right) .
$$

It follows that

$$
x_{i}\left(\sum_{k=1}^{m} y_{k} w_{k i}+\lambda_{1} u_{i}\right)-\lambda_{2} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right) \leq \lambda_{2} x_{i} \ln x_{i} .
$$

Summing by $i, i \in N$, one obtains

$$
\begin{gather*}
\sum_{i=1}^{n} x_{i}\left(\sum_{k=1}^{m} y_{k} w_{k i}\right)+\lambda_{1} \sum_{i=1}^{n} u_{i} x_{i}- \tag{2.3}\\
-\lambda_{2} \sum_{i=1}^{n} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right) \leq \lambda_{2} \sum_{i=1}^{n} x_{i} \ln x_{i} .
\end{gather*}
$$

The inequality (2.3) is equivalent to (2.2) because since $W \cdot x=d$, we can write

$$
\sum_{i=1}^{n} x_{i}\left(\sum_{k=1}^{m} y_{k} w_{k i}\right)=\sum_{k=1}^{m}\left(\sum_{i=1}^{n} w_{k i} x_{i}\right) y_{k}=\sum_{k=1}^{m} d_{k} y_{k}
$$

Using Lemma 2.1 we can associate to problem (P) with fixed λ_{1}, λ_{2} the following unconstrained dual problem
(D)

$$
\min _{y \in \mathbb{R}^{m}} G(y)=
$$

$$
\begin{equation*}
=\min _{y \in \mathbb{R}^{m}}\left\{\lambda_{2} \sum_{i=1}^{n} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right)-\sum_{k=1}^{m} d_{k} y_{k}\right\} . \tag{D}
\end{equation*}
$$

Hypothesis H1. The matrix W has full row-rank.
Hypothesis H2. Int $X \neq \emptyset$.

Theorem 2.2 In the hypotheses H 1 and H 2 , the problem (D) admits only one optimal solution $y^{0}=\left(y_{1}^{0}, \ldots, y_{m}^{0}\right) \in \mathbb{R}^{m}$ for any fixed pair $\lambda_{1}, \lambda_{2}>0$. Moreover, its corresponding primal problem (P) admits the optimal solution $x^{0}=\left(x_{1}^{0}, \ldots, x_{n}^{0}\right)^{t}$, where $x_{i}^{0}=\exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k}^{0} w_{k i}\right)-1\right), i \in N$, and the optimal values of the two dual problems coincide.

Proof. We show that in the hypothesis H1 the Hessian matrix of $G(y)$, denoted by $\nabla^{2}(G)$, is positively defined. We have

$$
\begin{aligned}
& \frac{\partial G(y)}{\partial y_{j}}=-d_{j}+\sum_{i=1}^{n} w_{j i} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right) ; \\
& \frac{\partial^{2} G(y)}{\partial y_{j} \partial y_{\ell}}=\frac{1}{\lambda_{2}} \sum_{i=1}^{n} w_{j i} w_{\ell i} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right) .
\end{aligned}
$$

For $v=\left(v_{1}, \ldots, v_{m}\right)^{t} \in \mathbb{R}^{m}$, we have

$$
v^{t} \nabla^{2}(G) v=\frac{1}{\lambda_{2}} \sum_{i=1}^{n} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k} w_{k i}\right)-1\right) \cdot\left(\sum_{k=1}^{m} v_{k} w_{k i}\right)>0
$$

for $v \neq 0$, if we take into account Hypothesis H1.
Since the Hessian matrix of $G(y)$ is positively defined according to a characterization theorem of a first degree differentiable function on an open convex domain one obtains that $G(y)$ is strictly convex, therefore problem (D) has no more than an optimal solution.
¿From Hypothesis H2 and from the Fenchel's theorem (Rockafellar [8]), we have that between the two dual problems (P) and (D) there is no duality gap. According to Theorem 2.1, the problem (P) has always a finite optimum and since $G(y)$ is strictly convex it follows that the problem (D) admits only one optimal solution $y^{0}=\left(y_{1}^{0}, \ldots, y_{m}^{0}\right)$. Since $G(y)$ is of the class $C^{2}\left(\mathbb{R}^{m}\right)$ we deduce that the first order optimality conditions hold at y^{0}, that is

$$
\begin{equation*}
\sum_{i=1}^{n} w_{k i} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k}^{0} w_{k i}\right)-1\right)=d_{k}, k=1, \ldots, m . \tag{2.4}
\end{equation*}
$$

If we use the notation $x_{i}^{0}=\exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k}^{0} w_{k i}\right)-1\right)=d_{k}, i \in N$, we note that the equality (2.4) means $W \cdot x^{0}=d$, so $x^{0} \in X$. We apply now the Fenchel's duality theorem.

Theorem 2.3 For any fixed $\lambda_{1}, \lambda_{2}>0$ and any $u_{i} \in \mathbb{R}_{+}, i \in N$,
(i) (weak duality) $\max _{x \in X} F(x) \leq \min _{y \in \mathbb{R}^{m}} G(y)$;
(ii) (strong duality) In Hypotheses H 1 and H 2 the problem (D) has a unique optimal solution $y^{0} \in \mathbb{R}^{m}$ and $x^{0} \in X$ given by

$$
x_{i}^{0}=\exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i}+\sum_{k=1}^{m} y_{k}^{0} w_{k i}\right)-1\right), i \in N,
$$

is the optimal solution of Problem (P); moreover, $F\left(x^{0}\right)=G\left(y^{0}\right)$.
Proof. The conclusion of (i) follows from Lemma 2.1 and the form of the dual problem (D).

The conclusion of (ii) follows from Theorem 2.2.
Now we define a bijection $B: N \times N \rightarrow N$; any previous simple sum may be written then as a double sum based on the following relation

$$
\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}=\sum_{\ell=1}^{n} x_{B-1}(\ell) .
$$

We can associate to Problems (P) and (D), on the base of the definition of the bijection B, the following pair of dual problems:
$(\mathrm{P})^{\prime} \quad \max _{x \in X^{\prime}} F^{\prime}(x)=\max _{x \in X^{\prime}}\left\{\lambda_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i j} x_{i j}-\lambda_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \ln x_{i j}\right\}$,
where $X^{\prime}=\left\{x=\left(x_{i j}\right)_{i, j \in N}^{t} \mid x_{i j}>0, i, j \in N, \sum_{i=1}^{n} \sum_{j=1}^{n} w_{k, i j} x_{i j}=d_{k}, k=1, \ldots, m\right\}$;

$$
\min _{y \in \mathbb{R}^{m}} G^{\prime}(y)=
$$

(D) ${ }^{\prime}$

$$
=\min _{y \in \mathbb{R}^{m}}\left\{\lambda_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i j}+\sum_{k=1}^{m} y_{k} w_{k, i j}\right)-1\right)-\sum_{k=1}^{m} d_{k} y_{k}\right\} .
$$

Theorem 2.4 For any fixed $\lambda_{1}, \lambda_{2}>0$ and $u_{i j} \in \mathbb{R}_{+}, i, j \in N$,
(i) (weak duality) $\max _{x \in X^{\prime}} F^{\prime}(x) \leq \min _{y \in \mathbb{R}^{m}} G^{\prime}(y)$;
(ii) (strong duality) If the matrix W has full row-rank and int $X^{\prime} \neq \emptyset$, then the problem (D)' has a unique optimal solution $y^{0} \in \mathbb{R}^{m}$ and $x^{0}=\left(x_{i j}^{0}\right)_{i, j \in N}^{t} \in X^{\prime}$ given by

$$
x_{i j}^{0}=\exp \left(\lambda_{2}^{-1}\left(\lambda_{1} u_{i j}+\sum_{k=1}^{m} y_{k}^{0} w_{k, i j}\right)-1\right), i, j \in N
$$

is the optimal solution of Problem (P$)^{\prime}$; moreover, $F^{\prime}\left(x^{0}\right)=G^{\prime}\left(y^{0}\right)$.
Proof. The conclusion follows immediately from Theorem 2.3.

3 Optimal transition probabilities

The optimal transition probabilities from a state of the system to another one appear as the optimal solution of the optimization problem having its objective function defined by (1.5) with $U(p)$ and $H(p)$ given by (1.3), (1.4)

$$
\begin{equation*}
\max _{p \in \mathcal{P}} F(p)=\max _{p \in \mathcal{P}}\left\{\lambda_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i j} p_{i j}-\lambda_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \pi_{i} p_{i j} \ln p_{i j}\right\} . \tag{P1}
\end{equation*}
$$

We shall determine the optimal solution of this problem by a dual approach using the results obtained in the previous section regarding the problems (P$)^{\prime}$ and (D)' expressed by Theorem 2.4.

We apply to Problem (P1) the transformation defined by

$$
\begin{equation*}
x_{i j}=\frac{u_{i} \pi_{i}}{c} p_{i j}, i, j \in N, \text { where } c=\sum_{i=1}^{n} u_{i} \pi_{i} . \tag{3.1}
\end{equation*}
$$

We use the following notations:

$$
\begin{gather*}
x=\left(x_{i j}\right)_{i, j \in N}^{t}, \widetilde{H}(x)=-\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \ln x_{i j}, v_{i}=\frac{v_{i} \pi_{i}}{c}, i \in N, \\
v=\left(v_{1}, \ldots, v_{n}\right) \text { and } H(v)=-\sum_{i=1}^{n} v_{i} \ln v_{i} . \tag{3.2}
\end{gather*}
$$

Lemma 3.1 For any $p \in \mathcal{P}$ and x defined by (3.1) the equality

$$
\begin{equation*}
H(p)=c \widetilde{H}(x)-c H(v) \tag{3.3}
\end{equation*}
$$

holds, where the notations (3.2) are used.
Proof. Indeed,

$$
\begin{gathered}
H(p)=-\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \pi_{i} p_{i j} \ln p_{i j}=-\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \pi_{i} p_{i j} \ln \frac{u_{i} \pi_{i} p_{i j}}{c}+ \\
+\sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \pi_{i} p_{i j} \ln \frac{u_{i} \pi_{i}}{c}=-c \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \ln x_{i j}+c \sum_{i=1}^{n} \frac{u_{i} \pi_{i}}{c} \ln \left(\frac{u_{i} \pi_{i}}{c}\right)= \\
=c \widetilde{H}(x)-c H(v) .
\end{gathered}
$$

Lemma 3.2 The transformation induced by $v_{i}, i \in N$, by the formulae

$$
\begin{equation*}
\bar{w}_{k, i j}=\frac{1}{v_{i}} w_{k, i j} ; \bar{u}_{i j}=\frac{1}{v_{i}} u_{i j}, i, j \in N, k=1, \ldots, m \tag{3.4}
\end{equation*}
$$

has the following properties:

$$
\begin{cases}\bar{w}_{k, i j} x_{i j}=w_{k, i j} p_{i j}, & i, j \in N, k=1, \ldots, m ; \tag{3.5}\\ \bar{u}_{i j} x_{i j}=u_{i j} p_{i j}, & i, j \in N\end{cases}
$$

Proof. Indeed, for $k=1, \ldots, m$

$$
(\widetilde{W} x)_{k}=\sum_{i=1}^{n} \sum_{j=1}^{n} \widetilde{w}_{k, i j} x_{i j}=\sum_{i=1}^{n} \sum_{j=1}^{n}\left(\frac{c}{u_{i} \pi_{i}} w_{k, i j}\right): \frac{u_{i} \pi_{i} p_{i j}}{c}=(W p)_{k} .
$$

Therefore, $\widetilde{W} x=W p$. Similarly, we prove the second relation (3.4).
¿From Lemma 3.2 it follows that

$$
\begin{equation*}
\sum_{i=1}^{n} \sum_{j=1}^{n} \tilde{w}_{k, i j} x_{i j}=d_{k}, k=1, \ldots, m \tag{3.6}
\end{equation*}
$$

that implies $\sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j}=1$. According to Lemmas 3.1 and 3.2, one obtains

$$
\begin{gather*}
\lambda_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i j} p_{i j}-\lambda_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} u_{i} \pi_{i} p_{i j} \ln p_{i j}= \tag{3.7}\\
=\lambda_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \bar{u}_{i j} x_{i j}-c \lambda_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \ln x_{i j}-c \lambda_{2} H(v) .
\end{gather*}
$$

We remark that $c \lambda_{2} H(v)$ from (3.7) is a constant. Let us note $\bar{\lambda}_{2}=c \lambda_{2}$ and $\widetilde{X}=\left\{x=\left(x_{i j}\right)_{i, j \in N}^{t} \mid x_{i j}>0\right.$, with x satisfying (3.6) $\}$.

Let us consider the optimization problem in the variable $x=\left(x_{i j}\right)_{i, j \in N}^{t}$

$$
\begin{equation*}
\max _{x \in \bar{X}}\left\{\lambda_{1} \sum_{i=1}^{n} \sum_{j=1}^{n} \bar{u}_{i j} x_{i j}-\bar{\lambda}_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} x_{i j} \ln x_{i j}\right\} . \tag{P}
\end{equation*}
$$

The transformation defined by (3.1) and (3.4) assures, according to (3.7), the equivalence of the problems (P1) and ($\overline{\mathrm{P}} 1$).

It is obvious that p is an admissible solution for the problem (P 1) if and only if x defined by (3.1) is an admissible solution for the problem (P1).

Now, taking into account the existent analogy between the problems (P$)^{\prime}$ and ($\overline{\mathrm{P}} 1$), the dual of the problem ($\overline{\mathrm{P}} 1$) is
($\overline{\mathrm{D}} 1) \min _{y \in \mathbf{R}^{m}}\left\{\bar{\lambda}_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \exp \left(\bar{\lambda}_{2}^{-1}\left(\lambda_{1} \bar{u}_{i j}+\sum_{k=1}^{m} y_{k} \bar{w}_{k, i j}\right)-1\right)-\sum_{k=1}^{m} d_{k} y_{k}\right\}$.

According to Theorem 2.4, if the objective function of problem ($\overline{\mathrm{D}} 1$) gets its minimum in $y^{0} \in \mathbb{R}^{m}$ and if x^{0} given by

$$
x_{i j}^{0}=\exp \left(\bar{\lambda}_{2}^{-1}\left(\lambda_{1} \tilde{u}_{i j}+\sum_{k=1}^{m} y_{k}^{0} \tilde{w}_{k, i j}\right)-1\right), i, j \in N,
$$

belongs to \widetilde{X} then $x^{0}=\left(x_{i j}^{0}\right)_{i, j \in N}^{t}$ is an optimal solution for the problem ($\widetilde{\mathrm{P}} 1$) and the optimal values of the objective functions of the problems ($\overline{\mathrm{P}} 1$) and ($\overline{\mathrm{D}} 1)$ coincide.
¿From this duality and the relations (3.1), (3.3), (3.4), (3.5) it follows that the dual of the problem (P1) is

$$
\begin{gather*}
\min _{y \in \mathbb{R}^{m}} G(y)= \\
=\min _{y \in \mathbf{R}^{m}}\left\{c \lambda_{2} \sum_{i=1}^{n} \sum_{j=1}^{n} \exp \left(\left(u_{i} \pi_{i} \lambda_{2}\right)^{-1}\left(\lambda_{1} u_{i j}+\sum_{k=1}^{m} y_{k} w_{k, i j}\right)-1\right)-\right. \tag{D1}\\
\left.-\sum_{k=1}^{m} d_{k} y_{k}+c \lambda_{2} \sum_{i=1}^{n} \frac{u_{i} \pi_{i}}{c} \ln \frac{u_{i} \pi_{i}}{c}\right\} .
\end{gather*}
$$

The duality of the problems (P1) and (D1) is given by
Theorem 3.1 If the matrix $W=\left(w_{k, i j}\right)_{i, j \in N}, k=1, \ldots, m$ has full row-rank and int $\mathcal{P} \neq \emptyset$ then
(i) (weak duality) If $p=\left(p_{i j}\right)_{i, j \in N}^{t}, y=\left(y_{1}, \ldots, y_{m}\right) \in \mathbb{R}^{m}$ are admissible solutions for the problems (P 1), respectively (D1), then $F(p) \leq G(y)$;
(ii) (strong duality) If $\min _{y \in \mathbb{R}^{m}} G(y)$ is reached in $y^{0} \in \mathbb{R}^{m}$ and. p^{0} given by

$$
\begin{equation*}
p_{i j}^{0}=\frac{c}{u_{i} \pi_{i}} \exp \left(\left(u_{i} \pi_{i} \lambda_{2}\right)^{-1}\left(\lambda_{1} u_{i j}+\sum_{k=1}^{m} y_{k}^{0} w_{k, i j}\right)-1\right), i, j \in N \tag{3.8}
\end{equation*}
$$

belongs to int \mathcal{P}, then p^{0} is an optimal solution for the problem (P 1) and $F\left(p^{0}\right)=G\left(y^{0}\right)$.

Remark 3.1 The formula (3.8) from Theorem 3.1 defines the optimal transition way of a random behaviour system from any of its states to another one.

4 Conclusion

In this paper we have studied the problem of the optimal transition from a state to another one into a random behaviour system having a finite number of states by means of entropic criteria. We obtained the optimal transition probabilities in the hypothesis that these probabilities satisfy a set of explicit linear constraints of the equality type. The case without explicit constraints is a particular one, the corresponding optimal transition probabilities being obtained from (3.8) by taking for $i, j \in N, w_{k, i j}=1, d_{k}=1$ for $k=1, \ldots, n$ and $w_{k, i j}=\pi_{i}, d_{k}=\pi_{j}$ for $k=n+1, \ldots, 2 n$.

The pairs of dual problems considered here differ in their form and number from those used in Gerchak [6], Erlander [4], ours being extensions of them. Our results can be applied in every real life field where a random behaviour system with a finite number of states is identified for which it is important to maximize simultanously the expected utility and the entropy associated to transition from a state to another one during the time.

References

[1] A. Ben-Tal, A. Charnes, A Dual Optimization Framework for Some Problems of Information Theory and Statistics, Problems of Control and Information Theory 8(1979), 387-401.
[2] A. Ben-Tal, M. Teboulle, A. Charnes, The Role of Duality in Optimization Problems Involving Entropy Functionals with Applications to Information Theory, Journal of Optimization Theory and Applications, 58/2(1988), 209-223.
[3] A. Charnes, W.W. Cooper, L. Seiford, Extremal Principles and Optimization Qualities for Khinchin-Kullback-Leibler Estimation, Statistics (Zentralinstitut für Mathematik und Mechanik), 9(1978), 21-29.
[4] S. Erlander, Entropy in Linear Programs, Mathematical Programming 21(1981), 137-151.
[5] S.C. Fang, H.S.J. Tsao, Linear Programming with Entropic Perturbation, ZOR - Methods and Models of Operations Research 37 (1993), 171-186.
[6] Y. Gerchak, Maximal Entropy of Markov Chains with Common SteadyState Probabilities, Journal of the Operational Research Society, vol. 32 (1991), 233-234.
[7] S. Guiaşu, A. Shenitzer, The Principle of Maximum Entropy, Mathematical Intelligencer, 8 (1985), 42-48.
[8] R.T. Rockafellar, Convex Analysis, Princeton University Press, New Jersey, 1970.
[9] H.S. Tsao, S.C. Fang, D.N. Lee, On the Optimal Entropy Analysis, European Journal of Operational Research 59 (1992), 324-329.

Rodica Brânzei, Al.I.Cuza University, Faculty of Computer Science, Bd.Copou 11, 6600 Iaşi, România, e-mail: branzeir@thor.infoiasi.ro

Received February 23, 1998

