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OSCILLATION AND ASYMPTOTIC PROPERTIES OF SOLUTIONS
OF THIRD ORDER FUNCTIONAL DIFFERENTIAL EQUATIONS

ABDALLA S. TANTAWY AND R.S. DAHIYA

ABSTRACT. The third order functional differential equation

$(r_{2}(\ell)(r_{1}(t)y^{\prime})^{\prime}))^{\prime}+q(t)F(y(g(t)))=f(t)$

is studied for its oscillatory and nonoscillatory nature. Conditions have been found to ensure
that all solutions are either oscillatory or they approach zero as $\ell\rightarrow\infty$ . Moreover, the
conditions for asymptotic behavior for the special case of the above equation has been found.

1. Introduction.

In this paper we are interested in the oscillatory behavior of the equation

(1) $(r_{2}(t)(r_{1}(t)y^{l})^{l})^{\prime}+q(t)F(y(g(t)))=f(t)$ where

$r_{1},$ $r_{2},q,g,$ $f$ : $[t_{0}, \infty$ ) $\rightarrow R,$ $F$ : $R\rightarrow R$ are continuous, $r_{1}>0,$ $r_{2}>0,$ $r_{2}^{l}\leq 0$ for $ t\in$

$[t_{0}, \infty),$ $q(t)\geq 0$ and not identically zero for any ray of the form $[t^{*}, \infty$ ) for some $ t^{*}\geq$

$ t_{0},g(t)\rightarrow\infty$ as $ t\rightarrow\infty$ , and $yF(y)>0$ for $y\neq 0$ . S.R. Grace and B.S. Lalli [3] studied

the oscillatory behavior of the second order equation

$(a(t)\dot{x}(t))+q(t)f(x(g(t)))=e(t)$ .

Thus in this paper we extend the study to the third order and take a more generalized

form of the equation.

We consider only solutions of equation (1) which are defined for large $t$ . The oscillatory

solution of (1) is considered in the usual sense, i.e., a solution of equation (1) is caled

oscilatory if it has no last zero, otherwise it is called nonoscillatory. Equation (1) is caled

oscilatory if al its solutions are oscillatory. It is almost oscillatory if every solution $y(t)$

of equation (1) is either oscillatory or $\lim_{\ell\rightarrow\infty}y(t)=0$ .

1991 $Ma\ell hema\ell ics$ Subject Classification. primary $(34K15))$ second $(34K2S)$ .

–117–



2. Main results.

Theorem 1. Let

(3) $F^{\prime}(y)\geq k>0$ for $y\neq 0$ .

an $d$ assume that there exist a function $\phi:[t_{0}, \infty$ ) $\rightarrow R$ an $d$ differentiable functions

$\delta,\sigma$ : $[t_{0}, \infty$ ) $\rightarrow(0, \infty)$ such that

(4) $(r_{2}(\ell)(r_{1}(t)\phi^{\prime})^{l})^{l}=f(t),$ $\phi(t)\rightarrow 0,$ $\phi^{l}(t)\rightarrow 0$ an $d\phi^{\prime\prime}(t)\rightarrow 0$ as $ t\rightarrow\infty$ ,

(5) $\sigma(t)\leq\min\{t,g(t)\},$ $\sigma^{l}(t)>0$ an$ d\sigma(t)\rightarrow\infty$ as $ t\rightarrow\infty$ ,

(6) $\delta^{\prime}(t)<0,\delta^{ll}(t)>0$ an $d\delta^{\prime}(t)\leq\frac{r_{2}^{\prime}(t)}{2r_{2}(t)}\delta(t)$ for $a\Pi t\geq t_{0}$ .

If

(7) $\int^{\infty}\{\delta(t)q(t)-\frac{r_{1}(\sigma(t))r_{2}(t)\delta^{2}(t)\prime}{4\lambda B\sigma(t)\sigma(t)\delta(t)}\}dt=\infty,0<\lambda<1,$ $B>0$ ,

(8) $\int^{\infty}\frac{1}{r_{1}(t)\delta(t)}1\int_{\ell_{0}}^{l}\frac{\delta(v)q(\nu)}{r_{2}(\nu)}d\nu dudt=\infty$ an $ d\int^{\infty}\frac{t}{r_{1}(t)\delta(t)}dt<\infty$

then every solution of equation (1) is either oscillatory or $\lim_{t\rightarrow\infty}y(t)=0$ .

Proof. Let $y(t)$ be a nonoscillatory solution of equation (1). We may assume without loss
of generality that $y(\ell)>0$ for $t\geq\ell_{0}$ then there exists a $t_{1}\geq t_{0}$ such that $y(\sigma(t))>0$ for
$t\geq t_{1}$ . Consider the function

(9) $y(t)=x(t)+\phi(t)$ for $t\geq t_{1}$ , then from equation (1) we get

(10) $(r_{2}(t)(r_{1}(t)x^{\prime})^{l})^{\prime}=-q(t)F(y(g(t)))$ for $t\geq t_{1}$ .
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It is clear $that-(r_{2}(t)(r_{1}(t)x^{\prime})^{\prime})^{\prime}$ is eventually positive for $t\geq t_{1}$ . Hence $x(t)$ is monotone

and one-signed, $x^{\prime}(t)$ and $x^{\prime l}(t)$ are also monotone and one-signed for sufficiently large $t$ .
If $x(t)<0$ for $t\geq t_{1}$ then $y(t)<\phi(t)$ for $t\geq t_{1}$ but this contradicts the assumption that

$y(t)>0$ and so we must have

(11) $x(t)>0$ for $t\geq t_{1}$ .

Claim 1.

(12) $(r_{1}(t)x^{\prime}(t))^{l}>0$ for $t\geq t_{1}$ .

From equation (10) we have $(r_{2}(r_{1}x^{l})^{\prime})^{\prime}\leq 0$ or

(13) $(r_{1}(t)x^{l}(t))^{\prime\prime}\leq-\frac{r_{2}^{\prime}(t)}{r_{2}(t)}(r_{1}(t)x^{l}(t))^{l}$

If $(r_{1}(t)x^{\prime})^{l}\leq 0$ then $(r_{1}(t)x^{l}(t))^{\prime\prime}\leq 0$ , i.e., $r_{1}(t)x^{\prime}(t)$ is decreasing and concave down,

and hence $r_{1}(t)x^{\prime}(t)$ is eventually negative. Therefore $x(t)$ is eventuaUy negative which

contradicts (11).

Claim 2.

Now we claim that

(14) $x^{l}(t)<0$ for $t\geq t_{1}$ .

If $x^{l}(t)\geq 0$ for $t\geq t_{1}$ then using equation (9) we have

(15) $y(g(t))=x(g(\ell))+\phi(g(t))$ for $t\geq t_{1}$ .

Since $x(t)$ is increasing and positive and $\phi(t)\rightarrow 0$ as $ t\rightarrow\infty$ then there exists $t_{\lambda}\geq t_{1}$

sufficiently large such that

(16) $y(g(t))\geq\lambda x(g(t))$ for $t\geq t_{\lambda}$ .

Using (3) and (5) in (16) we get

(17) $F(y(g(t)))\geq F(\lambda x(g(t)))$ for $t\geq t_{\lambda}$ .

–119–



Now define

(18) $w(t)=\frac{r_{2}(t)(r_{1}(t)x^{l}(t))^{l}}{F(\lambda x(\sigma(t)))}\delta(t)$ then for every $t\geq t_{\lambda}$ we have

(19) $w^{l}(t)=-q(t)\frac{F(y(g(t)))}{F(\lambda x(\sigma))}\delta(t)+w\frac{\delta^{\prime}}{\delta}-\lambda\sigma^{l}x^{\prime}(\sigma)\frac{F^{\prime}(\lambda x(\sigma))}{F(\lambda x(\sigma))}w$ .

Since $x^{l}\geq 0$ and $(r_{1}x^{l})^{\prime}>0$ then by Kiguradze’s lemma [4] we have

(20) $r_{1}(t)x^{\prime}(t)\geq B_{1}t(r_{1}(t)x^{l}(t))^{l}$ for some constant $B_{1}>0$ . Also we have

(21) $(r_{1}(t)x^{l}(t))^{\prime}\leq(r_{1}(\sigma(t))x^{l}(\sigma(t)))^{l}$ for $t\geq t_{\lambda}$ .

Using (17), (20) and (21) in (19) we get

$w^{l}(t)\leq-q(t)\delta(t)+\frac{\delta^{l}(t)}{\delta(t)}w(t)-\lambda B\frac{\sigma^{l}(\ell)\sigma(t)}{r_{2}(t)r_{1}(\sigma(t))}\frac{r_{2}(t)(r_{1}(t)x^{\prime}(t))^{l}}{F(\lambda x(\sigma(t)))}w(t),B=kB_{1}$

$\leq-q(t)\delta(t)+\frac{\delta^{l}}{\delta}w(t)-\lambda B\frac{\sigma^{l}\sigma}{r_{2}(t)r_{1}(\sigma)\delta(t)}w^{2}(t)$

Now if we complete the square on the right and then simplify we get

(23) $\omega^{l}(\ell)\leq-\{q(\ell)\delta(t)-\frac{r_{1}(\sigma)r_{2}(t)\delta^{2}(t)\prime}{4\lambda B\sigma\sigma^{\prime}\delta(t)}\}$ .

Integrating (23) from $t_{\lambda}$ to $t$ we get

(24) 1 $\{q(s)\delta(s)-\frac{r_{1}(\sigma(s))r_{2}(s)(\delta^{l}(s))^{2}}{4\lambda B\sigma^{l}(s)\sigma(s)\delta(s)}\}ds\leq w(t_{\lambda})-w(t)\leq w(t_{\lambda})<\infty$

which contradicts (7) hence $x^{l}(t)<0$ .
IFlirom (11) and (14) there exists a constant $c\geq 0$ such that $\lim_{t\rightarrow\infty}x(\ell)=c$ . We wil prove

that $c=0$ .
Assume $c>0$ and from (9) we have $\lim_{t\rightarrow\infty}y(g(t))=\lim_{\ell\rightarrow\infty}x(g(t))=c$ . Hence there exists

a $t_{2}\geq t_{1}$ such that

(25) $y(g(t))\geq\frac{c}{2}$ for $t\geq t_{2}$ .
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Define

(26) $G(t)=r_{1}(t)x^{l}(t)\delta(t)$ for $t\geq t_{2}$ .

Differentiating we get

(27) $G^{\prime}(t)=(r_{1}(t)x^{l}(t))^{l}\delta(t)+(r_{1}(t)x^{l}(t))\delta^{l}(t)$ .

Multiplying (27) by $r_{2}(t)$ , differentiating and simplifying we get

(28) $G^{ll}(t)=-\frac{1}{r_{2}(t)}q(t)F(y(g(t)))\delta(t)+(r_{1}(t)x^{\prime}(t))\delta^{\prime l}(t)+(r_{1}x^{\prime})^{l}(2\delta^{l}(t)-\frac{r_{2}^{\prime}(t)}{r_{2}(t)}\delta(t))$

Using (6), (14) and (25) we get

(29) $G^{ll}(t)\leq-\frac{q(t)\delta(t)}{r_{2}(t)}F(\frac{c}{2})$ for $t\geq t_{2}$ .

Now integrating two times from $t_{2}$ to $t$ , we get

$G(t)\leq G(t_{2})+G^{\prime}(t_{2})(t-t_{2})-F(\frac{c}{2})\int_{\ell_{2}}^{\ell}\int_{\ell_{2}}^{l}\frac{\delta(u)}{r_{2}(u)}q(u)duds$

(30) $\leq G^{l}(t_{2})t-F(\frac{c}{2})\int_{\ell_{2}\ell}^{t}\int_{2}^{s}\frac{\delta(u)}{r_{2}(u)}q(u)duds$ .

Rom (26) we get

(31) $x^{l}(t)\leq G^{\prime}(t_{2})\frac{t}{r_{1}(t)\delta(t)}-\frac{F(\frac{c}{2})}{r_{1}(t)\delta(t)}\int_{\ell_{2}\ell}^{\ell}\int_{2}^{s}\frac{\delta(u)q(u)}{r_{2}(u)}duds$ .

Integrating we get

(32) $x(t)\leq x(t_{2})+G^{l}(t_{2})\int_{t_{2}}^{\ell}\frac{s}{r_{1}(s)\delta(s)}ds-F(\frac{c}{2})\int_{\ell_{2}}^{\ell}\frac{1}{r_{1}(s)\delta(s)}\int_{t_{2}\ell}\int_{2}^{u}\frac{q(v)\delta(v)}{r_{2}(v)}dvduds$ .

Now taking the limit as $ t\rightarrow\infty$ and using (8) we get a contradiction to (11). This completes

the proof.

Remark.

Note that condition (3) is quite restrictive since it can’t be satisfied by a function of the

type $F(x)=x^{\gamma},\gamma>1$ where $\gamma$ is a quotient of odd positive integers. However, we relax

that condition in this theorem.
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Theorem 2. Suppose that

(33) $F^{\prime}(y)\geq 0$ for $y\neq 0$

and the conditions (4), (5), (6) an$d(8)$ hold. If

(34) $\int^{\infty}q(t)\delta(t)dt=\infty$

then the condusion of theorem 1 holds.

Proof. Let $y(t)$ be a nonoscillatory solution of equation (1), say $y(t)>0$ and $y(\sigma(t))>0$

for every $t\geq t_{1}\geq t_{0}$ . As in the proof of Theorem 1 we obtain (19) and by using (33) we
get

(35) $w^{l}(t)\leq-q(\ell)\frac{F(y(g(\ell)))}{F(\lambda x(\sigma(t)))}\delta(t)+w(t)\frac{\delta^{l}(t)}{\delta(t)}$ ,

Using (6) and (17) we get

(36) $w^{\prime}(t)\leq-q(t)\delta(t)$ , and then integrating from $t_{1}$ to $t$

and using (34) we get a contradiction to the fact that $w(t)>0$ for $t\geq t_{1}$ . Thus we have
(14) and the rest of the proof is the same as in Theorem 1.

Now we relax a condition on $\sigma$ and state the following result.

Theorem 3. Let conditions (4), (6) an$d(33)$ hold an $d$ suppose that

(37) $\sigma(t)\leq\min\{t,g(t)\},\sigma^{\prime}(t)\geq 0$ an$ d\sigma(t)\rightarrow\infty$ as $ t\rightarrow\infty$ .

ff

(38) $\int^{\infty}\delta(\sigma(s))q(s)ds=\infty$ ,

(39) $\int^{\infty}\frac{1}{r_{1}(s)\delta(\sigma(s))}1\int_{\ell_{0}}^{s}\frac{\delta(\sigma(u))}{r_{2}(u)}q(u)dudsdt=\infty$ an $ d\int^{\infty}\frac{t}{r_{1}(t)\delta(\sigma)}dt<\infty$
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then the conclusion of Theorem 1 ]$l$ olds.

Proof. The proof is similar to tlzat of Theorcm 2 except that we lct the function $w$ and $G$

be defined as

$w(t)=\frac{r_{2}(t)(r_{1}(t)x^{\prime}(t))^{l}}{F(\lambda x(\sigma(t)))}\delta(\sigma(t))$ and $G(t)=r_{1}(t)x$
‘
$(t)\delta(\sigma(t))$ .

Dahiya and Singh [2] studied the asymptotic nature of

(40) $y^{\prime ll}+a(t)y(t-\tau(t))=f(t)$ , under the two conditions

$\int t^{2}|f|dt\infty<\infty$ and $\int t^{2}|a(t)|dt,$
$\infty\infty$ . Our next result is for tlie asymptotic nature of the

equation

(41) $y^{\prime l/}+q(\ell)F(y(\sigma(t)))=f(t)$ which is a special case of equation (1)

when $r_{1}=r_{2}=1$ . Equation (41) is more general than equation (40) and the required

conditions are more relaxed than that of (40).

Theorem 4. If

(42) $\int^{\infty}|f(t)|dt<\infty$ ,

(43) 1 $ t^{2}q(t)dt<\infty$ and

(44) $|F(y)|\leq y$

then equation (41) $h$as nonoscillatory solutions asymptotic to $a_{0}+a_{1}t+a_{2}t^{2}$ , where $a_{2}\neq 0$ .

Proof. Integrating equation (41) from $t_{0}$ to $t$ to get

(45) $y^{ll}(t)=y^{\prime\prime}(t_{0})-1^{q(s)F(y(\sigma(s)))d_{S}+}1^{f(s)d_{S}}$ .
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Integrating again we get

(46) $y^{\prime}(t)=y^{\prime}(t_{0})+y^{ll}(t_{0})(t-t_{0})-11^{q(r)F(y(\sigma(r)))drd_{S}+f\int_{t_{0}}^{s}f(r)drds}$ .

By interchanging the integral signs in (46) we get

$y^{\prime}(t)=y^{\prime}(t_{0})+y^{l/}(t_{0})(t-t_{0})-\int_{\ell_{0}}^{\ell}(t-r)q(r)Fdr+\int_{\ell_{0}}^{\ell}(t-r)f(r)dr$

(47)

$=c_{0}+c_{1}t-\int_{\ell_{0}}^{\ell}(t-r)q(r)Fdr+f(t-r)f(r)dr$, where $c_{0}$

and $c_{1}$ are appropriate constants.

Integrating (47) from $t_{0}$ to $\sigma(t)$ , where $\sigma(t)>\ell_{0}$ for large $t$ , we get

$y(\sigma(t))=y(t_{0})+c_{0}(\sigma(t)-t_{0})+\frac{c_{1}}{2}(\sigma^{2}(t)-t_{0}^{2})-\int_{\ell_{0}\ell}^{\sigma}\int_{0}^{s}(s-r)q(r)Fdrds$

(48)

$+\int_{\ell_{0}\ell}^{\sigma}\int_{0}(s-r)f(r)drds$ .

Hence

(49) $|y(\sigma(t))|\leq C_{2}+c_{3}t+c_{4}t^{2}+\frac{1}{2}1^{(t-s)^{2}q(s)|y(\sigma(s))|ds+\frac{1}{2}\int_{C_{0}}^{\ell}(t-s)^{2}|f(s)|ds}$ ,

where $c_{2},c_{3}$ and $c_{4}$ are appropriate constants and $0<\sigma(t)-t_{0}<t$ for large $t$ . IFMrom (49)

we have $|y(\sigma(\ell))|\leq(c_{2}+c_{3}+c_{4})t^{2}+t^{2}\int_{\ell_{0}}^{t}q(s)|y(\sigma)|ds+t^{2}\int_{\ell_{0}}^{\ell}|f(s)|ds$ , where $t>1$ large.
Hence

$\frac{|y(\sigma(t))|}{t^{2}}\leq c_{5}+fs^{2}q(s)\frac{y(\sigma(s))}{s^{2}}ds+L$ , where $c_{5}=c_{2}+c_{\$}+c_{4}$

and $\int_{\ell_{0}}^{\ell}|f(s)|ds\leq L$ . By using (42), we get

$\frac{|y(\sigma)|}{t_{2}}\leq c+]s^{2}q(s)\frac{|y(s)|}{s^{2}}ds$ , where $c=c_{S}+L$
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Applying Gronwall’s inequality [5, p. 107] we get

(50) $\frac{|y(\sigma(t))|}{t^{2}}\leq k$ exp $(fs^{2}q(s)ds)\leq k_{0}$ , where $k_{0}$ is a positive constant.

Rom the first integral of equation (47), it follows that

$|1(t-s)q(s)F(y(\sigma(s)))ds|\leq tfs^{2}q(s)\frac{|y(\sigma)|}{s^{2}}ds$

(51)
$\leq k_{0}t\int_{\ell_{0}}^{\ell}s^{2}q(s)ds$ by using (50),

$\leq k_{0}^{l}t$ by using (43) where

$k_{0}^{\prime}$ is a positive constant.

Similarly the second integral of (47) gives

(52) $|\int_{\ell_{0}}^{\ell}(t-s)f(s)ds|\leq t1|f(s)|ds\leq Lt$ .

Using (51) and (52) in (47) we get

$y^{l}(t)\rightarrow c_{0}+c_{1}^{\prime}t$ as $ t\rightarrow\infty$ , i.e.,

$y(t)\rightarrow a_{0}+a_{1}t+a_{2}t^{2}$ as $ t\rightarrow\infty$ where $a_{0},$ $a_{1}$ and $a_{2}$

are appropriate constants and $a_{2}\neq 0$ .

Example 1. Consider the equation

$(e^{\ell}y^{l})^{ll}+e^{\ell-\pi}y(t-\pi)=$ -cos $t$ , where $r_{1}(t)=e^{\ell},r_{2}(t)=1$ ,

(53) $g(t)=t-\pi,q(t)=e^{\ell-\pi},$ $F(y)=y,$ $\phi(t)=\frac{1}{2}e^{-\ell}$ ($\sin t-$ cos t) and

$\delta(t)=e^{-\ell/2}$ .

All conditions of theorem 1 are satisfied, and the conclusion holds. It is clear that $y(t)=$

$e^{-t}$ cos $t$ is a solution of equation (53).
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Example 2. Consider the equation

$(e^{-\ell}(e^{\ell}y^{l})^{\prime})^{\prime}+e^{4\ell}y^{\frac{f}{s}}(3t)=e^{-t}$ , where $r_{1}(t)=e^{\ell},$ $r_{2}(t)=e^{-\ell}$ ,
(54)

$g(t)=3t,q(t)=e^{4\ell},$ $F(y)=y^{S},$ $\phi(t)=te^{-\ell}+e^{-\ell}$ and $\delta(t)=e^{-\ell/2}$ .

All conditions of Theorem 2 are satisfied, and the conclusion holds. It is clear that $y(t)=$

$e^{-t}$ is a solution of equation (54).
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