OZEKI'S INEQUALITY AND NONCOMMUTATIVE COVARIANCE

SAICHI IZUMINO * AND YUKI SEO **

Abstract

J.I.Fujii introduced the covariance of operators in Umegaki's theory of noncommutative probability. Very recently, it is observed that the so-called (noncommutative) covariance-variance inequality gives a unified method to prove certain operator inequalities including the celebrated Kantorovich inequality. Following after them, we shall discuss an operator version of Ozeki's inequality and consequently we show that the inequality needs a minor correction.

1. Introduction. From Umegaki's viewpoint [4] of noncommutative probability, M.Fujii, T.Furuta, R.Nakamoto and S.E.Takahashi [1] discussed the covariance and the variance of operators acting on a Hilbert space H. The covariance of two operators A and B (at a state $x \in H$) is defined by

$$
\begin{equation*}
\operatorname{Cov}(A, B)=\left(B^{*} A x, x\right)-(A x, x)\left(B^{*} x, x\right) \tag{1}
\end{equation*}
$$

and the variance of A is defined by

$$
\begin{equation*}
\operatorname{Var}(A)=\|A x\|^{2}-|(A x, x)|^{2} \tag{2}
\end{equation*}
$$

Their fundamental tool is the following covariance-variance inequality;

$$
\begin{equation*}
|\operatorname{Cov}(A, B)|^{2} \leq \operatorname{Var}(A) \operatorname{Var}(B) \tag{3}
\end{equation*}
$$

They observed that $\operatorname{Var}(A) \leq \frac{1}{4}(M-m)^{2}$ if A is a selfadjoint operator with $m \leq A \leq M$, and consequently they gave an estimation of the covariance by using (3): If $0 \leq m_{1} \leq$ $A \leq M_{1}$ and $0 \leq m_{2} \leq B \leq M_{2}$, then

$$
\begin{equation*}
|\operatorname{Cov}(A, B)| \leq \frac{1}{4}\left(M_{1}-m_{1}\right)\left(M_{2}-m_{2}\right) \tag{4}
\end{equation*}
$$

by which they unified proofs of many operator inequalities including the celebrated Kantorovich inequality.

Ozeki's inequality in [2] is the Kantorovich like inequality: Let a_{i} and b_{i} be two positive n-tuples, with $0<m_{1} \leq a_{i} \leq M_{1}$ and $0<m_{2} \leq b_{i} \leq M_{2} \quad(i=1, \cdots, n)$ for some constants m_{1}, m_{2}, M_{1}, and M_{2}. Then the following inequality holds

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq \frac{n^{2}}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{5}
\end{equation*}
$$

1991 Mathematics Subject Classification. 47A30 and 47A63.
Key words and phrases. Ozeki's inequality, covariance of operators, variance of operators.

We here put $A=\operatorname{diag}\left(a_{i}\right)$ and $B=\operatorname{diag}\left(b_{i}\right)$ as diagonal matrices and $x=\frac{1}{\sqrt{n}}(1, \cdots, 1)^{\iota}$. Then $0<m_{1} \leq \Lambda \leq M_{1}, 0<m_{2} \leq B \leq M_{2}$ and $\|x\|=1$. Moreover (5) becomes

$$
\begin{equation*}
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-|(A B x, x)|^{2} \leq \frac{1}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{6}
\end{equation*}
$$

As a continuation of [1], we shall attempt to consider the operator version of Ozeki's inequality by virtue of the covariance-variance inequality. However we are resisted by the following counterexample for (6): If

$$
A=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right), \quad B=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \text { and } \quad x=\frac{1}{\sqrt{3}}\left(\begin{array}{l}
1 \\
1 \\
1
\end{array}\right)
$$

then $M_{1}=M_{2}=1, m_{1}=m_{2}=0$. Consequently we have

$$
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-(A B x, x)^{2}=\frac{1}{3}>\frac{1}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}=\frac{1}{4}
$$

whereas

$$
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-(A B x, x)^{2}=\frac{1}{3}<\frac{1}{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}=\frac{1}{2}
$$

Surprisingly enough, the example above is not only a counterexample of (6), but that of
(5), that is, $a=(1,1,0)$ and $b=(0,1,1)$. Making a demand that all entry of it is positive, we prepare 3-dimensional vectors as the another counterexample of (5):

$$
a=\left(\frac{1}{4}, 1,1\right) \quad \text { and } \quad b=\left(1,1, \frac{1}{4}\right) .
$$

Anyway (5) and (6) should be corrected.
In this note, we shall give an operator version of a corrected Ozeki's inequality, which has a simple proof by (4); more precisely we prove that if two selfadjoint operators A and B commutes, then

$$
\begin{equation*}
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-(A B x, x)^{2} \leq \frac{1}{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{7}
\end{equation*}
$$

under the assumption $0<m_{1} \leq A \leq M_{1}$ and $0<m_{2} \leq B \leq M_{2}$.
In finite dimensinal case, we can sharpen the bound of the right hand side of (7) as follows: If $0<m_{1} \leq a_{i} \leq M_{1}$, and $0<m_{2} \leq b_{i} \leq M_{2} \quad(i=1,2, \cdots, n)$, then

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq \frac{n(n-1)}{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} \tag{8}
\end{equation*}
$$

2. An operator version. The inequality (7) is an operator version of Ozeki's inequality (5). By virture of the covariance-variance inequality in [1], we can prove it:

Theorem 1. If A and B are commutative selfadjoint operators satisfying $0 \leq m_{1} \leq A \leq$ M_{1} and $0 \leq m_{2} \leq B \leq M_{2}$, then they satisfy the inequality (7).

Proof. Since A and B are commutative, the left hand side of (7) is difference of $\operatorname{Var}(A B)$ and $\operatorname{Cov}\left(A^{2}, B^{2}\right)$. We also remark that $\operatorname{Var}(A B)=\operatorname{Cov}(A B, A B)$. Since $0<m_{1} m_{2} \leq$ $A B \leq M_{1} M_{2}$, it immediately follows from a formula (4) that

$$
\operatorname{Var}(A B)=\operatorname{Cov}(A B, A B) \leq \frac{1}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
$$

Therefore we have

$$
\begin{aligned}
\left(A^{2} x, x\right)\left(B^{2} x, x\right)-(A B x, x)^{2} & =\operatorname{Var}(A B)-\operatorname{Cov}\left(A^{2}, B^{2}\right) \\
& \leq \operatorname{Var}(A B)+\left|\operatorname{Cov}\left(A^{2}, B^{2}\right)\right| \\
& \leq \frac{1}{4}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}+\frac{1}{4}\left(M_{1}^{2}-m_{1}^{2}\right)\left(M_{2}^{2}-m_{2}^{2}\right) \\
& \leq \frac{1}{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
\end{aligned}
$$

which completes the proof.
3. Ozeki's inequality. In finite dimensional case, we sharpen the bounds of Theorem 1 to some extent and give a simple and computational proof of it.

Theorem 2. If a_{i} and b_{i} are positive n-tuples which satisfy $0 \leq m_{1} \leq a_{i} \leq M_{1}$, and $0 \leq m_{2} \leq b_{i} \leq M_{2} \quad(i=1,2, \cdots, n)$, then the following inequality holds

$$
\begin{equation*}
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2} \leq \frac{n(n-1)}{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2} . \tag{9}
\end{equation*}
$$

Proof. We note that the left hand side of (9) is expressed as $\sum_{i<j}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}$, which has $\frac{n(n-1)}{2}$ terms. Since each term $\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2}$ is not greater than $\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}$, we have

$$
\left(\sum_{k=1}^{n} a_{k}^{2}\right)\left(\sum_{k=1}^{n} b_{k}^{2}\right)-\left(\sum_{k=1}^{n} a_{k} b_{k}\right)^{2}=\sum_{i<j}\left(a_{i} b_{j}-a_{j} b_{i}\right)^{2} \leq \frac{n(n-1)}{2}\left(M_{1} M_{2}-m_{1} m_{2}\right)^{2}
$$

References

1. M.Fujii, T.Furuta, R.Nakamoto and S.E.Takahasi, Operator inequalities and covariance in noncommutative probability, preprint(1996).
2. N.Ozeki, On the estimation of the inequalities by the maximum (in Japanese), J.College Arts Ci. Chiba Univ., 5(1968), No.2, 199-203.
3. D.S.Mitrinović, J.E.Pečarić and A.M.Fink, Classical and New Inequalities in Analysis, Kluwer Academic Publishes(1993).
4. H.Umegaki, Conditional expectation in an operator algebra, Tohoku Math.J.,6(1954),177-181.

* Faculty of Education, Toyama University, Toyama 930
** Tennoji Branch, Senior Highischool, Osaka Kyoiku University, Tennoji, Osaka 543, JAPAN

Received October 8, 1996

