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OZEKI’S INEQUALITY AND NONCOMMUTATIVE COVARIANCE

SAICHI IZUMINO* AND YUKI SEO**

ABSTRACT. J.I.Fujii introduced the covariance of operators in Umegaki’s theory of non-
commutative probability. Very recently, it is observed that the so-called (noncommu-
tative) covariance-variance inequality gives a unified method to prove certain operator
inequalities including the celebrated Kantorovich inequality. Following after them, we
shal discuss an operator version of Ozeki’s inequality and consequently $\backslash ve$ show that
the inequality needs a minor correction.

1. Introduction. From Umegaki’s viewpoint [4] of noncommutative probability,
M.Fujii, T.Furuta, R.Nakamoto and S.E.Takahashi [1] discussed the covariance and the
variance of operators acting on a Hilbert space $H$ . The covariance of two operators $A$

and $B$ (at a state $x\in H$) is defined by

(1) $Cov(A, D)=(B^{*}Ax, x)-(Ax, x)(B^{*}x, x)$ ,
and the variance of $A$ is defined by

(2) Var $(A)=||Ax\Vert^{2}-|(Ax,x)|^{2}$ .
Their fundamental tool is the following covariance-variance inequality;

(3) $|Cov(A, B)|^{2}\leq Var(A)Var(B)$ .
They observed that $Var(\Lambda)\leq\frac{1}{4}(M-m)^{2}$ if $A$ is a selfadjoint operator with $m\leq A\leq M$ ,
and consequently they gave an estimation of the covariance by using (3): If $ 0\leq$ $ l_{1}\leq$

$\Lambda\leq M_{1}$ and $0\leq m_{2}\leq B\leq M_{2}$ , then

(4) $|Cov(\Lambda, B)|\leq\frac{1}{4}(M_{1}-\iota_{1})(M_{2}-m_{l})$ ,

by which they unified proofs of many operator inequalities including the celebrated Kan-
torovich inequality.

Ozeki’s inequality in [2] is the Kantorovich like inequality: Let $a_{i}$ and $b_{i}$ be two positive
n-tuples, with $0<m_{1}\leq a_{i}\leq M_{1}$ and $0<rn_{2}\leq b_{i}\leq M_{2}$ ($i=1,$ $\cdots$ , n) for some
constants $m_{1)}m_{2},$ $M_{1}$ , and $M_{2}$ . Then the following inequality holds

(5) $(\sum_{k=1}^{\mathfrak{n}}a_{k}^{2})(\sum_{k=1}^{n}b_{k}^{2})-(\sum_{k=1}^{\mathfrak{n}}a_{k}b_{k})^{2}\leq\frac{n^{2}}{4}(M_{1}M_{2}-\tau\}\iota_{1}m_{2})^{2}$ .
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We here put $\Lambda=diag(a_{i})$ and $IJ=diag(b_{i})$ as diagonal matrices and $x=\frac{1}{\sqrt{t}}(1, \cdots , 1)^{t}$ .
Then $0<m_{1}\leq\Lambda\leq M_{1},0<n\iota_{2}\leq D\leq M_{2}$ and $||x||=1$ . Moreover (5) becomes

(6) $(A^{2}x,x)(B^{2}x,x)-|(ABx,x)|^{2}\leq\frac{1}{4}(M_{1}M_{2}-rn_{1}m_{2})^{2}$ .

As a continuation of [1], we shall attempt to consider the operator version of Ozeki’s
inequality by virtue of the covariance-variance inequality. However we are resisted by the
following counterexample for (6): If

$A=\left(\begin{array}{lll}1 & 0 & 0\\0 & 1 & 0\\0 & 0 & 0\end{array}\right)$ , $B=\left(\begin{array}{lll}0 & 0 & 0\\0 & 1 & 0\\0 & 0 & 1\end{array}\right)$ , and $x=\frac{1}{\sqrt{3}}\left(\begin{array}{l}l\\1\\l\end{array}\right)$ ,

then $M_{1}=M_{2}=1,$ $\iota_{1}=\iota_{2}=0$ . Consequently we have

$(A^{2}x,x)(B^{2}x,x)-(ABx, x)^{2}=\frac{1}{3}>\frac{1}{4}(M_{1}M_{2}-m_{1}m_{2})^{2}=\frac{1}{4}$ ,

whereas

$(A^{2}x,x)(B^{2}x,x)-(ABx, x)^{2}=\frac{1}{3}<\frac{1}{2}(M_{1}M_{2}-m_{1}m_{2})^{2}=\frac{1}{2}$ .
Surprisingly enough, the example above is not only a counterexample of (6), but that of

(5), that is, $a=(1,1,0)$ and $b=(O, 1,1)$ . Making a demand that all entry of it is positive,
we prepare 3-dimensional vectors as the another counterexample of (5):

$a=(\frac{1}{4},1,1)$ and $b=(1,1, \frac{1}{4})$ .

Anyway (5) and (6) should be corrected.
In this note, we shall give an operator version of a corrected Ozeki’s inequality, which

has a simple proof by (4); more precisely we prove that if two selfadjoint operators $A$ and
$B$ commutes, then

(7) $(A^{2}x,x)(B^{2}x,x)-(ABx,x)^{2}\leq\frac{1}{2}(M_{1}M_{2}-m_{1}m_{2})^{2}$ ,

under the assumption $0<\iota_{1}\leq A\leq M_{1}$ and $0<m_{2}\leq B\leq M_{2}$ .
In finite dimensinal case, we can sharpen the bound of the right hand side of (7) as

follows: If $0<m_{1}\leq a_{i}\leq M_{1}$ , and $0<m_{2}\leq b_{i}\leq M_{2}$ ($i=1,2,$ $\cdots$ , n), then

(8) $(\sum_{k=1}^{n}a_{k}^{2})(\sum_{k=1}^{\mathfrak{n}}b_{k}^{2})-(\sum_{k=1}^{n}a_{k}b_{k})^{2}\leq\frac{n(n-1)}{2}(M_{1}M_{2}-m_{1}fn_{2})^{2}$ .
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2. An operator version. The inequality (7) is an operator version of Ozeki’s in-
equality (5). By virture of the covariance-variance inequality in [1], we can prove it:

Theorem 1. If $\mathcal{A}$ and $B$ are commutative selfadjoint operators satisfying $ 0\leq 7tl_{1}\leq A\leq$

$M_{1}$ and $0\leq m_{2}\leq B\leq M_{2}$ , then they satisfy the inequality (7).

Proof. Since $A$ and $B$ are commutative, the left hand side of (7) is difference of $Var(AB)$
and $Cov(A^{2}, B^{2})$ . We also remark that $Var(AB)=Cov(AB, \Lambda B)$ . Since $ 0<m_{1}m_{2}\leq$

$AB\leq M_{1}M_{2}$ , it immediately follows from a formula (4) that

$Var(AB)=Cov(AB, AB)\leq\frac{1}{4}(M_{1}M_{2}-\iota_{1}m_{2})^{2}$ .

Therefore we have

$(A^{2}x, x)(B^{2}x,x)-(\mathcal{A}Bx, x)^{2}=Var(AB)-Cov(A^{2}, B^{2})$

$\leq Var(AB)+|Cov(\Lambda^{2}, B^{2})|$

$\leq\frac{1}{4}(M_{1}M_{2}-m_{1}\iota_{2})^{2}+\frac{1}{4}(M_{1}^{2}-\iota_{1}^{2})(M_{2}^{2}-m_{2}^{2})$

$\leq\frac{1}{2}(M_{1}M_{2}-m_{1}n\iota_{2})^{2}$ ,

which completes the proof.

3. Ozeki’s inequality. In finite dimensional case, we sharpen the bounds of The-
orem 1 to some extent and give a simple and computational proof of it.

Theorem 2. If $a_{i}$ and $b_{i}$ are positive n-tuples which satisfy $0\leq\gamma n_{1}\leq a_{i}\leq M_{1}$ , and
$0\leq m_{2}\leq b_{i}\leq M_{2}$ $(i=1,2, \cdots , n)$ , then the following inequality holds

(9) $(\sum_{k=1}^{n}a_{k}^{2})(\sum_{k=1}^{n}b_{k}^{2})-(\sum_{k=1}^{n}a_{k}b_{k})^{2}\leq\frac{n(n-1)}{2}(M_{1}M_{2}-fn_{1}m_{2})^{2}$ .

Proof. We note that the left hand side of (9) is expressed as $\Sigma_{i<j}(a_{i}b_{j}-a_{j}b_{i})^{2}$ , which
has $\frac{n(n-1)}{2}$ terms. Since each term $(a_{i}b_{j}-a_{j}b_{i})^{2}$ is not greater than $(M_{1}M_{2}-m_{1}rt\iota_{2})^{2}$ , we
have

$(\sum_{k=1}^{n}a_{k}^{2})(\sum_{k=1}^{n}b_{k}^{2})-(\sum_{k=1}^{\prime l}a_{k}b_{k})^{2}=\sum_{\dot{\iota}<j}(a_{i}b_{j}-a_{j}b_{i})^{2}\leq\frac{n(n-1)}{2}(M_{1}M_{2}-n\iota_{1}\pi\iota_{2})^{2}$ .
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