COVARIANCE IN BERNSTEIN'S INEQUALITY FOR OPERATORS

Masatoshi Fujii*, Ritsuo Nakamoto** and Yuki Seo***

ABSTRACT. Very recently, we discussed covariance in noncommutative probability based on Umegaki's idea, in which we pointed out the importance of the covariance-variance inequality. In this note, we examine Bernstein's inequality in the light of the covariance-variance inequality; we give improvements and generalizations of it.

1.Introduction. In [6], Furuta showed the following theorem which is an improvement of Bernstein's one in [1].

Theorem A. If e is a unit eigenvector corresponding to an eigenvalue λ in a dominant operator A on a Hilbert space H, then

(1)
$$|(g,e)|^2 \le \frac{\|g\|^2 \|Ag\|^2 - |(g,Ag)|^2}{\|(A-\lambda)g\|^2}$$

for all g in H for which $Ag \neq \lambda g$.

Here an operator A is called dominant if for each λ there is a real number $M_{\lambda} \geq 1$ such that $\|(A-\lambda)^*x\| \leq M_{\lambda}\|(A-\lambda)x\|$ for all x in H. We have to remark that $(A-\lambda)^*e = o$ under the dominance of A, that is, λ is a normal eigenvalue of A, i.e., there is a nonzero vector x in H such that $(A-\lambda)x = 0$ and $(A-\lambda)^*x = 0$. Under this consideration, we weakened the assumption of Theorem A to normality of the eigenvalue in [5]. More precisely,

Theorem B. If e is a unit eigenvector corresponding to a normal eigenvalue λ of A on a Hilbert space H, then (1) holds for all g in H for which $Ag \neq \lambda g$.

We also gave another generalization of Theorem A to normal approximate eigenvalues [2], i.e., a complex number λ is called a normal approximate eigenvalue of A if there exists a sequence $\{x_n\}$ of unit vectors such that $\|(A-\lambda)x_n\| \to 0$ and $\|(A-\lambda)^*x_n\| \to 0$.

Theorem C. If $\{e_n\}$ is a sequence of unit vectors corresponding to a normal approximate eigenvalue λ of A, then

$$\overline{\lim} |(g, e_n)|^2 \le \frac{\|g\|^2 \|Ag\|^2 - |(g, Ag)|^2}{\|(A - \lambda)g\|^2}$$

for all g in H for which $Ag \neq \lambda g$.

On the other hand, in [4] we recently discuss the variance and covariance of operators in the light of Umegaki's noncommutative probability [8]. Following J.I.Fujii's seminor talk, they are defined as follows: For a unit vector x and operators A, B

(2)
$$Cov_x(A, B) = (A^*Bx, x) - (A^*x, x)(Bx, x)$$

and

(3)
$$\operatorname{Var}_{x}(A) = ||Ax||^{2} - |(Ax, x)|^{2}.$$

Since Cov(A, B) is a semi-inner product in the space of all operators on a Hilbert space, the Schwarz inequality implies the following covariance-variance inequality;

$$(4) |Cov(A, B)|^2 \le Var(A)Var(B).$$

The covariance-variance inequality has many applications, e.g. the Kantorovich inequality, the Heinz-Kato-Furuta inequality [7] and the uncertainty principle [8].

In this note, we try to approach to Bernstein's inequality from the covariance-variance inequality; we give it improvements based on the covariance-variance inequality and discuss it in some general setting. For the latter, we introduce the sine of the covariance and the variance. As a matter of fact, we show that Pythagorean type theorem holds for the sine of the covariance, which includes Bernstein's inequality.

2. Results. We begin with the following improvement of Theorem B by the covariance variance inequality.

Theorem 1. If e is a unit eigenvector corresponding to an eigenvalue $\overline{\lambda}$ of A^* on a Hilbert space H, then (1) holds for all g in H for which $Ag \neq \lambda g$.

Proof. First of all, we note that the covariance is translation-invariant, i.e.,

$$Cov(A - a, B - b) = Cov(A, B)$$

for $a,b\in\mathbb{C}$, and so is the variance. We put $B=A-\lambda$ and may assume that $\|g\|=1$. Now (1) can be rephrased as

(5)
$$|(g,e)|^2 ||Bg||^2 \le \operatorname{Var}_{q}(B).$$

To prove (5), it suffices to take the projection E corresponding to the eigenvector e, i.e., Ex = (x, e)e for $x \in H$. That is, we apply the covariance-variance inequality to E and B. Then we have

(6)
$$|\operatorname{Cov}_g(E, B)|^2 \le \operatorname{Var}_g(E)\operatorname{Var}_g(B).$$

Noting that $B^*e = 0$ by the assumption on λ , (6) is rewritten by

$$|(g,e)|^2 |(Bg,g)|^2 \le \operatorname{Var}_g(B)(1-|(g,e)|^2),$$

so that

$$|(g,e)|^2 ||Bg||^2 = |(g,e)|^2 (|(Bg,g)|^2 + \operatorname{Var}_g(B)) \le \operatorname{Var}_g(B),$$

as desired.

Remark. As seen in the proof above, we don't require that $Ae = \lambda e$, that is, λ is a normal eigenvalue of A with an eigenvector e. In addition, we cannot replace the assumption $A^*e = \overline{\lambda}e$ to the condition $Ae = \lambda e$. Actually we take, as a conterexample,

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix}, e = \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \lambda = 2; g = \begin{pmatrix} 1 \\ -1 \end{pmatrix}.$$

It is easily checked that $(A-2)g \neq 0$ and $(g,e) \neq 0$, but

$$||g||^2 ||Ag||^2 - |(Ag,g)|^2 = 0.$$

Next we generalize Bernstein's inequality (1). To do this, we introduce the sine of the covariance and the variance. For a unit vector x with $(A^*Bx, x) \neq 0$,

$$sCov_x(A, B) = \frac{Cov_x(A, B)}{(A^*Bx, x)}$$

and, for a unit vector x with $Ax \neq 0$,

$$sVar_x(A) = \frac{Var_x(A)}{\|Ax\|^2}.$$

Incidentally these definitions are available for arbitrary vectors x with suitable conditions $(A^*Bx, x) \neq 0$ or $Ax \neq 0$; we prepare the following definitions for these cases:

$$sCov_x(A, B) = \frac{||x||^2 (A^*Bx, x) - (A^*x, x)(Bx, x)}{(A^*Bx, x)}$$

and

$$sVar_x(A) = \frac{\|x\|^2 \|Ax\|^2 - |(Ax, x)|^2}{\|Ax\|^2}.$$

Since |(Ax, x)|/||Ax|| is regarded as the cosine between x and Ax, $sVar_x(A)$ is the square of the sine between x and Ax. On the other hand, since $Cov_x(A, B)$ is a semi-inner product, it may have Pythagorean properties. The following theorem can be understood from this viewpoint.

Theorem 2. Let E be a projection such that AE = EA = 0 and BE = EB = 0. Then, for each $x \in H$

(7)
$$sCov_x(A, B) = ||Ex||^2 + sCov_{E^{\perp}x}(A, B).$$

In particular, if E is a projection such that BE = EB = 0, then

(8)
$$\operatorname{sVar}_{x}(B) = \|Ex\|^{2} + \operatorname{sVar}_{E^{\perp}x}(B).$$

Proof. We put $y = E^{\perp}x$. Then we have

$$sCov_{x}(A, B) = \frac{\|x\|^{2}(A^{*}Bx, x) - (A^{*}x, x)(Bx, x)}{(A^{*}Bx, x)}$$

$$= \frac{(\|Ex\|^{2} + \|y\|^{2})(A^{*}By, y) - (A^{*}y, y)(By, y)}{(A^{*}By, y)}$$

$$= \|Ex\|^{2} + sCov_{y}(A, B).$$

Remark. The above (8) also implies Theorem B. We keep the notations as in the proof of Theorem 1. Then we have BE = EB = 0 by the asumption. Since $sVar_y(B)$ is nonnegative for all y, we obtain Theorem B.

Following our previous note [5], we finally give an improvement of Theorem C:

Theorem 3. If $\{e_n\}$ is a sequence of unit vectors corresponding to an approximate eigenvalue $\overline{\lambda}$ of A^* , then

(9)
$$\overline{\lim} |(g, e_n)|^2 \le \frac{\|g\|^2 \|Ag\|^2 - |(g, Ag)|^2}{\|(A - \lambda)g\|^2}$$

for all g in H for which $Ag \neq \lambda g$.

Proof. By a similar way to [5; Theorem 3], the proof is reduced to Theorem 1 via the Berberian representation. For the sake of convenience, we sketch it below.

For the sequence $\{|(g,e_n)|\}$, there is a generalized limit Lim such that

$$\operatorname{Lim}|(g, e_n)|^2 = \overline{\lim}|(g, e_n)|^2.$$

The Berberian representation $A \to A^{\circ}$ is induced by Lim as follows, see [5]: The vector space V of all bounded sequences in H has a semi-inner product $\langle x^{\circ}, y^{\circ} \rangle = \text{Lim}(x_n, y_n)$, so that a Hilbert space H° is given by the completion of V/N, where $N = \{x \in V; \langle x, y \rangle = 0 \text{ for all } y \in V\}$. For an operator A on H, A° is defined by

$$A^{\circ}(\{x_n\} + N) = \{Ax_n\} + N.$$

Then it is known that it is an isometric *-isomorphism and converts the approximate eigenvalues of A to the eigenvalues of A° .

By the Berberian representation, we now obtain that

$$A^{*\circ}e^{\circ} = \overline{\lambda}e^{\circ}$$
 and $|\langle g^{\circ}, e^{\circ} \rangle|^2 = \overline{\lim}|(g, e_n)|^2$,

where g° is the canonical embedding of g into H° and $e^{\circ} = \{e_n\} + N$. Hence it follows from Theorem 1 that

$$\overline{\lim}|(g,e_n)|^2 = |\langle g^{\circ}, e^{\circ} \rangle|^2 \le \frac{\|g^{\circ}\|^2 \|A^{\circ}g^{\circ}\|^2 - |\langle A^{\circ}g^{\circ}, g^{\circ} \rangle|^2}{\|(A^{\circ} - \lambda)g^{\circ}\|^2} \\
= \frac{\|g\|^2 \|Ag\|^2 - |(Ag,g)|^2}{\|(A - \lambda)g\|^2}.$$

Acknowledgement. The authors would like to express their thanks to the referee for his careful reading, by which many careless mistakes was corrected.

REFERENCES

- 1. H.J.Bernstein, An inequality for selfajoint operators on a Hilbert space, Proc.Amer.Math.Soc. 100 (1987), 319-321..
- 2. M.Enomoto, M.Fujii and K.Tamaki, On normal approximate spectrum, Proc. Japan Acad. 48 (1972), 211-215.
- 3. M.Enomoto and H.Umegaki, Covariance and uncertinty principle, in preparation.
- 4. M.Fujii, T.Furuta, R.Nakamoto and S.-E.Takahasi, Operator inequalities and covariance in noncommutative probability,, Math. Japon., to appear.
- 5. M.Fujii, T.Furuta and Y.Seo, An inequality for some nonnormal operators -Extension to normal approximate eigenvalues, Proc.Amer.Math.Soc. 118 (1993), 899-902..

- 6. T.Furuta, An inequality for some nonnormal operators, Proc.Amer.Math.Soc. 104 (1988), 1216-1217.
- 7. T.Furuta, An extension of the Heinz-Kato theorem, Proc.Amer.Math.Soc. 120 (1994), 785-787.
- 8. H. Umegaki, Conditional expectation in an operator algebra, Tohoku Math.J. 6 (1954), 177-181..
- *)Department of Mathematics, Osaka Kyoiku University, Kashiwara, Osaka 582, Japan.
 - **) FACULTY OF ENGINEERING, IBARAKI UNIVERSITY, HITACHI, IBARAKI 316, JAPAN.
- ***) Tennoji Senior Highschool, Osaka Kyoiku University, Tennoji, Osaka 543, Japan.

Received July 8, 1996

Revised September 30, 1996