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ABSTRACT. Very recently, we discussed covariance in noncommutative probability
based on Umegaki’s idea, in which we pointed out the importance of the covariance-
variance inequality. In this note, we examine Bernstein’s inequality in the light of
the covariance-variance inequality; we give improvements and generalizations of it.

l.Introduction. In [6], Furuta showed the following theorem which is an
improvement of Bernstein’s one in [1].

Theorem A. If $e$ is a unit eigenvector $cor\tau esponding$ to an eigenvalue $\lambda$ in a
dominant operator $A$ on a Hilbert space $H$ , then

(1) $|(g, e)|^{2}\leq\frac{\Vert g\Vert^{2}\Vert Ag\Vert^{2}-|(g,Ag)|^{2}}{||(A-\lambda)g\Vert^{2}}$

for all $g$ in $H$ for which $Ag\neq\lambda g$ .

Here an operator $A$ is called dominant if for each $\lambda$ there is a real number
$M_{\lambda}\geq 1$ such that $\Vert(A-\lambda)^{*}x\Vert\leq M_{\lambda}\Vert(A-\lambda)x\Vert$ for all $x$ in $H$ . We have to remark
that $(A-\lambda)^{*}e=0$ under the dominance of $A$ , that is, $\lambda$ is a normal eigenvalue of
$A$ , i.e., there is a nonzero vector $x$ in $H$ such that $(A-\lambda)x=0$ and $(A-\lambda)^{*}x=0$ .
Under this consideration, we weakened the assumption of Theorem A to normality
of the eigenvalue in [5]. More precisely,

Theorem B. If $e$ is a unit eigenvector corresponding to a nomal eigenvalue $\lambda$ of
$A$ on a Hilbert space $H$ , then (1) holds for all $g$ in $H$ for which $Ag\neq\lambda g$ .

We also gave another generalization of Theorem A to normal approximate
eigenvalues [2], i.e., a complex number $\lambda$ is called a normal approximate eigenvalue
of $A$ if there exists a sequence $\{x_{n}\}$ of unit vectors such that 1 $(A-\lambda)x_{n}\Vert\rightarrow 0$ and
$\Vert(A-\lambda)^{*}x_{n}\Vert\rightarrow 0$ .
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Theorem C. If $\{e_{n}\}$ is a sequence of unit vectors corresponding to a normal
approStmate eigenvalue $\lambda$ of $A$ , then

$\varlimsup|(g, e_{n})|^{2}\leq\frac{\Vert g\Vert^{2}||Ag||^{2}-|(g,Ag)|^{2}}{||(A-\lambda)g\Vert^{2}}$

for all $g$ in $H$ for which $Ag\neq\lambda g$ .

On the other hand, in [4] we recently discuss the variance and covariance
of operators in the light of Umegaki’s noncommutative probability [8]. Following
J.I.lfujii’s seminor talk, they are defined as follows: For a unit vector $x$ and operators
$A,$ $B$

(2) $Cov_{x}(A, B)=(A^{*}Bx, x)-(A^{*}x, x)(Bx, x)$

and

(3) $Var_{x}(A)=\Vert Ax\Vert^{2}-|(Ax, x)|^{2}$ .

Since $Cov(A, B)$ is a semi-inner product in the space of all operators on a Hilbert
space, the Schwarz inequality implies the following covariance-variance inequality;

(4) $|Cov(A, B)|^{2}\leq Var(A)Var(B)$ .

The covariance-variance inequality has many applications, e.g. the Kantorovich

inequality, the Heinz-Kato-Furuta inequality [7] and the uncertainty principle [8].

In this note, we try to approach to Bernstein’s inequality from the covariance-
variance inequality; we give it improvements based on the covariance-variance in-
equality and discuss it in some general setting. For the latter, we introduce the sine
of the covariance and the variance. As a matter of fact, we show that Pythagorean
type theorem holds for the sine of the covariance, which includes Bernstein’s in-

equality.

2. Results. We begin with the following improvement of Theorem $B$ by the

covarIance variance inequality.

Theorem 1. If $e$ is a unit eigenvector corresponding to an eigenvalue A of $A^{*}$ on
a Hilbert space $H$ , then (1) holds for all $g$ in $H$ for which $Ag\neq\lambda g$ .

Proof. First of all, we note that the covariance is translation-invariant, i.e.,

$Cov(A-a, B-b)=Cov(A, B)$
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for $a,$
$b\in \mathbb{C}$ , and so is the variance. We put $ B=A-\lambda$ and may assume that

$||g\Vert=1$ . Now (1) can be rephrased as

(5) 1 $(g, e)|^{2}\Vert Bg\Vert^{2}\leq Var_{g}(B)$ .

To prove (5), it suffices to take the projection $E$ corresponding to the eigenvector
$e$ , i.e., $Ex=(x, e)e$ for $x\in H$ . That is, we apply the covariance-variance inequality
to $E$ and $B$ . Then we have

(6) $|Cov_{g}(E, B)|^{2}\leq Var_{g}(E)Var_{g}(B)$ .

Noting that $B^{*}e=0$ by the assumption on $\lambda,$ { $6$) is rewritten by

$|(g, e)|^{2}|(Bg, g)|^{2}\leq Var_{g}(B)(1-|(g, e)|^{2})$ ,

so that
$|(g)e)|^{2}\Vert Bg\Vert^{2}=|(g, e)|^{2}(|(Bg,g)|^{2}+Var_{g}(B))\leq Var_{g}(B)$ ,

as desired.

Remark. As seen in the proof above, we don’t require that $Ae=\lambda e$ , that is, $\lambda$

is a normal eigenvalue of $A$ with an eigenvector $e$ . In addition, we cannot replace
the assumption $A^{*}e=\overline{\lambda}e$ to the condition $Ae=\lambda e$ . Actually we take, as a
conterexample,

$A=\left(\begin{array}{ll}2 & 1\\0 & 1\end{array}\right),$ $e=\left(\begin{array}{l}1\\0\end{array}\right),$ $\lambda=2;g=\left(\begin{array}{l}1\\-1\end{array}\right)$ .

It is easily checked that $(A-2)g\neq 0$ and $(g, e)\neq 0$ , but

$\Vert g\Vert^{2}\Vert Ag\Vert^{2}-|(Ag,g)|^{2}=0$ .

Next we generalize Bernstein’s inequality (1). To do this, we introduce the
sine of the covariance and the variance. For a unit vector $x$ with $(A^{*}Bx, x)\neq 0$ ,

$sCov_{x}(A, B)=\frac{Cov_{x}(A,B)}{(A^{*}Bx,x)}$

and, for a unit vector $x$ with $Ax\neq 0$ ,

$sVar_{x}(A)=\frac{Var_{x}(A)}{||Ax||^{2}}$
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Incidentally these definitions are available for arbitrary vectors $x$ with suitable

conditions $(A^{*}Bx, x)\neq 0$ or $Ax\neq 0$ ; we prepare the following definitions for these

cases:
$sCov_{x}(A, B)=\frac{||x\Vert^{2}(A^{*}Bx,x)-(A^{*}x,x)(Bx,x)}{(A^{*}Bx,x)}$

and
sVar$x(A)=\frac{||x\Vert^{2}\Vert Ax||^{2}-|(Ax,x)|^{2}}{||Ax\Vert^{2}}$

Since $|(Ax, x)|/\Vert Ax\Vert$ is regarded as the cosine between $x$ and $Ax,$ $sVar_{x}(A)$ is

the square of the sine between $x$ and $Ax$ . On the other hand, since $Cov_{x}(A, B)$ is
a semi-inner product, it may have Pythagorean properties. The folowing theorem

can be understood from this viewpoint.

Theorem 2. Let $E$ be a projection such that $AE=EA=0$ and $BE=EB=0$ .
Then, for each $x\in H$

(7) $sCov_{x}(A, B)=\Vert Ex\Vert^{2}+sCov_{E^{\perp}x}(A, B)$ .

In particular, if $E$ is a projection such that $BE=EB=0$ , then

(8) $sVar_{x}(B)=||Ex\Vert^{2}+sVar_{E^{\perp}x}(B)$ .

Proof. We put $y=E^{\perp}x$ . Then we have

$sCov_{x}(A, B)=\frac{||x||^{2}(A^{*}Bx,x)-(A^{*}x,x)(Bx,x)}{(A^{*}Bx,x)}$

$=\ovalbox{\tt\small REJECT}^{-}(\Vert Ex\Vert^{2}+||y||^{2})(A^{*}By,y)(A^{*}y,y)(By, y)(A^{*}By,y)$

$=||Ex||^{2}+sCov_{y}(A, B)$ .

Remark. The above (8) also implies Theorem B. We keep the notations as in

the proof of Theorem 1. Then we have $BE=EB=0$ by the asumption. Since
sVar$y(B)$ is nonnegative for all $y$ , we obtain Theorem B.

Folowing our previous note [5], we finally give an improvement of Theorem $C$ :

Theorem 3. If $\{e_{n}\}$ is a sequence of unit vectors corresponding to an approStmate

eigenvalue A of $A^{*}$ , then

(9) $\varlimsup|(g, e_{n})|^{2}\leq\frac{\Vert g\Vert^{2}\Vert Ag\Vert^{2}-|(g,Ag)|^{2}}{||(A-\lambda)g\Vert^{2}}$
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for all $g$ in $H$ for which $Ag\neq\lambda g$ .

Proof. By a similar way to [5; Theorem 3], the proof is reduced to Theorem 1 via

the Berberian representation. For the sake of convenience, we sketch it below.

For the sequence $\{|(g, e_{n})|\}$ , there is a generalized limit Lim such that

$Lim|(g, e_{n})|^{2}=\varlimsup|(g, e_{n})|^{2}$ .

The Berberian representation $A\rightarrow A^{o}$ is induced by Lim as follows, see [5]: The

vector space $V$ of all bounded sequences in $H$ has a semi-inner product $<x^{o},$ $y^{o}>=$

$Lim(x_{n}, y_{n})$ , so that a Hilbert space $H^{o}$ is given by the completion of $V/N$ , where
$N=$ {$x\in V;<x,$ $y>=0$ for all $y\in V$}. For an operator $A$ on $H,$ $A^{o}$ is defined by

$A^{o}(\{x_{n}\}+N)=\{Ax_{n}\}+N$.

Then it is known that it is an isometric *-isomorphism and converts the approximate

eigenvalues of $A$ to the eigenvalues of $A^{o}$ .
By the Berberian representation, we now obtain that

$A^{*0}e^{o}=\overline{\lambda}e^{o}$ and $|<g^{o},$ $e^{o}>|^{2}=\varlimsup|(g, e_{n})|^{2}$ ,

where $g^{o}$ is the canonical embedding of $g$ into $H^{o}$ and $e^{o}=\{e_{n}\}+N$ . Hence it
follows from Theorem 1 that

$\varlimsup|(g, e_{n})|^{2}=|<g^{o},$ $e^{o}>|^{2}\leq\frac{\Vert g^{o}\Vert^{2}\Vert A^{o}g^{o}\Vert^{2}-|<A^{o}g^{o},g^{o}>|^{2}}{||(A^{o}-\lambda)g^{o}||^{2}}$

$=\frac{\Vert g\Vert^{2}\Vert Ag\Vert^{2}-|(Ag,g)|^{2}}{||(A-\lambda)g\Vert^{2}}$ .
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