ON A COMPOSITION OPERATOR AND HARDY SPACE

E. G. KWON

ABSTRACT. Characterizing a geometric property of the self map that induces a bounded composition operator on Blochs to a Hardy-Sobolov space, we give a way of constructing examples of Bloch functions f whose derivative is in H^p for all $p: 0 but <math>f \notin BMOA$. The hyperbolic version of such an example is also given.

1. Introduction.

Let $U = \{z : |z| < 1\}$ be the open unit disc of the complex plane and let T be the boundary of U identified with $[-\pi, \pi]$. Let $\sigma(z)$ denotes the hyperbolic distance of z and 0 in U:

$$\sigma(z) = rac{1}{2} \log rac{1+|z|}{1-|z|}.$$

For 0 and for f subharmonic in U, we set

$$\left\|f\right\|_{p} = \sup_{0 \le r < 1} M_{p}(r, f),$$

where

$$M_p(r,f) = \left(\int_0^{2\pi} |f(re^{i\theta})|^p \frac{d\theta}{2\pi}\right)^{\frac{1}{p}} \quad \text{if } p < \infty$$

and

$$M_{\infty}(r,f) = \sup_{\theta} |f(re^{i\theta})|.$$

If f(z) is subharmonic in U, then it has a harmonic majorant if and only if $||f||_1 < \infty$.

1991 Mathematics Subject Classification. Primary 30D55; secondary 28A25 and 30D50.

Key words and phrases. Bloch function, BMOA, Hardy space, composition operator.

This work was supported by NON DIRECTED RESEARCH FUND, Korea Research Foundation 1995.

Typeset by $\mathcal{A}_{\mathcal{M}}S$ -T_EX

The Hardy space H^p is the class of those functions f holomorphic in U for which $||f||_p < \infty$. The Yamashita hyperbolic Hardy class H^p_{σ} is the class of those holomorphic self maps ϕ of U for which $||\sigma(\phi)||_p < \infty$. Though H^p_{σ} is not a linear space, it has, as hyperbolic counterparts, many properties analogous to those of H^p . See [D] and [G] for H^p spaces, and [Y1], [Y3] and [Kw4] for H^p_{σ} spaces.

BMOA, analytic functions of bounded mean oscillation, consists of those $f \in H^1$ for which

$$|f'(z)|^2(1-|z|^2)dxdy$$

is a Carleson measure, that is to say,

$$\int\int_{S_{\delta,\theta}}|f'(z)|^2(1-|z|^2)dxdy=O(\delta),$$

where $0 < \delta \leq 1$ and

$$S_{\delta,\theta} = \{ re^{it} : |\theta - t| \le \delta, 1 - \delta \le r < 1 \}, \quad \theta \in T.$$

 $BMOA_{\sigma}$, the Yamashita BMOA class, consists of those holomorphic self maps ϕ of U for which

$$(\phi^{\#}(z))^2(1-|z|^2)\,dxdy$$

is a Carleson measure on U, where $\phi^{\#}$ is the hyperbolic derivative :

$$\phi^{\#}(z) = \frac{|\phi'|}{1 - |\phi|^2}(z), \quad z \in U.$$

See [G] for BMOA and [Y2] for $BMOA_{\sigma}$.

The Bloch space \mathcal{B} consists of those f holomorphic in U for which

$$||f||_{\mathcal{B}} = \sup_{z \in U} |f'(z)|(1-|z|^2) < \infty.$$

While, by Schwarz-Pick's lemma stating that

$$\phi^{\#}(z)(1-|z|^2) \leq 1, \quad z \in U,$$

every holomorphic self map of U is hyperbolically Bloch. To keep up the parallism between H^p and H^p_{σ} more closely, we introduce a weighted subspace of Hardy-Sobolev space $H_1^{p,1}$, which is defined to consist of those f for which $f' \in H^p$ and $f'(z) = O(1 - |z|)^{-1}$. See [KKw] and [Kw3] for the weighted subspaces of Hardy spaces.

We consider the sharpness of the following two parallel results.

Theorem A ([K] or [KKw]). If $f \in H_1^{p,1}$ for some $p: 0 , then <math>f \in H^q$ for all $q: 0 < q < \infty$.

Theorem B ([Kw2]). If ϕ is a holomorphic self map of U and $(\phi^{\#})^p$ admits a harmonic majorant in U for some $p: 0 , then <math>\phi \in H_q^q$ for all $q: 0 < q < \infty$.

The example $f(z) = \log(1-z)$ shows that we can improve the conclusion of Theorem A neither up to $f \in H^{\infty}$ nor up to the Dirichlet finite functions. In a parallel direction, the bound on q in Theorem B is sharp in the sense that there is a holomorphic self map ϕ such that $(\phi^{\#})^p$ admits harmonic majorants in U for arbitrary p less than 1, but neither $\phi \in H^{\infty}_{\sigma}$ nor ϕ a function of hyperbolically Dirichlet finite, that is,

$$\int \int_{U} (\phi^{\#})^2(z) dx dy = \infty.$$

Next step to the sharpness problem may be concerned with BMOA and $BMOA_{\sigma}$ respectively. We prove

Theorem 1. There is an f such that $f \in H_1^{p,1}$ for all $p: 0 but <math>f \notin BMOA$.

Theorem 2. There exists a holomorphic self map ϕ such that $(\phi^{\#})^p$ has harmonic majorants for all $p: 0 but <math>\phi \notin BMOA_{\sigma}$.

Theorem 1 is sharp because if $f' \in H^1$ then, by a well known result of Privalov(see [D, pp 42-52]), f is continuous on \overline{U} and absolutely continuous on T so that $f \in H^{\infty} \subset BMOA$. Theorem 2 is sharp by a parallel reason (see [Y1, Theorem 1]).

It seems that there are other ways of showing the existence of functions requested in Theorem 1. Our point is that we can transfer, by use of a composition operator, the problem to a parallel problem of holomorphic self maps on U with hyperbolic geometry. We show that Theorem 1 is a consequence of Theorem 2. This will be done in Section 2 and Section 3. We prove Theorem 2 in Section 4 by giving an example which is connected with the order of contact. See [S] for the concept on contact.

2. A composition operator on the Bloch space.

The following represents one of the relationships between H^p and H^p_{σ} via composition operators.

Theorem 3. Let ϕ be a holomorphic selfmap of U and 0 . Then the following (1) and (2) are equivalent.

- (1) $(g \circ \phi)' \in H^p$ for all $g \in \mathcal{B}$.
- (2) $(\phi^{\#})^{p}$ has a harmonic majorant.

Proof. Suppose that $(\phi^{\#})^{p}$ has a harmonic majorant. Then, for $g \in \mathcal{B}$, the lemma of Schwarz-Pick gives

$$\|(g \circ \phi)'\|_p^p \le \|g\|_{\mathcal{B}} \|\phi^{\#}\|_p^p < \infty,$$

so that $(g \circ \phi)' \in H^p$.

Conversely, suppose that $(g \circ \phi)' \in H^p$ for all $g \in \mathcal{B}$. By [RU, Proposition 5.4], there is $\{g_j\}_{j=1,2} \subset \mathcal{B}$ such that

$$\sum_{j=1}^{2} |g_{j}'(z)| \geq \frac{1}{(1-|z|^{2})}, \quad z \in U.$$

Hence

$$M_p(r,\phi^{\#}) \leq C(p) \sum_{j=1}^2 M_p(r,(g_j \circ \phi)') < \infty$$

for some constant C(p) depending on p. Therefore $(\phi^{\#})^{p}$ has a harmonic majorant. \Box

On the same vein we need is the following

Theorem C ([RU]). Let ϕ be a holomorphic self map of U. Then the following (1) and (2) are equivalent.

- (1) $g \circ \phi \in BMOA$ for all $g \in \mathcal{B}$.
- (2) $\phi \in BMOA_{\sigma}$.

See [Kw1] for a similar results on H^p . Though the proof is simple, Theorem 3 has many applications. We see one of them in the next section.

3. Theorem 2 implies Theorem 1.

Assuming Theorem 2, we can prove Theorem 1 by help of Theorem 3.

Proof (Theorem 2 \implies Theorem 1). Suppose that ϕ is a self map of U such that $(\phi^{\#})^p$ has a harmonic majorant for all $p: 0 and <math>\phi \notin BMOA_{\sigma}$. Then by

Theorem 3, $(g \circ \phi)' \in H^p$ for all $p: 0 and for all <math>g \in \mathcal{B}$. Also by Theorem C,

$$(3.1) g \circ \phi \notin BMOA$$

for some $g \in \mathcal{B}$. Now $f = g \circ \phi$ with g satisfying (3.1) is a required function of Theorem 1. \Box

We are left, therefore, to prove Theorem 2 in the next section.

4. Proof of Theorem 2 by an example.

Recall, for a holomorphic self map ϕ , that $(\phi^{\#})^{p}$ has a harmonic majorant if and only if

(4.1)
$$\sup_{r} \int_{T} \left(\frac{|\phi'(re^{i\theta})|}{1 - |\phi(re^{i\theta})|^2} \right)^p d\theta < \infty,$$

and that $\phi \in BMOA_{\sigma}$ if and only if

(4.2)
$$\int \int_{S_{\delta,\theta}} \left(\frac{|\phi'(z)|}{1 - |\phi(z)|^2} \right)^2 (1 - |z|^2) \, dx \, dy = O(\delta)$$

for all $\theta \in T$.

Properties (4.1) and (4.2) are connected with the order of contact and the angular derivative. See [S], for example, for these two concepts. For a theoretical background, we invoke a theorem of Tsuji-Warschawski(see [T, p 366] or [S, p 72]) stating a necessary and sufficient contact condition for a univalent map to have an angular derivative. Without regarding the growth of the derivative, a holomorphic self map ϕ need to have worse order of contacts to satisfy (4.1) but need to have a smooth contact to fail (4.2). We prove Theorem 2 by giving the following example.

Example.

There is a holomorphic self map ϕ of U such that

- (1) ϕ does not satisfy (4.2) for $\theta = 0$.
- (2) ϕ is univalent and has angular derivative nowhere on T.
- (3) ϕ satisfies (4.1) for all p: 0 .

We employ a function ϕ whose form was introduced in [ST]. Let

$$h(z) = \frac{i}{k} \frac{\sqrt{\frac{1+iz}{1-iz}i} - i}{\sqrt{\frac{1+iz}{1-iz}i} + i}, \quad z \in U,$$

where the branch of square root is taken with negative imaginary axis omitted, and k is a large positive constant, say k > 9. Then h maps U conformally onto

$$\Delta = \{w: |w| < \frac{1}{k}, Re(w) > 0\}.$$

Since h is conformal and extensible analytically across T in a neighborhood of z = 1with h(1) = 0, $h'(1) = -\frac{1}{4k}$, h maps the (Polar) Carleson square $S_{\delta} = S_{\delta,0}$ onto a roughly rectangular (Carleson) square $R_{\delta} = h(S_{\delta})$ of the right half plane around 0 if δ is sufficiently small. Hence we can take δ_0 small enough such that $|h'(z)| > \frac{1}{8k}$ for all $z \in S_{\delta_0}$ and

$$Re(w) < rac{1}{k} \left(1 - |h^{-1}(w)|
ight), \hspace{1em} w \in R_{\delta}$$

along with

$$\left\{w: |w| < rac{\delta}{8k}, \operatorname{Re}(w) > 0
ight\} \subset R_{\delta}$$

for all $\delta : \delta < \delta_0$.

Now, let

$$f(z) = z \log \frac{1}{z}, \quad z \in \Delta$$

with the principal branch of $\log z$ and let

$$\phi(z) = 1 - f \circ h(z), \quad z \in U.$$

Then it follows from the conformality of h with an easy calculation that, for all

 $\delta < \delta_0$,

$$\begin{split} &\int \int_{S_{\delta}} \left(\frac{|\phi'(z)|}{1 - |\phi(z)|^2} \right)^2 (1 - |z|^2) \, dx dy \\ &\gtrsim \int \int_{R_{\delta}} \left(\frac{|f'(w)|}{1 - |1 - f(w)|^2} \right)^2 u \, du dv \\ &= \int \int_{R_{\delta}} \frac{u \, |1 + \log w|^2}{(1 - |1 + w \log w|^2)^2} \, du dv \\ &\gtrsim \int_0^{\delta/8k} \int_0^{\pi/2} \frac{(\log r)^2 \cos \theta}{(\theta \sin \theta)^2 + (\log r \cos \theta)^2} \, d\theta dr \\ &\gtrsim \int_0^{\delta/8k} \int_0^{\pi/2} \frac{\sec \theta \, d\theta dr}{1 + \left(\frac{\theta \tan \theta}{\log r}\right)^2}, \end{split}$$

whence

$$\begin{split} \limsup_{\delta \to 0} \frac{1}{\delta} \int \int_{S_{\delta}} \left(\frac{|\phi'(z)|}{1 - |\phi(z)|^2} \right)^2 (1 - |z|^2) \, dx \, dy \\ \gtrsim \lim_{r \to 0} \int_0^{\pi/2} \frac{\sec \theta \, d\theta}{1 + \left(\frac{\theta \tan \theta}{\log r} \right)^2} \\ = \infty. \end{split}$$

This proves (1). Here $A \gtrsim B$ means that there is a positive constant C such that $CA \geq B$.

It is not difficult to see that f' has positive real part on $\overline{\Delta} \setminus 0$, so that ϕ is univalent. Concerning the order of contact, from

(4.3)
$$h(e^{i\theta}) = i \left\{ -\frac{\theta}{4k} + O\left(|\theta|^2\right) \right\},$$

we see that

(4.4)
$$\begin{aligned} 1 - |\phi(e^{i\theta})|^2 \\ = 1 - |1 - f \circ h(e^{i\theta})|^2 \\ = \frac{\pi}{4k} |\theta| + O\left(\theta^2 \log |\theta|\right) \end{aligned}$$

in a neighborhood of $\theta = 0$. By (4.4),

$$\int_0^{\epsilon} \frac{1 - |\phi(e^{i\theta})|}{\theta^2} \, d\theta = \infty$$

for $\epsilon > 0$, so that ϕ can not have an angular derivative at z = 1 by Tsuji-Warchauski's Theorem [T]. Hence ϕ has no angular derivatives on T. This with univalency proves (2).

By
$$(4.3)$$
,

$$|\phi'(e^{i\theta})| = |1 + \log h(e^{i\theta})| |h'(e^{i\theta})| = O(|1 + \log h(e^{i\theta})|) = O(\log |\theta|)$$

for θ near 0. Thus, by (4.4), the function

$$\frac{|\phi'(e^{i\theta})|}{1-|\phi(e^{i\theta})|^2}$$

is p-integrable with respect to θ on a small neighborhood of $\theta = 0$ for all p less than 1. Now since $\overline{\phi(U)} \subset U \cup \{1\}$, to prove (3) it is enough to check that the radial limit function $\lim_{r \to 1} |\phi'(re^{i\theta})|$ is p-integrable with respect to θ for all p less than 1 on any compact subset of T that does not contain $\theta = 0$. Since

$$|\phi'(e^{i\theta})| = |f \circ h(e^{i\theta}) h'(e^{i\theta})| = O(|h'(e^{i\theta})|)$$

on such a set, we are enough to check the behavior of h'. Note that $h'(re^{i\theta})$ fails to have finite radial limits only at $\theta = \pm \frac{\pi}{2}$, and in a small neighborhood of those points

$$|h'(z)| = O\left(|1 \pm iz|^{-1/2}\right).$$

Hence $|h'(e^{i\theta})|^p$ is integrable for all p less than 1 with respect to θ on the compact subset. Therefore we have (3). \Box

REFERENCES

- [D] P. L. Duren, The theory of H^p functions, Academic Press, New York, 1970.
- [G] J. B. Garnett, Bounded analytic functions, Academic Press, New York, 1981.
- [K] H.O. Kim, Derivatives of Blaschke products, Pacific J. Math. 114 (1984), 175-191.
- [KKw] H. O. Kim and E. G. Kwon, Weighted subspaces of Hardy spaces, Canad. J. Math. 6 (1988), 1074-1083.
- [Kw1] E.G. Kwon, Composition of Blochs with bounded analytic functions, To appear in PAMS.
- [Kw2] E.G. Kwon, Fractional integration and the hyperbolic derivative, Bull. Austral. Math. Soc. 38 (1988), 357-364.
- [Kw3] E. G. Kwon, Image area and the weighted subspaces of Hardy spaces, Canad. Math. Bull. 33 (1990), 167-174.
- [Kw4] E. G. Kwon, Mean growth of the hyperbolic Hardy class functions, Math. Japonica 35 (1990), 451-460.
- [RU] W. Ramey and D. Ullrich, Bounded mean oscillations of Bloch pullbacks, Math. Ann. 291 (1991), 591-606.
- [S] J.H. Shapiro, Composition Operators and classical function theory, Springer Verlag, New York, 1991.
- [ST] J.H. Shapiro and P.D. Taylor, Compact, nuclear, and Hilbert-Schmidt composition operators on H^2 , Indiana Univ. Math. J. 125 (1987), 471-496.
- [T] M. Tsuji, Potential Theory in Modern Function Theory, Maruzen, Tokyo, 1959.
- [Y1] S. Yamashita, Functions with H^p hyperbolic derivative, Math. Scand. 13 (1983), 238-244.
- [Y2] S. Yamashita, Holomorphic functions of hyperbolically bounded mean oscillation, Bollettino U.M.I. (6) 5-B (1986), 983-1000.
- [Y3] S Yamashita, Hyperbolic Hardy classes and hyperbolically Dirichlet finite functions, Hokkaido Math. J. 10 (1981), Special Issue, 709-722.

DEPARTMENT OF MATHEMATICS EDUCATION, ANDONG NATIONAL UNIVERSITY, ANDONG 760-749, KOREA

Received February 19, 1996