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ON A COMPOSITION OPERATOR AND HARDY SPACE

E. G. KWON

ABSTRACT. Characterizing a geometric property of the self map that induces a
bounded composition operator on Blochs to a Hardy-Sobolov space, we give a way
of constructing examples of Bloch functions $f$ whose derivative is in $H^{P}$ for all $p$ :
$0<p<1$ but $f\not\in BMOA$ . The hyperbolic version of such an example is also given.

1. Introduction.

Let $U=\{z:|z|<1\}$ be the open unit disc of the complex plane and let $T$ be
the boundary of $U$ identified with $[-\pi, \pi]$ . Let $\sigma(z)$ denotes the hyperbolic distance
of $z$ and $0$ in $U$ :

$\sigma(z)=\frac{1}{2}$ log $\frac{1+|z|}{1-|z|}$

For $ 0<p\leq\infty$ and for $f$ subharmonic in $U$ , we set

$\Vert f\Vert_{p}=\sup_{0\leq r<1}M_{p}(r, f)$
,

where

$M_{p}(r, f)=(\int_{0}^{2\pi}|f(re^{i\theta})|^{P}\frac{d\theta}{2\pi})^{\frac{1}{p}}$ if $ p<\infty$

and
$M_{\infty}(r, f)=\sup_{\theta}|f(re^{i\theta})|$ .

If $f(z)$ is subharmonic in $U$ , then it has a harmonic majorant if and only if $||f\Vert_{1}<$

$\infty$ .
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The Hardy space $H^{p}$ is the class of those functions $f$ holomorphic in $U$ for
which $||f\Vert_{p}<\infty$ . The Yamashita hyperbolic Hardy class $H_{\sigma}^{p}$ is the class of those
holomorphic self maps $\phi$ of $U$ for which $\Vert\sigma(\phi)||_{p}<\infty$ . Though $H_{\sigma}^{p}$ is not a linear
space, it has, as hyperbolic counterparts, many properties analogous to those of
$H^{p}$ . See [D] and [G] for $H^{p}$ spaces, and [Y1], [Y3] and [Kw4] for $H_{\sigma}^{p}$ spaces.

BMOA, analytic functions of bounded mean oscillation, consists of those $f\in H^{1}$

for which
$|f^{l}(z)|^{2}(1-|z|^{2})dxdy$

is a Carleson measure, that is to say,

$\int\int_{S_{\delta}},$ $|f^{\prime}(z)|^{2}(1-|z|^{2})dxdy=O(\delta)$ ,

where $0<\delta\leq 1$ and

$S_{\delta,\theta}=\{re^{i\ell} : |\theta-t|\leq\delta, 1-\delta\leq r<1\}$ , $\theta\in T$.
$BMOA_{\sigma}$ , the Yamashita BMOA class, consists of those holomorphic self maps $\phi$

of $U$ for which
$(\phi\#(z))^{2}(1-|z|^{2})$ dxdy

is a Carleson measure on $U$ , where $\phi^{\#}$ is the hyperbolic derivative :

$\phi^{\#}(z)=\frac{|\phi^{\prime}|}{1-|\phi|^{2}}(z)$ , $z\in U$.

See [G] for BMOA and [Y2] for $BMOA_{\sigma}$ .
The Bloch space $\mathcal{B}$ consists of those $f$ holomorphic in $U$ for which

11 $ f\Vert\epsilon=\sup_{z\in U}|f^{\prime}(z)|(1-|z|^{2})<\infty$ .

While, by Schwarz-Pick’s lemma stating that

$\phi^{\#}(z)(1-|z|^{2})\leq 1$ , $z\in U$,

every holomorphic self map of $U$ is hyperbolically Bloch. To keep up the parallism
between $H^{p}$ and $H_{\sigma}^{p}$ more closely, we introduce a weighted subspace of Hardy-
Sobolev space $H_{1}^{p,1}$ , which is defined to consist of those $f$ for which $f^{\prime}\in H^{p}$ and
$f^{l}(z)=O(1-|z|)^{-1}$ . See [KKw] and [Kw3] for the weighted subspaces of Hardy
spaces.

We consider the sharpness of the following two parallel results.
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Theorem A ([K] or [KKw]). If $f\in H_{1}^{p1}$) for som$ep:0<p<1$ , then $f\in H^{q}$ for
all $ q;0<q<\infty$ .

Theorem $B$ ([Kw2]). If $\phi$ is a holomorphic self map of $U$ and $(\emptyset^{\#})^{p}$ admits a
harmonic majorant in $U$ for some $p:0<p<1$ , then $\phi\in H_{\sigma}^{q}$ for all $q$ : $ 0<q<\infty$ .

The example $f(z)=log$ $(1-z)$ shows that we can improve the conclusion of
Theorem A neither up to $f\in H^{\infty}$ nor up to the Dirichlet finite functions. In a
parallel direction, the bound on $q$ in Theorem $B$ is sharp in the sense that there
is a holomorphic self map $\phi$ such that $(\phi\#)^{p}$ admits harmonic majorants in $U$ for
arbitrary $p$ less than 1, but neither $\phi\in H_{\sigma}^{\infty}$ nor $\phi$ a function of hyperbolically
Dirichlet finite, that is,

$\int\int_{U}(\phi^{\#})^{2}(z)dxdy=\infty$ .

Next step to the sharpness problem may be concerned with BMOA and $BMOA_{\sigma}$

respectively. We prove

Theorem 1. There is an $f$ such that $f\in H_{1}^{p,1}$ for all $p:0<p<1$ but $f\not\in BMOA$ .

Theorem 2. There exists a holomorphic selfmap $\phi$ such that $(\phi\#)^{p}$ has harmonic
majorants for all $p:0<p<1$ but $\phi\not\in BMOA_{\sigma}$ .

Theorem 1 is sharp because if $f^{\prime}\in H^{1}$ then, by a well known result of Pri-
valov(see $[D$ , pp 42-52]), $f$ is continuous on $\overline{U}$ and absolutely continuous on $T$ so
that $f\in H^{\infty}\subset BMOA$ . Theorem 2 is sharp by a parallel reason (see [Yl, Theorem
1]).

It seems that there are other ways of showing the existence of functions requested
in Theorem 1. Our point is that we can transfer, by use of a composition operator,
the problem to a parallel problem of holomorphic self maps on $U$ with hyperbolic
geometry. We show that Theorem 1 is a consequence of Theorem 2. This will be
done in Section 2 and Section 3. We prove Theorem 2 in Section 4 by giving an
example which is connected with the order of contact. See [S] for the concept on
contact.

2. A composition operator on the Bloch space.

The following represents one of the relationships between $H^{p}$ and $H_{\sigma}^{p}$ via com-
position operators.

Theorem 3. Let $\phi$ be a holomorphic selfmap of $U$ and $ 0<p<\infty$ . Then th $e$

following (1) and (2) are $eq$uivalent.
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(1) $(go\phi)^{\prime}\in H^{p}$ for all $g\in \mathcal{B}$ .

(2) $(\phi\#)^{p}$ has a $h$armonic majorant.

Proof. Suppose that $(\phi\#)^{p}$ has a harmonic majorant. Then, for $g\in \mathcal{B}$ , the lemma
of Schwarz-Pick gives

$||(go\phi)^{\prime}||_{p}^{p}\leq||g\Vert_{\mathcal{B}}||\phi^{\#}||_{p}^{p}<\infty$ ,

so that $(go\phi)^{\prime}\in H^{p}$ .
Conversely, suppose that $(go\phi)^{\prime}\in H^{p}$ for al $g\in \mathcal{B}$ . By [RU, Proposition 5.4],

there is $\{g_{j}\}_{j=1,2}\subset \mathcal{B}$ such that

$\sum_{j=1}^{2}|g_{j}^{\prime}(z)|\geq\frac{1}{(1-|z|^{2})}$ $z\in U$.

Hence

$ M_{p}(r, \phi^{\#})\leq C(p)\sum_{j=1}^{2}M_{p}(r, (g_{j}o\phi)^{\prime})<\infty$

for some constant $C(p)$ depending on $p$ . Therefore $(\phi\#)^{p}$ has a harmonic majo-
rant. $\square $

On the same vein we need is the following

Theorem $C$ ([RU]). Let $\phi$ be a holomorphic self map of U. Then the following
(1) and (2) are $eq$uivalent.

(1) $go\phi\in BMOA$ for all $g\in \mathcal{B}$ .
(2) $\phi\in BMOA_{\sigma}$ .

See [Kwl] for a similar results on $H^{p}$ . Though the proof is simple, Theorem 3
has many applications. We see one of them in the next section.

3. Theorem 2 implies Theorem 1.

Assuming Theorem 2, we can prove Theorem 1 by help of Theorem 3.

Proof (Theorem 2 $\Rightarrow$ Theorem 1). Suppose that $\phi$ is a self map of $U$ such that
$(\phi\#)^{p}$ has a harmonic majorant for al $p:0<p<1$ and $\phi\not\in BMOA_{\sigma}$ . Then by
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Theorem 3, $(go\phi)^{l}\in H^{p}$ for all $p:0<p<1$ and for all $g\in \mathcal{B}$ . Also by Theorem
$C$ ,

(3.1) $go\phi\not\in BMOA$

for some $g\in \mathcal{B}$ . Now $ f=go\phi$ with $g$ satisfying (3.1) is a required function of
Theorem 1. $\square $

We are left, therefore, to prove Theorem 2 in the next section.

4. Proof of Theorem 2 by an example.

Recall, for a holomorphic self map $\phi$ , that $(\emptyset^{\#})^{p}$ has a harmonic majorant if
and only if

(4.1) $\sup_{r}\int_{T}(\frac{|\phi^{\prime}(re^{i\theta})|}{1-|\phi(re^{i\theta})|^{2}})^{p}d\theta<\infty$ ,

and that $\phi\in BMOA_{\sigma}$ if and only if

(4.2) $\int\int_{S_{\delta,\theta}}(\frac{|\phi^{l}(z)|}{1-|\phi(z)|^{2}})^{2}(1-|z|^{2})$ $dxdy=O(\delta)$

for all $\theta\in T$ .
Properties (4.1) and (4.2) are connected with the order of contact and the an-

gular derivative. See [S], for example, for these two concepts. For a theoretical
background, we invoke a theorem of Tsuji-Warschawski(see $[T,$ $p366]$ or $[S,$ $p72]$ )
stating a necessary and sufficient contact condition for a univalent map to have an
angular derivative. Without regarding the growth of the derivative, a holomorphic
self map $\phi$ need to have worse order of contacts to satisfy (4.1) but need to have a
smooth contact to fail (4.2). We prove Theorem 2 by giving the following example.

Example.

There is a holomorphic self map $\phi$ of $U$ such that

(1) $\phi$ does not satisfy (4.2) for $\theta=0$ .
(2) $\phi$ is univalent and has angular derivative nowhere on $T$ .
(3) $\phi$ satisfies (4.1) for all $p:0<p<1$ .
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We employ a function $\phi$ whose form was introduced in [ST]. Let

$h(z)=\frac{i}{k}\frac{\sqrt{\frac{1+iz}{1-iz}i}-i}{\sqrt{\frac{1+iz}{1-iz}i}+i}$ , $z\in U$,

where the branch of square root is taken with negative imaginary axis omitted, and
$k$ is a large positive constant, say $k>9$ . Then $h$ maps $U$ conformally onto

$\Delta=\{w:|w|<\frac{1}{k}, Re(w)>0\}$ .

Since $h$ is conformal and extensible analytically across $T$ in a neighborhood of $z=1$
with $h(1)=0,$ $h^{\prime}(1)=-\frac{1}{4k},$ $h$ maps the (Polar) Carleson square $S_{\delta}=S_{\delta,0}$ onto a
roughly rectangular (Carleson) square $R_{\delta}=h(S_{\delta})$ of the right half plane around $0$

if $\delta$ is sufficiently small. Hence we can take $\delta_{0}$ small enough such that $|h^{l}(z)|>\frac{1}{8k}$

for all $z\in S_{\delta_{0}}$ and

$Re(w)<\frac{1}{k}(1-|h^{-1}(w)|)$ , $w\in R_{\delta}$

along with

$\{w:|w|<\frac{\delta}{8k},$ $Re(w)>0\}\subset R_{\delta}$

for al $\delta$ : $\delta<\delta_{0}$ .
Now, let

$f(z)=z$ log $\frac{1}{z’}$ $ z\in\Delta$

with the principal branch of log $z$ and let

$\phi(z)=1-foh(z)$ , $z\in U$.

Then it follows from the conformality of $h$ with an easy calculation that, for all
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$\delta<\delta_{0}$ ,

$\int\int_{S_{\delta}}(\frac{|\phi^{l}(z)|}{1-|\phi(z)|^{2}})^{2}(1-|z|^{2})$ dxdy

$\sim>\int\int_{R_{\delta}}(\frac{|f^{l}(w)|}{1-|1-f(w)|^{2}})^{2}u$ dudv

$=\int\int_{R_{\delta}}\frac{u|1+logw|^{2}}{(1-|1+wlogw|^{2})^{2}}dudv$

$\sim>\int_{0}^{\delta/8k}\int_{0}^{\pi/2}\frac{(logr)^{2}cos\theta}{(\theta sin\theta)^{2}+(logrcos\theta)^{2}}d\theta dr$

$\sim>\int_{0}^{\delta/8k}\int_{0}^{\pi/2}\frac{sec\theta d\theta dr}{1+(\frac{\theta tan\theta}{logr})^{2}}$
,

whence
$\lim_{\delta\rightarrow}\sup_{0}\frac{1}{\delta}\int\int_{S_{\delta}}(\frac{|\phi^{l}(z)|}{1-|\phi(z)|^{2}})^{2}(1-|z|^{2})$ dxdy

$\sim>\lim_{r\rightarrow 0}\int_{0}^{\pi/2}1+(\frac{\theta tan\theta}{logr})^{2}sec\theta d\theta$

$=\infty$ .
This proves (1). Here $ A>B\sim$ means that there is a positive constant $C$ such that
$CA\geq B$ .

It is not difficult to see that $f^{l}$ has positive real part on $\overline{\Delta}\backslash 0$ , so that $\phi$ is
univalent. Concerning the order of contact, from

(4.3) $h(e^{i\theta})=i\{-\frac{\theta}{4k}+O(|\theta|^{2})\}$ ,

we see that
$1-|\phi(e^{i\theta})|^{2}$

(4.4) $=1-|1-foh(e^{i\theta})|^{2}$

$=\frac{\pi}{4k}|\theta|+O$ ( $\theta^{2}$ log $|\theta|$ )

in a neighborhood of $\theta=0$ . By (4.4),

$\int_{0}^{\epsilon}\frac{1-|\phi(e^{i\theta})|}{\theta^{2}}d\theta=\infty$
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for $\epsilon>0$ , so that $\phi$ can not have an angular derivative at $z=1$ by Tsuji-
Warchauski’s Theorem [T]. Hence $\phi$ has no angular derivatives on $T$ . This with
univalency proves (2).

By (4.3),

$|\phi^{l}(e^{i\theta})|=|1+logh(e^{i\theta})||h^{\prime}(e^{i\theta})|=O(|1+logh(e^{i\theta})|)=O(log|\theta|)$

for $\theta$ near $0$ . Thus, by (4.4), the function

$\frac{|\phi^{\prime}(e^{i\theta})|}{1-|\phi(e^{i\theta})|^{2}}$

is p-integrable with respect to $\theta$ on a small neighborhood of $\theta=0$ for all $p$ less than
1. Now since $\overline{\phi(U)}\subset U\cup\{1\}$ , to prove (3) it is enough to check that the radial
limit function $\lim_{r\rightarrow 1}|\phi^{l}(re^{i\theta})|$ is p-integrable with respect to $\theta$ for al $p$ less than 1 on
any compact subset of $T$ that does not contain $\theta=0$ . Since

$|\phi^{\prime}(e^{i\theta})|=|foh(e^{i\theta})h^{l}(e^{i\theta})|=O(|h^{\prime}(e^{i\theta})|)$

on such a set, we are enough to check the behavior of $h$ ‘. Note that $h^{l}(re^{i\theta})$ fails
to have, finite radial limits only at $\theta=\pm\frac{\pi}{2}$ , and in a small neighborhood of those
points

$|h^{l}(z)|=O(|1\pm iz|^{-1/2})$ .

Hence $|h^{\prime}(e^{i\theta})|^{p}$ is integrable for all $p$ less than 1 with respect to $\theta$ on the compact
subset. Therefore we have (3). $\square $
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