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TWO CONDITIONS ON THE RICCI TENSOR OF A REAL
HYPERSURFACE OF COMPLEX PROJECTIVE SPACE

MIGUEL ORTEGA, JUAN DE DIOS P\’EREZ AND YOUNG JIN SUH*

ABSTRACT. We study two conditions on the Ricci tensor of a real hypersurface of
complex projective space that allows us to characterize certain real hypersurfaces.
We also introduce a new kind of such real $hyper8urfac\infty$ .

\S 1. Introduction

Let $CP^{m}$ be a complex projective space of complex dimension $m$ endowed with
the Fubini-Study metric $g$ of constant holomorphic sectional curvature 4. Let $M$

be a connected real hypersurface of $CP^{m}$ and $N$ a local unit normal vector field
on $M$ . Then $\xi=-JN$ is tangent to $M$ , where $J$ denotes the almost complex
structure of $CP^{m}$ .

Let us denote by $A,$ $R$ and $S$ the shape operator, the curvature tensor and the

Ricci tensor of $M$ , respectively. We put $h=traceA$ and $H=hA-A^{2}$ .
A real hypersurface $M$ of $CP^{m}$ is caled pseudo-Einstein if its Ricci tensor sat-

isfies

(1.1) $ SX=aX+bg(X,\xi)\xi$

for any vector field $X$ tangent to $M$ and some $fiictio_{\wedge}18a,$ $b$ on $M$ , where $g$ denotes
the induced Riemannian metric on $M$ . Pseudo-Einstein real hypersurfaces of $CP^{m}$

are classffied by the following theorem:

Theorem A. ([1]) Let $M$ be a complete pseudo-Einstein real hypersurface of
$CP^{m},$ $m\geq 3$ . Then $M$ is locally congruent to one of the following spaces:

a) a geodesic hypersphere,
b) a tube of rudius $r$ over a totally geodesic $CP^{k}(1\leq k\leq m-2)$ , where

$0<r<\frac{\pi}{2}$ and cot2 $r=\frac{k}{m-k-1}$ ,
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c) a tube over a complex quadric $Q_{m-1}$ .

Ruled real hypersurfaces in $CP^{m}$ were introduced by Kimura in [5]. Several
authors have studied them ([6],[7],[10]).

Let us consider real hypersurfaces of $CP^{m}satis\phi ing$

(1.2) $R(X,Y)SZ+R(Y, Z)SX+R(Z,X)SY=0$

for any $X,$ $Y,$ $Z$ tangent to $M$ . It is clear that any pseudoEinstein real hypersurface
satisfies (1.2). The $conver8e$ is proved in [3]. Moreover, in [4] we have proved (as
another characterization of pseudo-Einstein real hypersurfaces in $CP^{m}$ ) that a real
hypersurface in $CP^{m}$ satisfying

(1.3) $R(X,Y)SZ+R(Y, Z)SX+R(Z,X)SY=0$ for any $X,Y,$ $ Z\perp\xi$

is pseudo-Einstein, under the assumption that the structure vector $\xi$ is principal.
In this paper, first we $8hdl$ generalize this $re8ult$ as folows.

Theorem 1. Let $M$ be a real hypersurface of $CP^{m},$ $m\geq 3$ , satisfy ing $($1. $S)$ . Then
$M$ is locally congruent to either

i) a pseudo-Einstein real hypersurface, $or$

ii) a non-homoyeneous real hypersurface such that $H$ has three distinct eigen-
values with respective multiplicities Zm-S, 1 and 1.

Remark. The $8econd$ kind of real hypersurfaces arpcaring in Theorem 1 are non-
homogeneous real hypersurfaces with at most 4 distinct principal curvatures. If the
eigenvalue of $H$ with multiplicity $2m-3$ is equal to $0$ , the expression of $H$ is 8inilar
to the expression of $A$ in a ruled real hypersurface.

On the other hand, we can also generalize condition (1.2) by considering real
hypersurfaces of $CP^{m}8ati8\theta ing$

(1.4) $R(X,Y)S\xi+R(Y,\xi)SX+R(\xi,X)SY=0$ for any $ X,Y\perp\xi$ .

It is easy to see that any real $hyper8urface$ of $CP^{m}$ such that $\xi$ is principal
satisfies (1.4). So it $seem8$ to be $intere8ting$ to study real hypersurfaces of $CP^{m}$

$satis\theta ing(1.4)$ and such that $\xi$ is not principal. In this way we $8hal$ obtain
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Theorem 2. Let $M$ be a real hypersurface of $CP^{m},$ $m\geq 3$ , satisfying (1.4) and
such that $\xi$ is not principal. Then $M$ is a ruled real hypersurface.

The present authors would like to express their sincere gratitude to the referee
for his valuable suggestions and comments.

\S 2. Preliminaries.

Let $M$ be a real hypersurface of $m(\geq 3)$-dimensional complex projective space
$CP^{m}$ and let $N$ be a unit normal field on a neighborhood of a point $x$ in $M$ . We
denote by $J$ an almost complex structure of $CP^{m}$ . For a local vector field $X$ on a
neighborhood of $x$ in $M$ , the images of $X$ and $N$ under the linear transformation
$J$ can be represented as

$JX=\phi X+\eta(X)N$ , $ JN=-\xi$ ,

where $\phi$ defines a skew-symmetric transformation on the tangent bundle $TM$ of
$M$ , while $\eta$ and $\xi$ denote a l-form and a vector field on a neighborhood of $x$ in $M$,
respectively. Moreover, it is $8een$ that $g(\xi,X)=\eta(X),whereg$ denotes the induced
Riemannian metric on $M$ . By properties of the almost complex structure $J$ , the
set $(\phi,\xi,\eta,g)$ of tensors satisfies

$\phi^{2}=-I+\eta\otimes\xi$ , $\phi\xi=0$ , $\eta(\phi X)=0$ , $\eta(\xi)=1$ ,

where $I$ denotes the identity transformation. Accordingly, the set is so caled
an almost contact metnc structure. Furthermore the covariant derivative of the
structure tensors are given by

(2.1) $(\nabla x\phi)Y=\eta(Y)AX-g(AX,Y)\xi$ , $\nabla x\xi=\phi AX$

for any vector fields $X,Y$ tangent to $M$ , where $\nabla$ is the IItiemannian connection of
$g$ and $A$ denotes the shape operator with respect to the unit normal $N$ on $M$ .

Since the ambient $8pace$ is of constant holomorphic sectional curvature 4, the
equations of Gauss is given by

(2.2)
$R(X, Y)Z=g(Y, Z)X-g(X, Z)Y+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y$

$-2g(\phi X,Y)\phi Z+g(AY, Z)AX-g(AX, Z)AY$
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for any vector fields $X,$ $Y,$ $Z$ on $M$ , where $R$ denotes the Riemannian curvature
tensor of $M$ .

Fhrom (2.2) the Ricci tensor of $M$ is given by

(2.3) $SX=(2m+1)X-3\eta(X)\xi+HX$

for any $X$ tangent to $M$ .
To be used later we recall that the type number $t$ of $M$ at a point $p$ of $M$ is

defined as the rank of $A$ at $p$. Then

Proposition. ([10]) Let $M$ be a real hypersurface of $CP^{m},$ $m\geq 3$ , satisfying
$t(p)\leq 2$ for any point $p$ in M. Then $M$ is a ruled $nal$ hypersurface.

\S 3. Proof of Theorem 1.

Bearing in mind the $expre8sion(2.3)$ for any vector field $X$ orthogonal to $\xi$ and
the first identity of Bianchi (1.3) is equivalent to

(3.1) $R(X,Y)HZ+R(Y, Z)HX+R(Z,X)HY=0$

for any $X,Y,$ $ Z\perp\xi$ .
Let $\{E_{j}\}_{j=1,\ldots,2m-2}$ be a local orthonormal basis of $\xi^{\perp}$ . $Sub8tituting(2.2)$ into

(3.1) and taking $Y=\phi Ej,$ $Z=E_{j}$ , we obtain

(3.2)
$0=\{g(\phi X,HE_{j})-g(\phi E{}_{j}HX)\}Ej+\{g(\phi X,H\phi E_{j})+g(E_{j},HX)\}\phi E_{j}$

$-\{g(E{}_{j}HEj)+g(\phi E{}_{j}H\phi Ej)\}\phi X-2g(X,E_{j})\phi HE_{j}$

$+2g(Ej\phi X)\phi H\phi E_{j}+2\phi HX$

for any $ X\perp\xi$ .
Lemma 1. $g(HX,\phi X)=0$ for any $ X\perp\xi$ .
Proof. If we take the $8cdar$ product of (3.2) and $X$ and add in $j$ , we have &om
the formulas of section 2

(3.3) $0=(8-4m)g(HX,\phi X)$

for any $ X\perp\xi$ . As $m\geq 3$ the $re8ult$ folows. $\square $
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Lemma 2. Let be $X,$ $ Z\perp\xi$ such that $Z\perp Span\{X, \phi X\}$ . Then $g(HX, Z)=0$ .

Proof. If we take $X,$ $Y\perp\xi$ from Lemma 1, $g(H(X+Y), \phi(X+Y))=0$ . $Thi8$

implies again by Lemma 1

(3.4) $g(H\phi X,Y)=g(\phi HX, Y)$ for any $X,$ $Y\perp\xi$ .
Taking an inner product (3.2) with $Z$ and adding in $j$ , we have
(3.5)

$0=g(H\phi X, Z)+g(\phi HX, Z)+g(H\phi X, Z)-g(HX, \phi Z)+2g(X, H\phi Z)$

$+2g(X,H\phi Z)+2(2m-2)g(\phi HX, Z)$ .
Ftom (3.4) and (3.5) it folows

(3.6) $0=(4m-4)g(H\phi X, Z)$ .

Since $m\geq 3$ , exchanging $X$ by $\phi X$ in (3.6), then we have the above result.

Lemma 3. $g(HX,X)=g(HZ, Z)$ for any unit $X,$ $ Z\perp\xi$ .
Proof. Taking an inner product (3.2) with $\phi X$ and adding in $j$ , we have

(3.7) $0=g(H\phi X,\phi X)+(2m-3)g(HX,X)-a$

where $a=\Sigma_{j=1}^{2m-2}g(E_{j},HE_{j})$ .
On the other hand, putting $Y=\phi X$ in (3.4), we know $g(H\phi X,\phi X)=g(HX,X)$ .

From this and (3.7) it folows

(3.8) $0=(2m-2)g(HX,X)-a$ .

That is,

(3.9) $g(HX,X)=\frac{a}{2m-2}$

for any unit $ X\perp\xi$ . $\square $

From the above Lemmas we have two cases: If $\xi$ is an eigenvector of $H$ , any
$ X\perp\xi$ is an eigenvector of $H$ with eigenvalue $d=\frac{a}{i^{t}.\mathfrak{n}-2}$ of multiplicity $2m-2$ . $Thi8$

implies that $M$ is pseudo-Einstein.
If $\xi$ is not an eigenvector of $H$ , there exists a unit $ U\perp\xi$ such that $ H\xi=\nu U+\mu\xi$ ,

for certain functions $\nu,$ $\mu$ on $M$ such that $\nu$ is not identicaly zero. From the above

Lemmas $ HU=dU+\nu\xi$ and $HX=dX$ for any $X\perp Span\{U,\xi\}$ . Thus $M$ is a real

hypersurface of type ii) in Theorem 1. This finishes the proof of Theorem 1. $\square $
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\S 4. Proof of Theorem 2.

From (2.2) we know that (1.4) is equivalent to

$ 0=g(\phi Y, S\xi)\phi X-g(\phi X,S\xi)\phi Y-2g(\phi X,Y)\phi S\xi$

(4.1) $+g((SA-AS)Y,\xi)AX+g((AS-SA)X,\xi)AY$

$+g((SA-AS)X,Y)A\xi$

for any $ X,Y\perp\xi$ . Using (2.3) and the definition of $H,$ $(4.1)become8$

$0=-3g(AY,\xi)AX+3g(AX,\xi)AY+g(\phi Y,H\xi)\phi X$
(4.2)

$-g(\phi X,H\xi)\phi Y-2g(\phi X,Y)\phi H\xi$

for any $X,$ $Y\perp\xi$ . Notice that any real hypersurface with $\xi$ principal satisfies (4.2).
Let us replace $Y$ by $\phi Y$ in (4.2). Then $hom$ the almost contact metric structure
we get

$0=-3g(A\phi Y,\xi)AX+3g(AX,\xi)A\phi Y$
(4.3)

$-g(Y,H\zeta)\phi X+g(\phi X,H\xi)Y-2g(X,Y)\phi H\xi$ .
Contracting (4.3) with respect to $X,Y$ we have $6A\phi A\xi+(2-4m)\phi H\xi=0$ , that

is

(4.4) $ A\phi A\xi=\frac{2m-1}{3}\phi H\xi$ .

Taking $Y=\phi A\xi$ in (4.2) and $U8ing(4.4)$ , we have

(4.5)
$ 0=\{-g(A\xi,H\xi)+g(A\xi,\xi)g(H\xi, \xi)\}\phi X+(2m-3)g(AX,\xi)\phi H\xi$

$+g(\phi X,H\xi)\{A\xi-g(A\xi,\xi)\xi\}$ .

Let $U8$ replace $X$ by $\phi X$ in (4.5). Then

$ 0=\{g(A\xi, H\xi)-g(A\xi,\xi)g(H\xi, \xi)\}X+(2m-3)g(A\phi X,\xi)\phi H\xi$

(4.6)
$+g(X,H\xi)\{A\xi-g(A\xi, \xi)\xi\}$

for any $ X\perp\xi$ .
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Here we assert two vectors $\phi H\xi$ and $ A\xi-g(A\xi, \xi)\xi$ are orthogonal. In fact, by
(4.4) and the definition of $H$ we have

$g(\phi H\xi,A\xi-g(A\xi, \xi)\xi)=g(\phi H\xi,A\xi)$

$=-g(hA\xi-A^{2}\xi,\phi A\xi)$

$=\frac{1-2m}{3}g(h\xi-A\xi,\phi H\xi)$

$=-\frac{1-2m}{3}g(A\xi,\phi H\xi)$ .

Comparing the second and last quantities in these equations, we have $g(A\zeta,\phi H\xi)=$

$0$ since $m\geq 3$ , which shows our assertion. From this assertion and (4.6) we have for
any $X\perp Span\{\xi,\phi H\xi,A\xi-g(A\xi,\xi)\xi\}$ that

i) $g(A\xi,H\xi)-g(A\xi,\xi)g(H\xi, \xi)=0$ ,
ii) either $g(H\xi,X)=0$ or $ A\xi=g(A\xi,\xi)\xi$ and
iii) either $g(A\phi X,\xi)=0$ or $\phi H\xi=0$ .
As $\xi$ is supposed to be not principal, ffom (ii) we have $g(H\xi,X)=0$ for any $X$

orthogonal to $Span\{\xi, \phi H\xi,A\xi-g(A\xi,\xi)\xi\}$ , and $g(H\xi,A\xi-g(A\xi,\xi)\xi)=0$ ffom
(i). Thus, since $g(H\xi, \phi H\xi)=0$ , if $\phi H\xi\neq 0$ , then we have a contradiction that $ H\xi$

is parallel to $\xi$ . Hence we have $\phi H\xi=0$ . By this and (4.2) we have

(4.7) $g(AY, \xi)AX=g(AX,\xi)AY$

for any $X,$ $Y\perp\xi$ . As $\xi$ is not principal there exists a unit vector field $ U\perp\xi$ and two
functions $\lambda,$

$\delta$ on $M$ such that $ A\xi=\lambda\xi+\delta Uwi_{\vee}\cdot h\delta$ non zero. Taking $Y=U$
in (4.7) we have $\delta AX=\delta g(X, U)AU$ , for any $ X\perp\xi$ . Therefore $AX=0$ if $X$ is
orthogonal to $Span\{U, \xi\}$ . Thus $t(p)\leq 2$ for any point $p$ in $M$ and the result $folow8$

from the Proposition mentioned in paragraph 2.
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