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SURFACES OF EUCLIDEAN 4-SPACE

WHOSE GEODESICS ARE $W$-CURVES*

Young Ho Kim and Eun Kyoung Lee

$0$ . Abstract

We study complete connected surfaces in 4-dimensional Euclidean space $E^{4}$

whose geodesics through a fixed point are W-curves and classify complete con-

nected surfaces in $E^{4}$ with geodesic W-curves.

1. Introduction

Surfaces in a Euclidean space are most natural geometric objects which are
easily understandable to us. Smooth curves on surfaces, esecially geodesic, are
powerful tools to study the given surfaces by examining their curvatures.

In [3], D. Ferus and S. Schirrmacher classified compact connected surfaces

in 4-dimensional Euclidean space $E^{4}$ with simple geodesics. And, Y.H. Kim([5])

studied such a surface in Euclidean space $E^{5}$ and U-H. Ki and Y.H. Kim ([6]) gave

classifications of compact connected surfaces in Euclidean space $E^{4}$ with a point

through which every geodesic is simple.
However, there has been no study on a complete connected surface $M$ in a

Euclidean space $E^{4}$ with the property that for a fixed point $p$ in $M$ every geodesic
passing through $p$ is a W-curve, which will be defined in section 2. Rom this point

of view, we are going to study surfaces in $E^{4}$ which have such property.

*This work is partially supported by TGRC.
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2. Preliminaries

Let $M_{1}$ be a Riemannian manifold with Levi-Civita connection $D$ . Let $\gamma$ :
$I\rightarrow M_{1}$ be a curve and let $\gamma^{l}(s)=T_{1}(s)$ be the unit tangent vector and put
$\kappa_{1}=\Vert D_{T_{1}}T_{1}||$ . If $\kappa_{1}$ is identically zero on $I$, then $\gamma$ is said to be of rank
1 If $\kappa_{1}$ is not identicaly zero, then one can define $T_{2}$ by $D\tau_{1}T_{1}=\kappa_{1}T_{2}$ on
$I_{1}=\{s\in I|\kappa_{1}(s)\neq 0\}$ . Set $\kappa_{2}=\Vert D\tau_{1}T_{2}+\kappa_{1}T_{1}||$ . If $\kappa_{2}$ is identically zero
on $I_{1}$ , then $\gamma$ is said to be of rank 2. If $\kappa_{2}$ is not identically zero on $I_{1}$ , then we
define $T_{3}$ by $D_{T_{1}}T_{2}=-\kappa_{1}T_{1}+\kappa_{2}T_{3}$ . Inductively, we can define $T_{d}$ and $\kappa_{d}=||$

$ D_{T_{1}}T_{d}+\kappa_{d-1}T_{d-1}\Vert$ and if $\kappa_{d}=0$ identically on $I_{d-1}=\{s\in I|\kappa_{d-1}(s)\neq 0\}$ ,
then $\gamma$ is said to be of rank $d$ . If $\gamma$ is of rank $d$ , then we have a matrix equation

$ D_{T_{1}}(T_{1}, T_{2}, \ldots,T_{d})=(T_{1}, T_{2}, \ldots,T_{d})\Lambda$

on $I_{d-1}$ , where $\Lambda$ is a $d\times d$-matrix defined by

$\Lambda=\left(\begin{array}{llllll}0 & -\kappa_{l} & 0 & 0 & & 0\\\kappa_{l} & 0 & -\kappa_{2} & 0 & & 0\\0 & \kappa_{2} & 0 & 0 & & 0\\0 & 0 & 0 & & 0 & -\kappa_{d-l}\\0 & 0 & 0 & & \kappa_{d-l} & 0\end{array}\right)$

The matrix $\Lambda,$ $\{T_{1},T_{2}, \ldots, T_{d}\}$ and $\kappa_{1},$ $\kappa_{2},$
$\ldots,$

$\kappa_{d}$ are called the Prenet for-
mula, Frenet frame, $f\succ enet$ curvatures of $\gamma$ respectively.

Let $E^{m}$ be an m-diemensional Euclidean space with Levi-Civita connection
$\tilde{\nabla}$ . A regular curve $c$ : $I\subset R\rightarrow E^{m}$ is said to be a W-curve of rank $d$ if for
all $t\in I,$ $c^{\prime}(t)\wedge c^{\prime/}(t)\wedge\ldots\wedge c^{(d)}(t)\neq 0,$ $c^{\prime}(t)$ A $c^{\prime\prime}(t)\wedge\ldots\wedge c^{(d+1)}(t)=0$ and the
Renet curvatures $\kappa_{1},$ $\kappa_{2},$

$\ldots,$
$\kappa_{d-1}$ : $I\rightarrow R+are$ constant along $c$ .

By fundamental theorem of curves, if a W-curve is of even rank, then there
are positive constants $a_{1},$ $a_{2},$

$\ldots,$
$a_{k}$ , unique up to order, corresponding positive

constants $r_{1},$ $r_{2},$
$\ldots,$

$r_{k}$ and orthonormal vectors $f_{1},$ $f_{2},$
$\ldots,$

$f_{2k}\in E^{m}$ such that
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$\gamma(t)=(constant)+\sum_{i=1}^{k}\{r_{i}(\cos a;t)f_{2i-1}+r_{i}(\sin a_{i}t)f_{2i}\}$ .

The rank of unbounded W-curve is odd and the equation for such a curve contains
an additional linear term in it.

A surface $M$ in Euclidean space is said to be helical at $p\in M$ if all geodesics
through $p$ have the same constant curvatures, which are independent of the choice
of direction.

Let $M$ be a complete connected surface in $E^{m}$ with Levi-Civita connection
$\nabla$ .

Lemma 2.1.([4]) Let $M$ be helical at $p\in M$ in $E^{4}$ . Then every geodesic
through $p$ is planar.

For any two vector fields $X$ and $Y$ tangent to $M$ , the second fundamental
form $h$ is given by

$h(X, Y)=\tilde{\nabla}_{X}Y-\nabla_{X}$ Y.

For a vector field $\xi$ normal to $M$ and $X$ a vector field tangent to $M$ , we have
$\tilde{\nabla}_{X}\xi$ as

$\tilde{\nabla}_{X}\xi=-A_{\xi}X+\nabla_{X}^{\perp}\xi$ ,

where $A_{\xi}$ is the Weingarten map associated with $\xi$ and $\nabla^{\perp}$ the normal connection

of the normal bundle $T^{\perp}M$ . For the second fundamental form $h$ , the covariant
derivative of $h$ , denoted by $\overline{\nabla}h$ , is defined by

$(\overline{\nabla}xh)(Y, Z)=\nabla_{X}^{\perp}h(Y, Z)-h(\nabla xY, Z)-h(Y, \nabla xZ)$

for any vector fields $X,$ $Y$ and $Z$ tangent to $M$ .
The curvature tensor $R$ to $M$ is given by

$R(X, Y)Z=\nabla_{X}\nabla_{Y}Z-\nabla_{Y}\nabla_{X}Z-\nabla_{[X,Y]}Z$
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for any vector fields $X,$ $Y$ and $Z$ tangent to $M$ .
Let $\tilde{M}$ be a compact Riemannian manifold and let $X$ be an element of the

unit tangent space $U_{p}\tilde{M}=\{X\in T_{p}\tilde{M}| ||X||=1\}$ and let $\gamma$ be a geodesic

emanating from $p$ with initial velocity $X$ , i.e., $\gamma(s)=exp_{p}(sX)$ , where $s$ is the

arclength. Let $Seg(p,q)$ be the set of all minimal geodesics from $p$ to $q$ which are

parametrized by arclength. Then for $s$ small enough, $Seg(p=\gamma(O),\gamma(s))$ contains

only one element $\gamma|_{[0,\epsilon]}$ . The set

$A=\{s\in R+| \gamma|_{[0,s]}\in Seg(p=\gamma(0),\gamma(s))\}$

is necessarily $R+or$ an interval $(0, r$] for some $ r\in R+\cdot$ We say that there is no

cut-point on $\gamma$ if $A=R+and\gamma(r)$ is the cut point of $p$ and $r$ is the cut value of

$\gamma$ if $A=(O, r$]. Let $U\tilde{M}=\bigcup_{p\in\overline{M}}U_{p}\tilde{M}$ be the unit tangent bundle over $\tilde{M}$ . The

cut map $\phi$ : $ U\tilde{M}\rightarrow R+\cup t\infty$ } defined by $\phi(X)=r$ if $A=(O,r$] and $\phi(X)=\infty$

if $ A=R+\cdot$ The cut map is continuous (See[l]).

The cut-locus Cut $(p)$ of a point $p$ in $\tilde{M}$ is the set of all cut-points of $p$ , i.e.,

Cut$(p)=\{exp_{p}(\phi(X)X)|X\in U_{p}\tilde{M}\}$ .

For two distinct points $p$ and $q$ in $\tilde{M}$ we define the link from $p$ to $q$ to be

$\Lambda_{(p,q)}=\{\frac{d\gamma}{ds}(q)\in U_{q}\tilde{M}|\gamma\in Seg(p, q)\}$ .

A subset $\Theta$ of the unit sphere of a Euclidean space $E^{m}$ is said to be a great
sphere if there exists a subspace $W$ of $E^{m}$ such that $\Theta=S\cap W$ . By definition,
the dimension of $\Theta$ is $\dim W-1$ .

A compact Riemannian manifold $\tilde{M}$ is said to be a Blaschke manifold at the

point $p$ in $\tilde{M}$ if for every $q$ in Cut $(p)$ the link $\Lambda_{(p,q)}$ is a great sphere of $U_{q}\tilde{M}$ . The
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manifold $\tilde{M}$ is said to be a Blaschke manifold if it is a Blaschke manifold at every

point in $\tilde{M}$ .
For a chracterization of pointed Blaschke manifold, Besse ([1], pp 137) gave

Theorem 2.2. For a Riemannian manifold $M$ and $a$ poin$tp$ in $M,$ $M$ is
Blaschke manifold at $p$ if and only if Cut $(p)$ is spheric$al$, that is, cut values of
geodesics through $p$ are independent of the choice of geodesic.

3. Complete connected surfaces in $E^{4}$ with W-curves
through a point

Let $M$ be a complete connected Riemannian surface in 4-dimensional Eu-

clidean space $E^{4}$ with an isometric immersion X : $M\rightarrow E^{4}$ . Let $\tilde{\nabla}$ be the

Riemannian connection on $E^{4}$ and $\nabla$ the induced connection on $M$ .

We now define the property $(*)$ .

$(*)$ : There is a point $p$ in $M$ such that every geodesic through $p$ , which is

regarded as a curve in $E^{4}$ , is a W-curve.

Suppose that $M$ satisfies the property $(*)$ . Without loss of generality, we may

assume the base point $p$ of $(*)$ as the origin $0$ of $E^{4}$ .

In the case of compact connected surfaces in $E^{4}$ with $(*)$ , U-H. Ki and Y.H.
Kim ([6]) obtained

Lemma 3.1([6]). Let $M$ be a compact connected surfaces in $E^{4}$ . Suppose
that there exists a nonperiodic geodesic $\gamma$ through $0$ . Then $M$ is isometric to a
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$st$andard torus $S^{1}(a)\times S^{1}(b)\subset E^{4}$

Lemma 3.2([6]). Let $M$ be a compact connected surface in $E^{4}$ . Then $M$

is helical at $0$ if an $d$ only if every geodesic through $0$ is a periodic simple curve.

Remark. We mean a simple geodesic of submanifold in $E^{m}$ is a geodesic
of the submanifold as a W-curve in $E^{m}$

Using Theorem 2.2, Theorem 7.23 ([1], pp 186-187) and the classification

theorem of in [4], we have

Theorem 3.3([6]). Let $M$ be a compact connected surface in $E^{4}$ . Then $M$

sa $t$isfies $(*)$ if and only if $M$ is a standard torus $S^{1}(a)\times S^{1}(b)\subset E^{4}$ , $a$ $st$an$d$ard
$sphere\subset E^{3}$ or a Blaschke surface at $0\in E^{4}$ diffeomorphi $c$ to $RP^{2}$ of the form

$X(s, \theta)=(\frac{1}{\kappa}$ sin $\kappa s$ cos $\theta,$
$\frac{1}{\kappa}$ sin $\kappa s$ sin $\theta,$

$\frac{1}{\kappa}$ (1–cos $\kappa s$ ) $cos2\theta$ ,

$\frac{1}{\kappa}(1-\cos\kappa s)\sin 2\theta)$ ,

where $\kappa$ is the Renet curvature of geodesics through $0$ .

In this case, every geodesic through $0$ on $M$ is of rank 2 (See [6]).

Now we are going to study a complete connected surfaces in $E^{4}$ .
Suppose that there exists a geodesic $\gamma$ through $0$ whose rank is 4. But it was

proved in [6] that $\gamma$ is a non-periodic curve and in this case, $M$ is a standard torus
$S^{1}(a)\times S^{1}(b)\subset E^{4}$ .

We now assume that every geodesic through $0$ has the rank less than or equal

to 3. For the geodesic coordinate neighborhood system $(s, \theta)$ around $0$ , we may
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write the isometric immersion X: $M\rightarrow E^{4}$ as

(3.1) $X(s, \theta)=r_{1}(\theta)(\cos\alpha(\theta)s-1)f_{1}(\theta)$

$+r_{1}(\theta)$ sin $\alpha(\theta)sf_{2}(\theta)+\beta(\theta)sf_{3}(\theta)$ ,

where $X(O, \theta)=0,$ $r_{1}(\theta)$ and $\beta(\theta)$ are nonnegative functions, $\alpha(\theta)$ a positive valued

function on $(0,2\pi),$ $f_{1}(\theta),$ $f_{2}(\theta)$ and $f_{3}(\theta)$ orthonormal vectors in $E^{4}$ depending

on $\theta$ in $(0,2\pi)$ . If $r_{1}(\theta)=0$ for some $\theta\in(0,2\pi)$ , then $X(s, \theta)$ is a straight line. If
$\beta(\theta)=0$ for some $\theta\in(0,2\pi)$ , then $X(s, \theta)$ is a circle. For $r_{1}(\theta)>0$ and $\beta(\theta)>0$ ,

$X(s, \theta)$ is a helix for such a fixed $\theta$ .
Now, let $f_{4}(\theta)$ be a unit vector in $E^{4}$ such that $\{f_{1}(\theta),f_{2}(\theta), f_{3}(\theta), f_{4}(\theta)\}$

forms an orthonormal basis for $E^{4}$ .
For each $\theta\in(0,2\pi)$ , we get

(3.2) $X_{*}(\frac{\partial}{\partial s})=-r_{1}(\theta)\alpha(\theta)$ sin $\alpha(\theta)sf_{1}(\theta)$

$+r_{1}(\theta)a(\theta)$ cos $\alpha(\theta)sf_{2}(\theta)+\beta(\theta)f_{3}(\theta)$ ,

(3.3) $X_{*}(\frac{\partial}{\partial\theta})$

$=r_{1}(\theta)(\cos\alpha(\theta)s-1)f_{1}^{\prime}(\theta)+r_{1}(\theta)$ sin $\alpha(\theta)sf_{2}^{l}(\theta)$

$+$ { $r_{1}^{\prime}(\theta)(\cos\alpha(\theta)s-1)-r_{1}(\theta)\alpha^{l}(\theta)s$ sin $\alpha(\theta)s$ } $f_{1}(\theta)$

$+$ { $r_{1}^{\prime}(\theta)$ sin $a(\theta)s+r_{1}(\theta)a^{\prime}(\theta)s$ cos $\alpha(\theta)s$ } $f_{2}(\theta)$

$+\beta(\theta)sf_{3}^{l}(\theta)+\beta^{\prime}(\theta)sf_{3}(\theta)$ ,

(3.4) $\tilde{\nabla}_{X.(\neq)}X_{*}(\frac{\partial}{\partial s})=-r_{1}(\theta)a^{2}(\theta)$ cos $a(\theta)sf_{1}(\theta)$

$-r_{1}(\theta)\alpha^{2}(\theta)$ sin $\alpha(\theta)sf_{2}(\theta)$ .
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For a fixed $\theta,$ $X(s, \theta)$ is a geodesic and thus

$<\tilde{\nabla}_{X.(\#_{s})}X_{*}(\frac{\partial}{\partial\iota}),X_{*}(\frac{\partial}{\partial\theta})>=0$ ,

which gives

(3.5) $-r_{1}(\theta)r_{1}^{l}(\theta)\alpha^{2}(\theta)$

$+r_{1}(\theta)r_{1}^{l}(\theta)\alpha^{2}(\theta)$ cos $\alpha(\theta)s$

$+r_{1}^{2}(\theta)\alpha^{2}(\theta)<f_{2}(\theta),$ $f_{1}^{l}(\theta)>$ sin $\alpha(\theta)s$

$-r_{1}(\theta)\alpha^{2}(\theta)\beta(\theta)<f_{1}(\theta),f_{3}^{l}(\theta)>s$ cos $a(\theta)s$

– $r_{1}(\theta)\alpha^{2}(\theta)\beta(\theta)<f_{2}(\theta),$ $f_{3}^{\prime}(\theta)>s$ sin $\alpha(\theta)s$

$=0$ .

By linearly independence of functions in (3.5), we obtain

(3.6) $r_{1}(\theta)=const$ .

(3.7) $r_{1}(\theta)<f_{2}(\theta),f_{1}^{l}(\theta)>=r_{1}(\theta)\beta(\theta)<f_{1}(\theta),$ $f_{3}^{l}(\theta)>$

$=r_{1}(\theta)\beta(\theta)<f_{2}(\theta),f_{3}^{t}(\theta)>=0$ .

If $r_{1}(\theta)=0$ , then the surface is a 2-plane $E^{2}$ .
We now assume that $r_{1}(\theta)\neq 0$ , which is denoted by $r_{1}$ .

Case 1) Suppose $f_{1}^{l}(\theta)=f_{2}^{l}(\theta)=f_{3}^{l}(\theta)=0$ for all $\theta\in(0,2\pi)$ . We
may assume that $f_{1}(\theta)=(1,0,0,0),$ $f_{2}(\theta)=(0,1,0,0),$ $f_{3}(\theta)=(0,0,1,0)$ and
$f_{4}(\theta)=(0,0,0,1)$ . In this case, $X(s, \theta)$ can be written as

$X(s,\theta)=$ ( $r_{1}(\cos\alpha(\theta)s-1),$ $r_{1}$ sin $\alpha(\theta)s,$ $\beta(\theta)s$ , $0$),

which is a circular cylinder in $E^{3}$ .
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Case 2) Let $ J=\{\theta\in(0,2\pi)|f_{1}^{\prime}(\theta)\neq 0\}\cup\{\theta\in(0,2\pi)|f_{2}^{\prime}(\theta)\neq 0\}\cup\{\theta\in$

$(0,2\pi)|f_{3}^{l}(\theta)\neq 0\}$ . Suppose $ J\neq\phi$ . Let $\beta(\theta_{0})\neq 0$ for some $\theta_{0}\in J$ . Since $\beta$ is

continuous and $J$ is an open subset of $(0,2\pi)$ , there is an open subset $J_{1}$ containing
$\theta_{0}$ such that $J_{1}\subset J$ . Let $C_{1}$ be a connected component in $J_{1}$ . From (3.7), we
have

$<f_{1}(\theta),$ $f_{2}^{\prime}(\theta)>=<f_{1}(\theta),$ $f_{3}^{l}(\theta)>=<f_{2}(\theta),$ $f_{3}^{\prime}(\theta)>=0$

on $C_{1}$ . Then, we get

(3.8) $f_{i}^{\prime}(\theta)=\lambda_{i}(\theta)f_{4}(\theta)$ ,

for $i=1,2$ and 3, in other words,

$f_{4}(\theta)=-\sum_{i=1}^{3}\lambda_{i}(\theta)f_{i}(\theta)$

$(f_{3}(\theta))=(000$ $-\lambda_{2}(\theta)000$ $-\lambda_{3}(\theta)000$ $\lambda_{1}(\theta)\lambda_{2}(\theta)\lambda_{3}(\theta)0)(f_{1}f_{3}(\theta)f_{2}f_{4}(((\theta\theta\theta))))$

where the $\lambda_{i}’ sare$ some functions on $C_{1}$ .

We now compute $\tilde{\nabla}_{X.(\#_{s})}\tilde{\nabla}_{X.(\#_{s})}X_{*}(\frac{\partial}{\partial\theta})$ on $C_{1}$ .

(3.9) $\tilde{\nabla}_{X.(\#)}\tilde{\nabla}_{X_{*}(\not\in-)}X_{*}(\frac{\partial}{\partial\theta})$

$=$ { $-2r_{1}a(\theta)a^{\prime}(\theta)$ cos $\alpha(\theta)s+r_{1}\alpha^{2}(\theta)\alpha^{l}(\theta)s$ sin $a(\theta)s$ } $f_{1}(\theta)$

$-$ { $2r_{1}\alpha(\theta)a^{\prime}(\theta)$ sin $a(\theta)s+r_{1}a^{2}(\theta)\alpha^{\prime}(\theta)s$ cos $\alpha(\theta)s$ } $f_{2}(\theta)$

$-r_{1}\alpha^{2}(\theta)$ cos $\alpha(\theta)sf_{1}^{\prime}(\theta)-r_{1}\alpha^{2}(\theta)$ sin $\alpha(\theta)sf_{2}^{\prime}(\theta)$ .

We denote $X_{*}(\frac{\partial}{\partial s})$ by $T$ and $X_{*}(\frac{\partial}{\partial\theta})$ by $Q$ . If we identify $T$ with $\frac{\partial}{\partial s}$ and $Q$

with $\frac{\partial}{\partial\theta}$ then we have
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(3.10) $\tilde{\nabla}\tau\tilde{\nabla}\tau Q$

$=\tilde{\nabla}_{T}(\nabla_{T}Q+h(T, Q))$

$=\nabla_{T}\nabla_{T}Q+h(T, \nabla_{T}Q)-A_{h(T,Q)}T+\nabla_{T}^{\perp}h(T, Q)$

$=R(T, Q)T+\nabla_{Q}\nabla_{T}T+\nabla_{[T,Q]}T$

$+h(T, \nabla_{T}Q)-A_{h(T,Q)}T+\nabla_{T}^{\perp}h(T, Q)$

$=R(T, Q)T+\nabla_{Q}\nabla_{T}T+\nabla_{[T,Q]}T$

$+h(T, \nabla_{Q}T)-A_{h(T,Q)}T+(\overline{\nabla}\tau h)(T, Q)$

$+h(\nabla_{T}T, Q)+h(T, \nabla_{Q}T)$ .

Together with (3.9) and (3.10), we get $\tilde{\nabla}_{T}\tilde{\nabla}_{T}Q\rightarrow 0$ as $s\rightarrow 0$ and hence
$2r_{1}\alpha^{\prime}(\theta)\alpha(\theta)f_{1}(\theta)+r_{1}\alpha^{2}(\theta)f_{1}^{\prime}(\theta)=0$ on $C_{1}$ . Then, (3.8) implies

(3.11) $2r_{1}\alpha(\theta)\alpha^{l}(\theta)f_{1}(\theta)+r_{1}a^{2}(\theta)f_{1}^{l}(\theta)$

$=2r_{1}\alpha(\theta)\alpha^{l}(\theta)f_{1}(\theta)+r_{1}\alpha^{2}(\theta)\lambda_{1}(\theta)f_{4}(\theta)$

$=0$ .

By linearly independence of basis in (3.11), we get

(3.12) $a^{l}(\theta)=0$ and $\lambda_{1}(\theta)=0$

for all $\theta\in C_{1}$ . It follows that $\alpha$ is constant on $C_{1}$ . And, $||X_{*}(\frac{\partial}{\partial s})||^{2}=1$ gives

(3.13) $r_{1}^{2}a^{2}(\theta)+\beta^{2}(\theta)=1$ .

Thus $\beta$ is constant on the component $C_{1}$ . Hence, $\alpha,$
$\beta$ and $r_{1}$ are constant on $C_{1}$ .

Then, the curvatures $\kappa_{1}$ and $\kappa_{2}$ are automatically constant on $C_{1}$ . By continuity,
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$C_{1}$ must be $(0,2\pi)$ . Therefore, every geodesic through $0$ is of rank 3 and has the

same constant Frenet curvatures, that is, $M$ is helical at $0$ . By Lemma 2.1, every

geodesic through $0$ must be planar. So this case cannot occur.

Consequently, we have

Theorem 3.4. Let $M$ be a complete connected surface in $E^{4}$ . Then $M$

satisfies $(*)$ if and only if $M$ is a plane $E^{2}$ in $E^{3}$ , a standard sphere $\subset E^{3}$ , a

circular cylinder in $E^{3}$ , a standard torus $S^{1}(a)\times S^{1}(b)\subset E^{4}$ or a Blaschke surface

at $0\subset E^{4}$ diffeomorphic to $RP^{2}$ of the form

$X(s, \theta)=(\frac{1}{\kappa}$ sin $\kappa s$ cos $\theta,$
$\frac{1}{\kappa}$ sin $\kappa s$ sin $\theta,$

$\frac{1}{\kappa}$ (l–cos $\kappa s$ ) $\cos 2\theta$ ,

$\frac{1}{\kappa}(1-\cos\kappa s)\sin 2\theta)$ ,

where $\kappa$ is the Frenet curvature of geodesics through $0$ .

Using this theorem, we can have

Theorem 3.5. Let $M$ be a complete connected surface in $E^{4}$ . Then every

geodesic on $M$ is a W-curve if and only if $M$ is a plane $E^{2}$ in $E^{3}$ , a standard
$sphere\subset E^{3}$ , a circular cylinder in $E^{3}$ or a standard torus $S^{1}(a)\times S^{1}(b)\subset E^{4}$ .
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