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VARIATIONS ON CALIBRATIONS

Benny N. Cheng

Abstract The theory of calibrations and calibrated foliations is developed in a
couple of papers (cf. $[1],[2]$ ) by R.Harvey and H.B.Lawson Jr. This article derives
some formulas for the first and second variation of a calibration. In particular, we
show that on any compact oriented minimal submanifold, the first variation of a
calibration vanishes. We also demonstrate that a classical result on the vanishing
of the Lie derivative of characteristic forms on harmonic foliations also holds for
calibrations.

1 Introduction
Let $M$ be a smooth Riemannian manifold. Among the class of all smooth differential

forms on $M$ , we are interested in a special subclass of forms called calibrations. A cali-
bration $\phi$ is a closed differential p-form having commas 1, where comass denotes the sup
norm

$\Vert\phi\Vert_{x}^{*}=\sup$ { $\phi(\xi):\xi$ is a unit simple p-vector $\in\wedge^{p}T_{x}M$ }.
(Recall that a p-vector is simple if it can be decomposed into a product of l-vectors.)
Calibrations are very useful objects in the theory of minimal surfaces, for the folowing
reasons. A p-dimensional oriented submanifold $N\subseteq M$ is said to be calibrated by $\phi$

if $\phi(\xi)=1$ for every tangent unit p-vector $\xi$ on $N$ . In this case, we say that $N$ is
a $\phi$-submanifold. As shown in [2], $\phi$-submanifolds are homologically mass-minimizing,
i.e. such objects minimizes the volume functional in its homology class. In the case
where $M$ is ordinary Euclidean space, $\phi$-submanifolds are absolutely volume minimizing
surfaces, absolute in the sense that any compact portion of the surface isasolution to the
Plateau problem for the portion’s boundary (replace the submanifolds in the proof above
by compactly-supported pieces). All that we have said so far are also true in the more
general setting of currents, which wil not be discussed here.

2 Variational Formulas
Given a calibration $\phi$ on $M$ and an oriented submanifold $N$ of dimension $p$ , we would

like to investigate the infinitesimal nature of $\phi$ with respect to a small variation of $N$ .
For the purpose of simplifying the proofs, we will restrict ourselves to the case where
$N$ is compact, although this restriction can be easily removed by considering compactly-
supported variations in the general case. Let $\eta$ be a normal vector field on $N$ and let
$f_{t}$ : $N\rightarrow M$ denote a $C^{\infty}$ variation ( $f_{t}$ is an immersion for each t) with respect to
$\eta=f_{0*}(\partial/\partial t)$ for $t\in(-\epsilon, \epsilon)$ , with $f_{0}=id$ . Let $\Vert$ . II denote the norm induced by the
Riemannian metric on $M$ , and define

$\phi_{t}(\xi)=\phi(\frac{f_{t*}\xi}{\Vert f_{t*}\xi\Vert})$ .
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Theorem 1 Let $\phi$ be a calibration on a $C^{\infty}$ Riemannian manifold $M$ with metric $(\cdot, \cdot)$ ,
and $N$ a compact omented submanifold of $M$ with mean curvature vector field H. Then

$\int_{N}\frac{d}{dt}\phi_{\ell}|_{\ell=0}=\int_{N}(H, \eta)\phi$

for all normal vector fields $\eta$ on $N$ .
Proof. $f_{t}(N)$ and $N$ are homologous to each other, hence $f_{\ell}(N)-N=\partial S_{\ell}$ for some
$p+1$-dimensional surface $S_{\ell}$ . Let $ g(t)=\int_{f_{1}\langle N)}\phi$ . By Stoke’s formula and the closure of
$\phi,$ $g(t)=constant$ , and hence $g^{\prime}(0)=0$ . By a change of variables, observe that

$g(t)=\int_{N}\phi(f_{\ell*}\xi)dVol(N)=\int_{N}\phi_{t}(\xi)\Vert f_{\ell*}\xi||dVol(N)$ ,

where $\xi$ is the unit tangent pplane field of $N$ , and the conclusion of the theorem follows
by straightforward differentiation.

The folowing corollaries are some immediate consequence of theorem 1.

Corollary 2 Let $\phi$ and $M$ be as above, and $N\subset M$ a submanifold with compact support
and fixed boundary $\partial N$ . Then the variational formula in Theorem 1 holds for all normal
vector fields $\eta$ which vanishes on $\partial N$ .

Proof. In this case, we choose a variation $f_{\ell}$ with compact support in $N$ and the additional
property that $f_{t}|_{\partial N}=id$ for all $t$ . The rest of the proof is similar to that of theorem 1.

Corollary 3 Let $\phi$ and $M$ be as in Theorem 1. Then $N$ is a compact oriented minimal
submanifold of $M$ if and only if

$\int_{N}\frac{d}{dt}\phi_{\ell}|_{\ell=0}=0$

for all norrteal vector fields $\eta$ on $N$ .

Remark It is interesting to note that corollary 3 applies to any oriented minimal sub-
manifold, including those that are not calibrated by $\phi$ . Of course if $N$ is a $\phi$-submanifold,
then the result is trivial since $\phi_{\ell}$ attains its maximum on the tangent space of $N$ .

Proof. The “only if” part is obvious by theorem 1. For the “if” part, suppose $H\neq 0$ .
Then it is possible to finda normal vector field $\eta$ such that the right-hand side of Theorem
1 is positive, a contradiction.

With respect to a smooth variation $f_{\ell}$ , recal that the second variational formula for
the volume of a minimal submanifold $N$ of $M$ is given by (cf. [4])

$\frac{d^{2}V}{dt^{2}}|_{t=0}=\int_{N}(\Vert\nabla\eta\Vert^{2}+Ric(\eta, \eta)-||A\eta||^{2})$ ,

where Ric is the Ricci curvature tensor of $M$ and $A$ is the second fundamental form of $N$ .
Denote by $I(\eta)$ the integrand of the above integral. If $\int_{N}I(\eta)\geq 0$ for all normal vector
fields $\eta$ , then $N$ is said to be stable.
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Theorem 4 Let $\phi$ be a calibration on a $C^{\infty}$ Riemannian manifold $M$ , and $N$ a compact
oriented minimal submanifold of M. Then

$\int_{N}\frac{d^{2}}{dt^{2}}\phi_{\ell}|_{t=0}=-\int_{N}I(\eta)\phi$

for all normal vector fields $\eta$ on $N$ .

Proof. As noted in the proof of Theorem 1, the function $g(t)=\int_{f\langle N)}\phi=constant$ . Thus
$g^{\prime\prime}(0)=0$ and we obtain the conclusion.

Remark As in the first variational formula, Theorem 5 also holds for compactly sup-
ported submanifolds with fixed boundary. We note that Theorem 5 does not require that
$N$ be calibrated by $\phi$ . However, if $N$ turns out to be calibrated, then by above, it is
stable. This can also be deduced from the area-minimizing property of a $\phi$-submanifold.

We note that many examples of calibrations and their calibrated surfaces can be found
in the papers [1] and [2].

3 Calibrated Foliations
In the case where $M$ is foliated manifold, Theorem 1 is actually a special case of the

following more general result on smooth differential forms. The Lie derivative of $\phi$ with
respect to $\eta$ will denoted by $\mathcal{L}_{\eta}\phi$ .

Theorem 5 Let $M$ be a $C^{\infty}$ foliated Riemannian manifold and $\phi$ a smooth p-form on
M. Let $L$ denote the tangent bundle of the foliation with leaves of dimension $p$ and mean
curvature vector field H. Then on $L_{}$ we have

$\frac{d}{dt}\phi_{\ell}|_{\ell=0}=\mathcal{L}_{\eta}\phi+\langle H,$
$\eta$ ) $\phi$

for all vector fields $\eta$ transversal to $L$ .

Proof. Let $\xi$ be the unit tangent p-vector field on the foliation $\mathcal{F}$ , considered as a section
$of\wedge^{p}L$ . Then for a smooth flow $f_{t}$ with respect to $\eta$ ,

$ f_{\ell}^{*}\phi(\xi)=\phi_{\ell}(\xi)\Vert f_{\ell*}\xi\Vert$ .

Differentiating both sides and evaluating at $t=0$ gives the desired result.

Remark Observe that for $\phi=\chi_{\mathcal{F}}=characteristic$ form of the foliation, then Theorem
4 reduces to a result of Rummler(cf. $[5],p.66$ ), since $\chi_{\mathcal{F}}$ attains its maximum on $L$ . Note
$\phi$ is not assumed to be closed.

The following result leads to a necessary and sufficient condition for a calibration to
be the characteristic form of the foliation. As usual, we define $ker(\phi)=\{\eta : \iota(\eta)=0\}$ .
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Theorem 6 Let $\mathcal{F}$ be a foliation on a $C^{\infty}$ Riemannian manifold $M$ with tangent bundle
$\mathcal{L}$ . Let $\phi$ be a smooth p-form on $M$ of comass 1 such that $\phi(\xi)=1$ for the unit tangent
p-vector field $\xi$ to the leaves, and assume that $dim(ker(\phi))=dim$ $M-p$ . Then the
following are equivalent.
(1) $\phi$ is a calibrvrtion.
(2) $\mathcal{L}_{\eta}\phi=0$ for all vector fields $\eta\in ker(\phi)$ .
(3) $ker(\phi)$ is involutive.

Proof.
(1) $\Rightarrow(2)$ : This follows immediately from the rule $\mathcal{L}_{\eta}=\iota(\eta)d+d\iota(\eta)$ .
(2) $\Rightarrow(3)$ : For any $\zeta,$ $\eta\in ker(\phi)$ , we have

$ 0=\iota(\zeta)\mathcal{L}_{\eta}\phi=\mathcal{L}_{\eta}\iota(\zeta)\phi-\iota([\eta, \zeta])\phi=-\iota([\eta, \zeta])\phi$ ,

hence $[\eta, (]\in ker(\phi)$ .
(3) $\Rightarrow(1)$ : By Frobenius theorem, there exists locally $p$ independent l-forms $\omega_{1},$ $\cdots,\omega_{p}$

generating a differential ideal whose kernel equals $ker(\phi)$ . In particular, in a $10$cal neigh-
borhood $U$ of $M,$ $\phi=\omega_{1}\wedge\cdots\wedge\omega_{p}+1inear$ combination of p-forms each containing some
$\omega_{i}$ . Since $\phi=1$ on the leaves of $\mathcal{F}$, and there is one and only one simple p-form with
comass 1 with the same property, the first term is just the characteristic form $\chi_{\mathcal{F}}$ . Hence
the rest of the terms in the above expression for $\phi$ disappear, and $\phi=\chi_{\mathcal{F}}$ . By prop. 6.4
of $[3],\phi$ is calibration and $we’ re$ done.

Corollary 7 Given a calibmtion $\phi$ of order $p$ on $M$ calibmting the leaves of a foliation
$\mathcal{F}$, then $\phi$ is the characteristic form of $\mathcal{F}$ if and only if $dim(ker(\phi))=m-p$ .
Proof. Necessity is obvious, while the above proof shows that $\phi$ is decomposable, hence
the dimension condition is also sufficient.
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