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ABSTRACT. In this paper, we introduce and study a new class of variational

inequalities. Using the auxiliary principle technique, we prove the existence of a

solution of this class of variational inequalities and suggest a new and novel iterative
algorithm. Several special cases, which can be obtained from the main results, are
also discussed.

1991 AMS(MOS) SUBJECT CLASSIFICATION: $49J40,47K10$ , 92C30

KEYWORDS AND PHRASES: Variational inequalities, Auxiliary principle
technique, Algorithm.

1. INTRODUCTION AND FORMULATION

An elegant theory of variational inequalities has been developed since the early
sixties, which has greatly stimulated the research in pure and applied sciences. In
the last thirty years remarkable progress has been made in the field of variational
inequalities. Variational inequalities arise in models for a large number of mathemat-
ical, physical, regional, engineering and other problems. The theory of variational
inequalities has led to exciting and important contributions to pure and applied sci-

ences which includes work on differential equations, contact problems in elasticity,

fluid flow through porous media, general equilibrium problems in economics and
transportation, unilateral, obstacle, moving and free boundary problems, see, for
example, [1,2,3,4,5,7,8,13,14]. Inspired and motivated by the recent research work
going on in this field, we introduce and consider some new classes of variational
inequalities. We remark that the projection method and its variant form cannot
be applied to study the existence of a solution of these new variational inequalities.

This fact motivated us to use the auxiliary principle technique of Glowinski, Lions
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and Tremolieres [5] and Noor $[10,11]$ to study the problems of the existence of these
variational inequalities. This technique deals with an auxiliary variational inequal-
ity problem and proving that the solution of the auxiliary problem is the solution
of the original variational inequality problem. This technique is quite general and
flexible. This technique is then used to suggest an iterative algorithm for variational
inequalities.

To be more precise, let $H$ be a real Hilbert space on which inner product and
norm are denoted by $<.,$ . $>$ and $||$ . Il respectively. Let $K$ be a nonempty closed
convex set in $H$ . Given $T,g$ : $H\rightarrow H$ continuous operators, we consider the problem
of finding $u\epsilon H$ such that $g(u)\epsilon K$ and

$<Tu,v-g(u)>+b(u,v)-b(u,g(u))\geq 0$ , for all $v\epsilon K$, (1.1)

where the form $b(., .)$ : $HxH\rightarrow R$ is non-differentiable and satisfies the following:

(i) $b(u, v)$ is linear in the first argument.

(ii) $b(u.v)$ is bounded, that is, there exists a.constant $\gamma>0$ such that

$ b(u, v)\leq\gamma$ II $u$ 1111 $v||$ , for all $u,v\epsilon K$, (1.2)

(iii) $b(u,v)-b(u, w)\leq b(u,v-w)$ , for all $u,v,$
$w\epsilon H$ .

The inequalities of the type (1.1) are called the mixed variational inequalities.
We now discuss some special cases.

I. Note that, if $g\equiv I$ , the identity operator, then problem (1.1) is equivalent to
finding $u\epsilon K$ such that

$<Tu,$ $v-u>+b(u, v)-b(u, u)\geq 0$ , for all $v\epsilon K$ , (1.3)

a problem considered and studied by Kikuchi and Oden [7], and Noor [10] by using
quite different techniques. For physical and mathematical formulations, see [1,2,7].

II. If $b(u, v)\equiv j(v)$ , is a convex, lower semi- continuous, proper and non-differentiable
functional, then the problem (1.1) is equivalent to $find\dot{i}gu\epsilon H$ such that $g(u)\epsilon K$ and

$<Tu,$ $v-g(u)>+j(v)-j(g(u))\geq 0$ , for all $v\epsilon K$, (1.4)
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which is called the mixed variational inequality problem and appears to be new one.

III. If $b(v, u)\equiv 0$ , then problem (1.1) reduces to the problem of finding $u\epsilon H$ such
that $g(u)\epsilon K$ and

$<Tu,$ $v-g(u)>\geq 0$ , for all $v\epsilon K$, (1.5)

a problem introduced by Oettli[13], Isac[6] and Noor[9] independently in different
contexts and applications.

IV. If $b(u,v)\equiv 0$ , $K^{\cdot}=$ { $u\epsilon H;<u,$ $v>\geq 0$ for all $v\epsilon K$ } is a polar cone of the
convex cone $K$ in $H$ , and $K\subset g(K)$ , then problem (1.1) is equivalent to finding $u\epsilon H$

such that

$g(u)\epsilon K$, $Tu\epsilon K^{\cdot}$ and $<Tu,g(u)>=0$ , (1.6)

which is known as the general nonlinear complementarity problem. The problem
(1.6) is mainly due to Oettli [13]. For the iterative methods, convergence analysis
and extensions of the general nonlinear complementarity problem (1.3), see $[13,12]$ .
The problem (1.6) is quite general and includes many previously known classes of
linear and nonlinear complementarity problems as special cases.

It is clear that problems (1.3) - (1.6) are special cases of the problem (1.1). In
brief, the problem (1.1) is the most general and unifying ones, which is one of the
main motivations of the paper.

DEFINITION 1.1 A mapping $T:H\rightarrow H$ is said to be:

(a) Strongly monotone, if there exists a constant $\alpha>0$ such that

$<Tu-Tv,$ $u-v>\geq\alpha||u-v||^{2}$ , for all $u,$
$v\epsilon H$.

(b) Lipschitz continuous, if there exists a constant $\beta>0$ such that

11 Tu–Tv $\Vert\leq\beta||u-v\Vert$ , for all $u,$
$v\epsilon H$ .

In particular, it follows that $\alpha\leq\beta$ .
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2. MAIN RESULTS

In this section, we prove the existence of a solution of the mixed variational

inequality problem (1.1) by using the auxiliary principle technique and this is the

main motivation of our next result.

THEOREM 2.1. Let the operators $T,g$ : $H\rightarrow H$ be both strongly monotone
Lipschitz continuous and the form $b(u,v)$ satisfy the conditions $(i)-(iii)$ , then there

exists a solution $u\epsilon H$ such that $g(u)\epsilon K$ and (1.1) holds.

PROOF. We now use the auxiliary principle technique to prove the existence of a
solution of (1.1) using the ideas of Glowinski, Lions and Tremolieres [5] and Noor
$[10,11]$ . For a given $u\epsilon H$ such that $g(u)\epsilon K$ , we consider the problem of findmg a

unique $w\epsilon H$ such that $g(w)\epsilon K,$ $(see[5])$ , satisfying the auxiliary variational inequality

$<w,v-g(w)>+\rho b(u, v)-\rho b(u,g(w))$ $\geq$ $<u,v-g(w)>$

- $\rho<Tu,v-g(w)>$ , for all $v\epsilon K$, (2.1)

where $\rho>0$ is a constant.

Let $w_{1},$ $w_{2}$ be two solutions of (2.1) related to $u_{1},$ $u_{2}\epsilon H$ respectively. It is enough

to show that the mapping $u\rightarrow w$ has a fixed point belonging to $H$ satisfying (1.1).

In other words, it is sufficient to show that for well chosen $\rho>0$ ,

Il $ w_{1}-w_{2}||\leq\theta$ II $u_{1}-u_{2}||$ ,

with $0<\theta<1$ , where $\theta$ is independent of $u_{1}$ and $u_{2}$ . Taking $v=g(w_{2})$ (respectively
$g(w_{1}))$ in (2.1) related to $u_{1}$ (respectively $u_{2}$), we have

$<w_{1},g(w_{2})-g(w_{1})>+\rho b(u_{1},g(w_{2}))-\rho b(u_{1},g(w_{1}))$ $\geq$ $<u_{2},g(w_{2})-g(w_{1})>$

$-$ $\rho<Tu_{1},$ $g(w_{2})-g(w_{1})>$

and

$<w_{2},g(w_{1})-g(w_{2})>+\rho b(u_{2},g(w_{1}))-\rho b(u_{2},g(w_{2}))$ $\geq$ $<u_{2},g(w_{1})-g(w_{2})>$

$-$ $\rho<Tu_{2},$ $g(w_{1})-g(w_{2})>$
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Adding these inequalities and using (iii), we have

$<w_{1}-w_{2},g(w_{1})-g(w_{2})>$ $\leq$ $<u_{1}-u_{2},g(w_{1})-g(w_{2})>+\rho b(u_{1}-u_{2}, g(w_{2})-g(w_{1}))$

$-$ $\rho<Tu_{1}-Tu_{2},$ $g(w_{1})-g(w_{2})>$

$=$ $<u_{1}-u_{2}-\rho(Tu_{1}-Tu_{2}),$ $g(w_{J})-g(wj>$

$+$ $\rho b(u_{1}-u_{2},g(w_{2})-g(w_{1})>$ ,

from which using (1.2), we obtain

$\eta$ II $ w_{1}-w_{2}||^{2}\leq$ {II $ u_{1}-u_{2}-\rho(Tu_{1}-Tu_{2})||+\rho\gamma$ Il $u_{1}-u_{2}$ 1111} II $g(w_{1})-g(w_{2})$ II
$\leq\xi$ { $||u_{1}-u_{2}-\rho(Tu_{1}-Tu_{2})$ II $+\rho\gamma$ II $u_{1}-u_{2}||$ } $||w_{1}-w_{2}||$ , (2.2)

where $\eta>0$ and $\xi>0$ are the strongly monotonicity and Lipschitz continuity
constants of the operator $g$ .

Since $T$ is a strongly monotone Lipschitz continuous operator, so

11 $u_{1}-u_{2}-\rho(Tu_{1}-Tu_{2})||^{2}$ $\leq$ $||u_{1}-u_{2}||^{2}-2\rho<u_{1}-u_{2}$ , Tu $1^{-Tu_{2}>}$

$+$ $\rho||Tu_{1}-Tu_{2}||^{2}$

$\leq$ $(1-2\rho\alpha+\rho^{2}\beta^{2})\Vert u_{1}-u_{2}||^{2}$ (2.3)

Combining (2.2) and (2.3), we obtain

11 $w_{1}-w_{2}$ II $\leq$ $\frac{\rho\gamma+\sqrt{1-2\alpha\rho+\beta^{2}\rho^{2}}}{k}||u_{1}-u_{2}\Vert$ , where $k=\frac{\eta}{\zeta}\neq 0$

$=$ $\theta||u_{1}-u_{2}||$ ,

with $\theta=L^{\gamma\lrcorner\lrcorner}+\ell k$’ and $t(\rho)=\sqrt{1-2\alpha\rho+\beta^{2}\rho^{2}}$.

We have to show that $\theta<1$ . It is clear that $t(\rho)$ assumes its minimum value for
$\overline{\rho}=\frac{\alpha}{\beta^{2}}$ with $t(\overline{\rho})=\sqrt{1-(\frac{\alpha^{2}}{\beta^{2}})}$. For $\rho=\overline{\rho},\rho\gamma+t(\overline{p})<k$ implies that $\rho\gamma<k$ and
$\gamma k<\alpha$ . Thus it follows that $\theta<1$ for all $\rho$ with

$|\rho-\frac{\alpha-k\gamma}{\beta^{2}-\gamma^{2}}|$ $<$
$\frac{\sqrt{(\alpha-k\gamma)^{2}-(\beta^{2}-\gamma^{2})(1-k^{2})}}{\beta^{2}-\gamma^{2}}$

$\rho\gamma<k,\gamma k<\alpha$ ,

$k<1$ and $\alpha>k\gamma+\sqrt{(\beta^{2}-\gamma^{2})(1-k^{2})}$
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Since $\theta<1$ , so the mapping $u\rightarrow w$ defined by (2.1) has a fixed point, which is

the solution of (1.1), the required result.

REMARK 2.1. If $g=I$ , the identity operator, then problem (2.1) is equivalent

to finding $u\epsilon H$ for a given $u\epsilon H$ such that

$<w,$ $v-w>+\rho b(u, v)-\rho b(u, w)\geq<u,v-w>-\rho<Tu,$ $v-w>$ , (2.4)

for all $v\epsilon K$ and $\rho>0$ , is a constant. From the proof of Theorem 2.1, we see that
$k=1$ and $\theta=\rho\gamma+t(\rho)<1$ for $0<p<2\frac{\alpha-\tau}{\beta^{2}-\rho^{2}}$ , $\gamma<\alpha$ and $\rho\gamma<1$ , so the
mapping $u\rightarrow w$ defined by (2.4) has a fixed point, which is the solution of the
variational inequality (1.3) studied by Kikuchi and Oden [7] in elasticity. Similarly

for appropriate choices of the operators $T,g$ , the form $b(u, v)$ and the convex set $K$ ,
we can apply Theorem 2.1 to prove the existence of a solution for various classes of
variational inequalities studied previously.

REMARK 2.2. It is clear that if $w=u$ , then $w$ is the solution of the variational
inequality (1.1). This observation enables us to suggest an iterative algorithm for
finding the approximate solution of the variational inequality (1.1) and its various
special cases.

ALGORITHM 2.1. Given the initial value $w_{0}$ , solve the problem (2.1) with
$u=w_{n}$ . If Il $ w_{n+1}-w_{\mathfrak{n}}||\leq\epsilon$ , for given $\epsilon>0$ , stop. Otherwise repeat the process
with $n=n+1$ and so on.
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