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On self-dual almost Hermitian 4-manifolds*
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1. Introduction

For an oriented Riemannian 4-manifold $M$ , the space $\wedge^{2}M$ of 2-forms on

$M$ splits with respect to the star $operator*into\wedge^{2}M=\bigwedge_{+}^{2}M\oplus\bigwedge_{-}^{2}M$ , where

$\bigwedge_{\pm}^{2}M$ are eigenspaces corresponding to the $eigenvalues\pm 1$ . The Weyl conformal

curvature tensor $W$ viewed as an End$(TM)$-valued 2-form decomposes into

$W=W+\oplus W-and$ we say that $M$ is self-dual if $W_{-}=0$ .
An almost Hermitian 4-manifold $(M, g, J)$ is said to be of pointwise constant

holomorphic sectional curvature if the holomorphic sectional curvature of $M$ is

constant for every unit tangent vectors and depends only on points of $M$ . S.

Tachibana ([7]) introduced the notion of $Ricci*$-tensor on an almost Hermitian

manifold $M$ , and we say that $M$ is $weakly*$-Einstein if the Ricci $*$-tensor $\rho^{*}$

takes the form $\rho^{*}=\lambda^{*}g$ for some differentiable function $\lambda^{*}$ on $M$ . In particular,

if $\lambda^{*}$ is constant on $M$ , then $M$ is said to $be*$-Eisenstein (see also [5] and [6]).

The main purpose of this paper is to prove the followings

Theorem A. An almost Hermi $t$ian 4-manifold $(M,g, J)$ is self-dual, an $d$ the

components of the Ricci tensor $\rho$ of $M$ satisfy

(1.1) $\rho_{11}+\rho_{22}=\rho_{33}+\rho_{44},$ $\rho_{14}=\rho_{23},$ $\rho_{13}+\rho_{24}=0$ ,

or the components of the $Rcci*$-tensor $\rho^{*}$ of $M$ satisfy
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(1.2) $\rho_{11}^{*}=\rho_{22}^{*}=\rho_{33}^{*}=\rho_{44}^{*},$ $\rho_{14}^{*}=\rho_{23}^{*},\rho_{13}^{*}+\rho_{24}^{*}=0$

for any loc$al$ orthonormal fram $e$ field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ if an $d$ only if
$M$ is of pointwise constan $t$ holomorphi $c$ sectional curvature.

The conditions (1.1) and (1.2) are always satisfied on an almost Hermitian
4-manifold of pointwise constant holomorphic sectional curvature (see Lemma

3.3). The following is immediate from Theorem $A$ , and the Einstein case is
proved by T. Koda ([3]).

Corollary B. Every self-du$al$ almost Hermitian Einstein or $weakly*$-Einstein

4-manifold is of pointwise constan $t$ holomorphic sectional curvature.

The following is somewhat interesting.

Theorem C. Assume that an almost Hermitian 4-manifold $(M,g, J)$ of

pointwise constant holomorphi $c$ sectional curvature satisfies

(1.3) $g(R(JX, JY)JZ,$ $JW$) $=g(R(X, Y)Z,$ $W$)

for any vector fields $X,$ $Y,$ $Z$ and $W$ on M. Then $M$ is both Einstein an $d$ weffiy
$*$ -Einstein.

A.Gray and L.Vanhecke ([2]) have constructed examples of Hermitian mani-
folds of pointwise constant holomorphic sectional curvature. We may show that

their examples are $weakly*$-Einstein and not Einstein. In the last section, we
shall give the proof when the dimension is equal to four.

The authors would like to express their hearty thanks to Professor K. Seki-
gawa for many valuable suggestions.

2. Self-dual almost Hermitian 4-manifolds
Let $(M,g)$ be a Riemannian 4-manifold and $\nabla$ be the Riemannian connection

with respect to the metric $g$ . The Riemannian curvature tensor $R$ , Ricci tensor
$\rho$ , Ricci operator $Q$ and scalar curvature $\tau$ of $M$ are defined by
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(2.1) $\rho(X, Y)=trace(Z\rightarrow R(Z,X)Y),$ $g(QX, Y)=\rho(X, Y)$ ,$\{$

$R(X, Y)Z=[\nabla_{X}, \nabla_{Y}]Z-\nabla_{[X,Y]}Z$ ,

$\tau=trace(X\rightarrow QX)$

for any vector fields $X,$ $Y$ and $Z$ on $M$ . The Weyl conformal curvature tensor

$W$ of $M$ is given by

(2.2)

$W(X, Y)Z=R(X, Y)Z-\frac{1}{2}\{\rho(Y, Z)X-\rho(X, Z)Y$

$+g(Y, Z)QX-g(X, Z)QY\}+\frac{\tau}{6}\{g(Y, Z)X-g(X, Z)Y\}$ ,

and satisfies the identity

(2.3) trace$(Z\rightarrow W(Z,X)Y)=0$

for any vector fields $X,$ $Y$ and $Z$ on $M$ . Let $\{e_{1}, e_{2}, e_{3}, e_{4}\}$ be any local frame

field on $M$ . With respect to the frame, we denote the components of $R$ and $\rho$ by

$R_{kji^{h}}$ and $\rho_{ji}$ respectively, where here and in the sequel the indices $k,j,$ $i,$
$\ldots$

run over the range {1, 2, 3, 4}, unless otherwise stated. Then it follows froIn

(2.1) that

(2.4) $\left\{\begin{array}{l}R_{1212}-R_{3434}=\frac{\tau}{2}-(\rho_{11}+\rho_{22})\\R_{1313}-R_{2424}=\frac{\tau}{2}-(\rho_{11}+\rho_{33})\\R_{1414}-R_{2323}=\frac{\tau}{2}-(\rho_{11}+\rho_{44})\end{array}\right.$

where $R_{kjih}=g(R(e_{k}, e_{j})e_{i},$ $e_{h}$ ).

Let $(M,g, J)$ be an almost Hermitian 4-manifold oriented by the volume form

$\frac{1}{2}\Omega^{2}$ , where $\Omega$ is the Kaehler form defined by

$\Omega(X, Y)=g(X, JY)$
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for any vector fields $X$ and $Y$ on $M$ . Let $\{ei\}=\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ be

a positively oriented orthonormal basis for the tangent space $T_{p}(M),$ $p\in M$ ,

and $\{e^{1}, e^{2}, e^{3}, e^{4}\}$ be the dual basis. Then the set { $e^{1}$ A $e^{2}-e^{3}$ A $e^{4},$ $e^{1}\wedge e^{3}-$

$e^{4}$ A $e^{2},$ $e^{1}$ A $e^{4}-e^{2}$ A $e^{3}$ } is a basis for the eigenspace $(\bigwedge_{-}^{2}M)_{p}$ . Therefore we

see that $M$ is self-dual if and only if the components of the Weyl conformal

curvature tensor $W$ satisfy

(25) $W_{12ih}=W_{34ih},$ $W_{13ih}=W_{42ih},$ $W_{14ih}=W_{23ih}$

for the local orthonormal frame field $\{e;\}$ . We shall prove

Lemma 2.1. Let $(M,g, J)$ be an aimost Hermi $t$ian 4-manifold. Then $M$ is

self-du $al$ if and only if the components of the Weyl conformal curva $t$ure tensor
$W$ satisfy

(2.6) $W_{123h}=W_{343h}$ an $d$ $W_{132h}=W_{422h}$

for any local orthonormal fram$e$ field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ .

Proof. The relation (2.6) folows from (2.5). Conversely, by putting $h=1$

into the first of (2.6), we obtain $W_{1213}=W_{3413}$ . Since we have $W_{1231}=$

$-W_{4234}$ and $ W_{3431}=-W_{2421}\backslash \cdot$ by (2.3), we get $W_{1224}=W_{3424}$ and $W_{1242}=$

$W_{3442}$ . Similarly, by putting $h=2,4$ into the first of (2.6) and using (2.3),

we also obtain $W_{1223}=W_{3423},$ $W_{1214}=W_{3414},$ $W_{1241}=W_{3441},$ $W_{1243}=$

$W_{3443},W_{1212}=W_{3412},$ $W_{1221}=W_{3421}$ . Summing up these results, we see that

the first of (2.6) yields the first of (2.5). By an argument similar to the above,

we also see that the second of (2.6) yields the second of (2.5). The third of (2.5)

follows from the first and second of (2.5).
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It is immediate from (2.2) and Lemma 2.1

Proposition 2.2. An almost Hermitian 4-manifold $(M,g, J)$ is self-dual if

an $d$ only if the components of the Riemannian curvature $R$ an$d$ Ricci tensor $\rho$

of $M$ satisfy

(2.7) $\left\{\begin{array}{l}R_{1231}=R_{3431}+\frac{1}{2}(\rho_{23}+\rho_{14})\\R_{1232}=R_{3432}+\frac{1}{2}(\rho_{24}-\rho_{13})\\R_{1234}=R_{3434}+\frac{1}{2}(\rho_{33}+\rho_{44})-\frac{\tau}{6}\\R_{1323}=R_{4223}-\frac{1}{2}(\rho_{12}+\rho_{34})\\R_{1324}=R_{4224}-\frac{1}{2}(\rho_{22}+\rho_{44})+\frac{\tau}{6}\end{array}\right.$

for any local orthonornal frame field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ , where $\tau$ is

the $sc$alar curvature of $M$ .

A tensor field $\rho^{*}$ of type $(0,2)$ defined by

(2.8) $\rho^{*}(X, Y)=g(Q^{*}X, Y)=\frac{1}{2}trace(Z\rightarrow R(X, JY)JZ)$

for any vector fields $X,$ $Y$ and $Z$ is called the $Ricci*$ -tensor of $M$ . The trace of

the linear endomorphism $Q^{*}$ is denoted by $\tau^{*}$ and called $the*$-scalar curvature

of $M$ . It follows (2.8) that

(2.9) $\rho^{*}(X, Y)=\rho^{*}(JY, JX)$

for any vector fields $X$ and $Y$ on $M$ . With respect to the local orthonormal

frame field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ on $M$ , it is easily seen from (2.4), (2.8)

and (2.9) that the components of the $Ricci*$-tensor $\rho^{*}$ satisfy

$\rho_{11}^{*}-\rho_{33}^{*}=p_{22}^{*}-\rho_{44}^{*}=\rho_{11}+\rho_{22}-\frac{\tau}{2}$ , $\rho_{12}^{*}=\rho_{21}^{*}=\rho_{34}^{*}=\rho_{43}^{*}=0$ ,

$\rho_{13}^{*}+\rho_{24}^{*}=\rho_{31}^{*}+\rho_{42}^{*}=\rho_{13}+\rho_{24}$ , $\rho_{14}^{*}-\rho_{23}^{*}=\rho_{41}^{*}-\rho_{32}^{*}=\rho_{14}+\rho_{23}$ .
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Therefore we can state

Lemma 2.3. Let $(M,g, J)$ be an almost Hermitian 4-manifold. Then the

components of the Ricci tensor $\rho$ of $M$ satisfy (1.1) if an $d$ only if those of

the $Rcci*$-tensor $\rho^{*}$ of $M$ satisfy (1.2) for any local orthonormal fram $e$ field
$\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ .

3. Pointwise constant holomorphic sectional curvatures

The holomorphic sectional curvature $H(X)$ for a unit vector field $X$ on an al-

most Hermitian manifold $(M,g, J)$ is the sectional curvature $g(R(X, JX)JX,X)$ .
In the 4-dimensional case, we can state

Proposition 3.1. $An$ aimost Hermitian 4-manifold $(M,g, J)$ is ofpointwise

constant holomorphi $c$ sectional curvature if and only if the components of the

Riemannian curvature tensor $R$ of $M$ satisfy

(3.1) $\left\{\begin{array}{ll}R_{1212}=R_{3434}, & R_{1334}+R_{2434}=0, R_{1434}=R_{2334},\\R_{1313}+R_{2424}+ & (R_{1234}+R_{1324})=2R_{1212},\\R_{1414}+R_{2323}+ & (R_{1234}-R_{1423})=2R_{1212},\\R_{1314}+R_{1424}= & +R_{2324},\\R_{1213}+R_{1224}= & , R_{1214}=R_{1223}\end{array}\right.$

for any loc$aI$ orthonormal $A\cdot ame$ field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ on $M$ .

Proof. By definition, $M$ is of pointwise constant holomorphic sectional

curvature if and only if it satisfies

(3.2) $g(R(X, JX)JX,X)=R_{3443}$
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for $X=\Sigma_{i}a;e_{i}$ , where $a_{1},$ $a_{2},$ $a_{3}$ and $a_{4}$ are any scalar functions such that

$\Sigma_{i}a_{i}^{2}=1$ . Let $x=a_{1}^{2}+a_{2}^{2},$ $y=a_{2}a_{3}-a_{1}a_{4}$ and $z=a_{1}a_{3}+a_{2}a_{4}$ . Then the

functions $x,$ $y$ and $z$ are linearly independent, and satisfy $x^{2}=x-y^{2}-z^{2}$ . By

a simple computation, we see that the equation (3.2) implies

$(R_{1212}-R_{3434})x+2(R_{1334}+R_{2434})y+2(R_{1434}-R_{2334})z$

$+\{R_{1313}+R_{2424}+2(R_{1234}+R_{1324})-R_{1212}-R_{3434}\}y^{2}$

$+\{R_{1414}+R_{2323}+2(R_{1234}-R_{1423})-R_{1212}-R_{3434}\}z^{2}$

$+2(R_{1323}+R_{2324}-R_{1314}-R_{1424})yz+2(R_{1334}+R_{2434}-R_{1213}-R_{1224})xy$

$+2(R_{1223}+R_{1434}-R_{1214}-R_{2334})zx$

$=0$ .

This completes the proof.

Remark 3.2. S.Tanno ([8]) has studied the curvature identities for an n-

dimensional almost Hermitian manifold to be of pointwise constant holomorphic

sectional curvature. By his results, Proposition 3.1 will be also obtained.

As for the Ricci tensor and $Ricci*$-tensor of $M$ , we can state

Lemma 3.3. Let $(M,g, J)$ be an almost Hermitian 4-manifold of pointwise

constant holomorphic sectional $c$urvature. Then the components of the $Ri$cci

tensor $\rho$
$and$ &cci*-tensor $\rho^{*}$ of $M$ satisfy (1.1) an$d(1.2)$ respectively for any

local orthonormal frame field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ on $M$ .

Proof. It follows from the first, fourth and fifth of (3.1) that

$\rho_{11}+\rho_{22}=\rho_{33}+\rho_{44}=6(R_{1234}+R_{1212})$ .

By the second and seventh of (3.1), we can verify that $\rho_{14}=\rho_{23}$ . Since the

third and eighth of (3.1) imply $\rho_{13}+\rho_{24}$ , we see that (1.1) is satisfied on $M$ .
The remaining part of the Lemma folows from Lemma 2.3.
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4. Proof of Theorems

Let $(M,g, J)$ be a self-dual almost Hermitian 4-manifold. Assume that the

components of the Ricci tensor $p$ of $M$ satisfy (1.1) for a local orthonormal

frame field $\{e_{1}, e_{2}=Je_{1}, e_{3}, e_{4}=Je_{3}\}$ . Then the first of (3.1) folows from the

first relations of (1.1) and (2.4). Flrom the first of (2.7) and the second of (1.1),

we get the second and seventh of (3.1). We also obtain the third and eighth of

(3.1) from the third of (1.1) and the second of (2.7). It is easily seen that the

fourth of (2.7) is equivalent to the sixth of (3.1). Since we have

$R_{1234}+R_{1324}=R_{3434}+R_{4224}+\frac{1}{2}(\rho_{33}-\rho_{22})$

from the third and fifth of (2.7), then we get the fourth of (3.1) by use of the

first of (3.1) and the definition of Ricci tensor. From the third of (2.7), we

obtain

$R_{1234}=-\frac{2}{3}R_{1212}+\frac{1}{6}(R_{1331}+R_{2442})+\frac{1}{6}(R_{1441}+R_{2332})$

by virtue of the first of (3.1). Applying the fourth of (3.1) and the identity
$R_{1324}=R_{1234}-R_{1432}$ to the above equation, we have the fifth of (3.1). There-
fore, by Proposition 3.1, $M$ is of pointwise constant holomorphic sectional cur-

vature.

Conversely, let $(M,g, J)$ be an almost Hermitian 4-manifold of pointwise

constant holomorphic sectional curvature. Then, by Lemma 3.3, we have (1.1).

Since it follows from the fourth and fifth of (3.1) and the identity $R_{1324}+R_{1432}=$

$-R_{1243}$ that

$6R_{1234}=-6R_{1212}+\rho_{11}+\rho_{22}$ ,

then we get the third of (2.7) by taking account of the first of (1.1) and (3.1).
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Rom the fourth of (3.1), we obtain

$2R_{1324}=\frac{\tau}{3}-(\rho_{33}+\rho_{44})+R_{1331}+R_{4224}$

by virtue of the third of (2.7) and first of (3.1). The above equation and the first

of (3.1) yield the fifth of (2.7). The first and second of (2.7) follows from the

seventh and eighth of (3.1), respectively, by use of (1.1). We have already seen

that the fourth of (2.7) is equivalent to the sixth of (3.1). Thus, by Proposition

2.2, $M$ is self-dual.

The remaining part of Theorem A folows from Lemmas 2.3 and 3.3. This

completes the proof of Theorem A.

Remark 4.1. T. Koda and K. Sekigawa ([4]) announced that an almost

Hermitian 4-manifold of pointwise constant holomorphic sectional curvature is

self-dual.

If $M$ is Einstein, then $M$ satisfies (1.1). Provided that $M$ is weakly $*-$

Einstein, we also have (1.2). Thus Corollary $B$ is immediate from Theorem

A.

Now we shall prove Theorem C. First of all, we have (1.1) and (1.2) by

Lemma 3.3. It folows from (1.3) that

(4.1) $p(X, Y)=p(JX, JY)$

for any vector fields $X$ and $Y$ on $M$ . Thus we see from (1.1) and (4.1) that

$\rho_{11}=\rho_{22}=\rho_{33}=\rho_{44}$ and $0$ otherwise for the orthonormal frame field $\{e_{1},$ $e_{2}=$

$Je_{1},$ $e_{3},$ $e_{4}=Je_{3}$ }, which means that $M$ is Einstein.

It follows from (1.3), (2.8) and (2.9) that

(4.2) $\rho^{*}(X, Y)=\rho^{*}(Y, X)=\rho^{*}(JX, JY)$
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for any vector fields $X$ and $Y$ on $M$ . By taking account of (1.2) and (4.2),

we see that $\rho_{11}^{*}=\rho_{22}^{*}=p_{33}^{*}=\rho_{44}^{*}$ and $0$ otherwise. Thus $M$ is also a weakly
$*$-Einstein manifold.

5. Examples

Let $M$ be an open connected domain of $C^{2}\cong R^{4}$ , and $(z^{1}, z^{2})=(x^{1},y^{1},x^{2}, y^{2})$ ,
$z^{i}=x^{i}+\sqrt{-1}y^{i}$ , be the canonical coordinate system of $M$ , where here and in
the sequel the indices $i,j$ run over the range {1, 2}. For the canonical basis
$\{\partial/\partial x^{1},\partial/\partial y^{1},\partial/\partial x^{2}, \partial/\partial y^{2}\}$ for the tangent space $T_{p}(M),$ $p\in M$ , we define
an endomorphism $J:T_{P}(M)\rightarrow T_{p}(M)$ by

(5.1) $J\partial/\partial x^{i}=\partial/\partial y^{i}$ and $J\partial/\partial y^{i}=-\partial/\partial x^{i}$ .

Then $J$ is a complex structure on $M$. Let $<,$ $>be$ the canonical metric on $M$ ,
that is,

$<\partial/\partial x^{i},$ $\partial/\partial x^{j}>=\delta_{ij},$ $<\partial/\partial x^{i},\partial/\partial y^{j}>=0,$ $<\partial/\partial y^{i},\partial/\partial y^{j}>=\delta_{\ddot{v}}$ .

Then we see that $(M, <, >, J)$ is a Kaehlerian 4-manifold.
Let $f$ : $M\rightarrow \mathbb{C}$ be a $non-ear$ holomorphic function such that $Ref>-1$ ,

and we put $\sigma=-log(1+Ref)$ . As a conformal change of $<,$ $>$ , we consider a
Riemanmian metric $g$ on $M$ such that

(5.2) $g(X,Y)=exp(2\sigma)<X,Y>$

for any vector fields $X$ and $Y$ on $M$ . Let $\nabla$ and $D$ be the Riemannian con-
nections of $M$ with respect to the metrics $g$ and $<,$ $>$ respectively. Then we
have

(5.3) $\nabla xY=D_{X}Y+(X\sigma)Y+(Y\sigma)X-<X,Y>grad\sigma$
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for any vector fields $X$ and $Y$ , where $ grad\sigma$ is the gradient vector field of $\sigma$

given by

$\partial\sigma\partial$ $\partial\sigma\partial$

(5.4) grad $\sigma=\Sigma_{i}(\overline{\partial x^{i}}\overline{\partial x^{i}}+\overline{\partial y^{i}}\overline{\partial y^{i}})$
.

It is easily seen &om (5.1) and (5.2) that $(M,g, J)$ is a Hermitian 4-manifold.

Now we define a linear endomorphism $\Psi$ : $T_{p}(M)\rightarrow T_{p}(M)$ by

(5.5) $\Psi(X)=-D_{X}grad\sigma+(X\sigma)grad\sigma$

for any $X\in T_{p}(M)$ . Then the 2-form $\psi$ on $M$ defned by

$\psi(X, Y)=<\Psi(X),Y>$

is bilinear and symmetric for $X$ and $Y$ , and is given by

(5.6) $\psi(X, Y)=(D_{X}Y)\sigma-XY\sigma+(X\sigma)(Y\sigma)$

for any vector fields $X$ and $Y$ on $M$ . By a straightforward computation, the

Riemanmian curvature tensor $R$ of $M$ with respect to the connection $\nabla$ is given

by

(5.7) $R(X,Y)Z=\psi(Y, Z)X-\psi(X, Z)Y$

$+<Y,$ $Z>\Psi(X)-<X,$ $Z>\Psi(Y)$

$-+||grad\sigma||^{2}(<X, Z>Y-<Y, Z>X)$

for any vector fields $X,$ $Y$ and $Z$ on $M$ .
Let $f=u+\sqrt{-1}v$ , where $u=Ref$ and $v=Imf$ . Since $f$ is a holomorphic

function on $M$ , we have

(5.8) $\frac{\partial^{2}u}{\partial x^{i}\partial x^{j}}=-\frac{\partial^{2}u}{\partial y^{i}\partial y^{j}},$ $\frac{\partial^{2}u}{\partial x^{i}\partial y^{j}}=-\frac{\partial^{2}v}{\partial x^{i}\partial x^{j}}$ .

Since $\sigma=-log(1+u)$ , then, using (5.8), we obtain

–173 –



(5.9) $\left\{\begin{array}{l}\frac{\partial^{2}\sigma}{\partial x^{i}\partial x^{j}}=\frac{\partial\sigma}{\partial x^{i}}\frac{\partial\sigma}{\partial x^{j}}-\frac{1}{1+u}\frac{\partial^{2}u}{\partial x^{i}\partial x^{j}’}\\\frac{\partial^{2}\sigma}{\partial x^{i}\partial y^{j}}=\frac{\partial\sigma}{\partial x^{i}}\frac{\partial\sigma}{\partial y^{j}}+\frac{1}{1+u}\frac{\partial^{2}v}{\partial x^{2}\partial x^{j}’}\\\frac{\partial^{2}\sigma}{\partial y^{i}\partial y^{j}}=\frac{\partial\sigma}{\partial y^{i}}\frac{\partial\sigma}{\partial y^{j}}+\frac{1}{1+u}\frac{\partial^{2}u}{\partial x^{1}\partial x^{j}}\end{array}\right.$

We choose an orthonormal $baeis\{e_{1}=exp(-\sigma p/\partial x^{1}, e_{2}=Je_{1}=exp(-\sigma)\partial/\partial y^{1}$ ,
$e_{3}=exp(-\sigma)\partial/\partial x^{2},$ $e_{4}=Je_{3}=exp(-\sigma)\partial/\partial y^{2}$ } for $T_{p}(M)$ with respect to the

metric $g$ . We put

$u_{ij}=\frac{\partial^{2}u}{\partial x^{i}\partial x^{j}}$ and $v_{ij}=\frac{\partial^{2}v}{\partial x^{i}\partial x^{j}}$ .

Then, by taking account of (5.4), (5.5) and (5.9), the linear endomorphism $\Psi$

is given by

(5.10) $\Psi=\frac{1}{1+u}\left(\begin{array}{llll}u_{ll} & -v_{ll} & u_{l2} & -v_{l2}\\-v_{ll} & -u_{ll} & -v_{l2} & -u_{l2}\\u_{l2} & -v_{l2} & u_{22} & -v_{22}\\-v_{l2} & -u_{l2} & -v_{22} & -u_{22}\end{array}\right)$

with respect to the basis $\{e_{1}, e_{2}, e_{3}, e_{4}\}$ .
Since the RiemUlnian curvature tensor $R$ of $(M,g, J)$ can be written as

(5.11)
$g(R(X,Y)Z,$ $W$) $=\psi(Y, Z)g(X, W)-\psi(X,Z)g(Y,W)+g(Y, Z)\psi(X, W)$

$-g(X, Z)\psi(Y, W)+exp(-2\sigma)||grad\sigma||^{2}\{g(X, Z)g(Y,W)$

$-g(Y, Z)g(X, W)\}$

for any vector fields $X,$ $Y,$ $Z$ and $W$ on $M$ , then, by comparing (3.1) with (5.10)

and (5.11), we see that $(M,g, J)$ is a Hermitian -manifold of pointwise constant

holomorphic sectional $curvature-exp(-2\sigma)||grad\sigma||^{2}$ (see also A. Gray and L.

Vanhecke [2]).
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Since $(M,g, J)$ is conformaly flat and not of constant sectional curvature, it

is not Einstein. This fact can be also checked explicitly by use of (5.10) and

(5.11). Since it folows from (2.8), (5.10) and (5.11) that

$\rho_{11}^{*}=\rho_{22}^{*}=\rho_{33}^{*}=\rho_{44}^{*}=-exp(-2\sigma)||grad\sigma||^{2}$ ,

$\rho_{13}^{*}=-R_{1412}-R_{1434}=\psi_{24}+\psi_{13}=0$ ,

$\rho_{14}^{r}=-\psi_{23}+\psi_{14}=0$

and so on, where $\psi_{ij}$ are the components of $\psi$ for the basis $\{e_{1}, e_{2}, e_{3}, e_{4}\}$ of

$T_{p}(M)$ , then we have

$\rho^{*}(X, Y)=-exp(-2\sigma)||$grad $\sigma||^{2}g(X, Y)$

for any vector fields $X$ and $Y$ on M. $S\ovalbox{\tt\small REJECT} g$ up these results, we see that

$(M, g, J)$ is a Hermitian 4-manifold of pointwise constant holomorphic sectional

curvature, which is not Einstein but $weakly*$-Einstein.
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