A Note on Actions of Compact Matrix Quantum Groups on von Neumann Algebras

Yuji Konishi

Abstract. In this paper we consider the object $\widetilde{S_{\mu}U(2)}$ coming from $S_{\mu}U(2)$ defined by S. L. Woronowicz, and construct an action of $\widetilde{S_{\mu}U(2)}$ on the Powers factor R_{λ} if $\lambda=\mu^2$. Moreover we show that the fixed point algebra under the action is the AFD II_1 -factor which is generated by Jones projections.

1. Introduction

In [8] Woronowicz introduced a concept of a compact matrix quantum group (a compact matrix pseudogroup) which is a certain deformation of the dual object of compact groups. Let G = (A, u) be a compact matrix quantum group and $\Phi : A \longrightarrow A \otimes_{min} A$ be a *homomorphism called a comultiplication where A is a unital C^* -algebra as in [8]. The comultiplication Φ is an action of G on itself.

In [3] the author, Nagisa and Watatani constructed an action of G on the Cuntz algebra \mathcal{O}_n or the UHF-algebra M_n^{∞} of type n^{∞} . The forms of the actions ψ and ψ' were represented as follows:

$$\psi: \mathcal{O}_n \longrightarrow \mathcal{O}_n \otimes_{min} A, \qquad \psi': M_n^{\infty} \longrightarrow M_n^{\infty} \otimes_{min} A.$$

Especially in [3] they considered the actions of $S_{\mu}U(2)$ (Woronowicz, [9]) on \mathcal{O}_2 and M_2^{∞} , and showed the fixed point algebras under the actions were generated by Jones projections. This means a C^* -algebra version of a deformation of the result of the case for the action of SU(2) by Jones in [1] and [2].

In this paper we construct an action of $S_{\mu}U(2)$ coming from $S_{\mu}U(2)$ on the Powers factor R_{λ} if $\lambda = \mu^2$ using the Kac-Takesaki operator introduced by Nakagami and Takesaki in [4] and [6]. Moreover we show that the fixed point algebra under the action is the AFD II_1 -factor which is generated by the Jones projections $\{e_n\}_{n=1}^{\infty}$ such that

$$e_i e_{i\pm 1} e_i = (\lambda + \lambda^{-1} + 2)^{-1} e_i,$$

¹⁹⁹¹ Mathematics Subject Classification. 46L10, 46L60.

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata 950-21, Japan.

$$e_i e_j = e_j e_i$$
, for $|i - j| > 1$.

This is a von Neumann algebra version of the above result in [3], and can be regarded as a new method to construct the Temperley-Lieb-Pimsner-Popa representation of the Jones relations by Pimsner and Popa in [7].

2. Jones projections and an action of $\widetilde{S_{\mu}U(2)}$ on R_{λ} .

We shall study the Temperley-Lieb-Pimsner-Popa representation of the Jones relations using compact matrix quantum groups. We shall first collect the facts of the properties of the compact matrix quantum group $S_{\mu}U(2)$.

Let A be the universal C*-algebra generated by α and γ satisfying

$$\alpha^*\alpha + \gamma^*\gamma = 1,$$
 $\alpha\alpha^* + \mu^2\gamma\gamma^* = 1,$

$$\gamma^* \gamma = \gamma \gamma^*, \qquad \mu \gamma \alpha = \alpha \gamma, \qquad \mu \gamma^* \alpha = \alpha \gamma^*,$$

where $-1 \le \mu \le 1$. Let

$$u = \begin{pmatrix} \alpha & -\mu\gamma^* \\ \gamma & \alpha^* \end{pmatrix} \in M_2(A).$$

Then G = (A, u) is a compact matrix quantum group which is denoted by $S_{\mu}U(2)$ as in [9, Theorem 1.4]. The comultiplication Φ associated with $S_{\mu}U(2)$ is defined by

$$\Phi(\alpha) = \alpha \otimes \alpha - \mu \gamma^* \otimes \gamma, \qquad \Phi(\gamma) = \gamma \otimes \alpha + \alpha^* \otimes \gamma.$$

Let \mathcal{A} denote the dense *-subalgebra of A generated by α and γ with the above relations. For any $k \in \mathbb{Z}$ and $m, n \in \mathbb{N} \cup \{0\}$, we set

$$a_{kmn} = \begin{cases} \alpha^k \gamma^{*m} \gamma^n & \text{for } k \ge 0 \\ (\alpha^*)^{-k} \gamma^{*m} \gamma^n & \text{for } k < 1. \end{cases}$$

By [9, Theorem 1.2], the family of all elements a_{kmn} forms a basis of the vector space \mathcal{A} . Let h be the Haar measure on $S_{\mu}U(2)$ in the sense of [8, Theorem 4.2], that is, h is a state on A such that

$$(h \otimes id)\Phi(a) = (id \otimes h)\Phi(a) = h(a)1, \quad \text{for } a \in A.$$

By [8, Appendices 1], the Haar measure h satisfies

$$h(a_{kmn}) = 0$$
, for $k \neq 0$ or $m \neq n$

and

$$h((\gamma^*\gamma)^m) = \frac{1-\mu^2}{1-\mu^{2m+2}}.$$

It is known that the Haar measure h is faithful on A by [5, Corollary 2.3]. Let $\{\pi_h, H_h\}$ be the GNS-representation of A induced by h. Then $\pi_h(A)$ is *-isomorphic to A. So $G' = (\pi_h(A), (id \otimes \pi_h)u)$ is a compact matrix quantum group. Let Φ' be the comultiplication of G'. Let $\{\pi_{h\otimes h}, H_{h\otimes h}, \Lambda_{h\otimes h}\}$ be the GNS-representation of $A\otimes_{min} A$ induced by $h\otimes h$. It is well known that

$$\{\pi_{h\otimes h}, H_{h\otimes h}\} = \{\pi_h \otimes \pi_h, H_h \otimes H_h\}.$$

Let W be the Kac-Takesaki operator on the Hilbert space $H_h \otimes H_h$ defined by

$$W\Lambda_{h\otimes h}(a\otimes b)=\Lambda_{h\otimes h}(\Phi(a)(1\otimes b)), \quad \text{for } a,b\in A.$$

By the property of the Haar measure h, W is a unitary operator implementing the comultiplication Φ' of G' as in $[4, \S 2]$:

$$\Phi'(\pi_h(a)) = W(\pi_h(a) \otimes 1)W^*, \quad \text{for } a \in A.$$

Therefore we can define an injective normal *-homomorphism $\widetilde{\Phi}: \pi_h(A)'' \longrightarrow \pi_h(A)'' \overline{\otimes} \pi_h(A)''$ such that

$$\widetilde{\Phi}(x) = W(x \otimes 1)W^*, \quad \text{for } x \in \pi_h(A)''.$$

It is easy to see that $\widetilde{\Phi}$ has the property of a coassociativity:

$$(id\overline{\otimes}\widetilde{\Phi})\circ\widetilde{\Phi}=(\widetilde{\Phi}\overline{\otimes}id)\circ\widetilde{\Phi}.$$

Put
$$\widetilde{S_{\mu}U(2)} = (\pi_h(A)^{\prime\prime}, (id \otimes \pi_h)u).$$

DEFINITION 1. Let M be a von Neumann algebra and $\delta: M \longrightarrow M \overline{\otimes} \pi_h(A)''$ be a normal *-homomorphism. Then δ is called an action of $S_{\mu}U(2)$ on M if it satisfies the following condition:

 $(\delta \overline{\otimes} id) \circ \delta = (id \overline{\otimes} \widetilde{\Phi}) \circ \delta.$

DEFINITION 2. Let M be a von Neumann algebra and δ be an action of $S_{\mu}\widetilde{U(2)}$ on M. We define the fixed point subalgebra M^{δ} of M by δ as follows:

$$M^{\delta} = \{x \in M \; ; \; \delta(x) = x \otimes 1\} \quad (= M^{\widetilde{S_{\mu}U(2)}}).$$

We suppose that $\mu \in (-1,1) \setminus \{0\}$. We denote by M_2^K the K-times tensor product of M_2 , and M_2^∞ the UHF-algebra of type 2^∞ . For each $m, n \ge 1$, let \oplus be a bilinear map of $(M_2^m \otimes A) \times (M_2^n \otimes A)$ to $M_2^{m+n} \otimes A$ defined by

$$(x \otimes a) \oplus (y \otimes b) = x \otimes y \otimes ab$$

for any $x \in M_2^m$, $y \in M_2^n$, and $a, b \in A$ (cf. [8, §2]). Let u^K be

$$u^K = \overbrace{u \oplus \cdots \oplus u}^{K \text{ times}}$$
.

As in [3, Remark 4], there exists a *-homomorphism $\Gamma_1: M_2^{\infty} \longrightarrow M_2^{\infty} \otimes_{min} A$ called an (product type) action of $S_{\mu}U(2) = (A, u)$ on M_2^{∞} such that

$$\Gamma_1(x) = u^K(x \otimes 1_A)(u^K)^*, \quad \text{for } x \in M_2^K.$$

Let η be a state on M_2 such that

$$\eta(x) = \frac{1}{1+\lambda} Tr\left(\begin{bmatrix} 1 & 0 \\ 0 & \lambda \end{bmatrix} x\right), \quad \text{for } x \in M_2,$$

where Tr is the canonical trace on M_2 . Let φ be a state on M_2^{∞} defined by

$$\varphi(x) = \prod_{i=1}^K \eta(x_i)$$

for $x = \bigotimes_{i=1}^K x_i \in M_2^K$. Then we have the following:

Proposition 3. If $\lambda = \mu^2$ then Γ_1 preserves φ , that is,

$$(\varphi \otimes id)\Gamma_1(x) = \varphi(x)1_A$$

for any $x \in M_2^{\infty}$.

PROOF. We shall show the proposition by induction on the number of the tensor product of M_2 . Let $\{e_{kl}\}_{1 \le k,l \le 2}$ be a system of matrix units of M_2 . It is clear that the assertion holds on M_2 .

For $x = e_{i_1 j_1} \otimes \cdots \otimes e_{i_K j_K} \in M_2^K$, $\Gamma_1(x)$ is represented as follows ([3, Corollary 3]):

$$\Gamma_1(x) = \sum_{\substack{a_1, \dots, a_K \\ b_1, \dots, b_K}} e_{a_1b_1} \otimes \cdots \otimes e_{a_Kb_K} \otimes u_{a_1i_1} \cdots u_{a_Ki_K} u_{b_Kj_K}^* \cdots u_{b_1j_1}^*.$$

We may assume that the claim holds for K, namely, Γ_1 preserves φ on M_2^K . Then we have

$$\prod_{l=1}^{K} \eta(e_{i_l j_l}) 1_A = \sum_{\substack{a_1, \dots, a_K \\ b_1, \dots, b_K}} \prod_{l=1}^{K} \eta(e_{a_l b_l}) u_{a_1 i_1} \cdots u_{a_K i_K} u_{b_K j_K}^* \cdots u_{b_1 j_1}^*.$$

Put $X = \prod_{l=1}^K \eta(e_{i_l j_l}) 1_A$. For $y = e_{i_1 j_1} \otimes \cdots \otimes e_{i_{K+1} j_{K+1}} \in M_2^{K+1}$, by the induction hypothesis, $\varphi(y) 1_A = \eta(e_{i_{K+1}, j_{K+1}}) X$.

Now we have

$$\begin{split} &(\varphi \otimes id)\Gamma_{1}(y) \\ &= \sum_{\substack{a_{1}, \cdots, a_{K+1} \\ b_{1}, \cdots, b_{K+1}}} (\prod_{l=1}^{K} \eta(e_{a_{l}b_{l}}))\eta(e_{a_{K+1}, b_{K+1}}) u_{a_{1}i_{1}} \cdots u_{a_{K+1}, i_{K+1}} u_{b_{K+1}, j_{K+1}}^{*} \cdots u_{b_{1}j_{1}}^{*} \\ &= \frac{1}{1+\lambda} \sum_{\substack{a_{1}, \cdots, a_{K} \\ b_{1}, \cdots, b_{K}}} \prod_{l=1}^{K} \eta(e_{a_{l}b_{l}}) u_{a_{1}i_{1}} \cdots u_{a_{K}i_{K}} u_{1, i_{K+1}} u_{1, j_{K+1}}^{*} u_{b_{K}j_{K}}^{*} \cdots u_{b_{1}j_{1}}^{*} \\ &+ \frac{\lambda}{1+\lambda} \sum_{\substack{a_{1}, \cdots, a_{K} \\ b_{1}, \cdots, b_{K}}} \prod_{l=1}^{K} \eta(e_{a_{l}b_{l}}) u_{a_{1}i_{1}} \cdots u_{a_{K}i_{K}} u_{2, i_{K+1}} u_{2, j_{K+1}}^{*} u_{b_{K}j_{K}}^{*} \cdots u_{b_{1}j_{1}}^{*}. \end{split}$$

If $(i_{K+1}, j_{K+1}) = (1, 1)$, the above term is

$$\frac{1}{1+\lambda}X\alpha\alpha^* + \frac{\lambda}{1+\lambda}X\gamma\gamma^* = \frac{1}{1+\lambda}X(\alpha\alpha^* + \mu^2\gamma\gamma^*) = \eta(e_{11})X.$$

Similarly we can calculate for each case $(i_{K+1}, j_{K+1}) = (1,2)$, (2,1) and (2,2). Therefore the assertion holds also for K+1.

In the rest of the paper, we suppose that $\lambda = \mu^2$. Let $\{\pi_{\varphi \otimes h}, H_{\varphi \otimes h}, \Lambda_{\varphi \otimes h}\}$ be the GNS-representation of $M_2^{\infty} \otimes_{min} A$ induced by $\varphi \otimes h$. It is well known that

$$\{\pi_{\varphi \otimes h} , H_{\varphi \otimes h}\} = \{\pi_{\varphi} \otimes \pi_h , H_{\varphi} \otimes H_h\},$$

where $\{\pi_{\varphi}, H_{\varphi}\}$ is the GNS-representation of M_2^{∞} induced by φ . Let $\Gamma_2 : \pi_{\varphi}(M_2^{\infty}) \longrightarrow \pi_{\varphi}(M_2^{\infty}) \otimes_{min} \pi_h(A)$ be the action of $G' = (\pi_h(A), (id \otimes \pi_h)u)$ on $\pi_{\varphi}(M_2^{\infty})$ such that

$$(\pi_{\varphi}\otimes\pi_h)\circ\Gamma_1=\Gamma_2\circ\pi_{\varphi}.$$

Let V be the Kac-Takesaki operator on the Hilbert space $H_{\varphi} \otimes H_h$ defined by

$$V\Lambda_{\varphi\otimes h}(x\otimes a)=\Lambda_{\varphi\otimes h}(\Gamma_1(x)(1\otimes a)),\quad x\in M_2^\infty,\ a\in A.$$

Then by Proposition 3, we can see that V is a unitary operator on $H_{\varphi} \otimes H_h$ implementing Γ_2 similarly to [4, §2] (cf. [6, Chapter III. §2]).

Let R_{λ} be the Powers factor, that is, $R_{\lambda} = \pi_{\varphi}(M_2^{\infty})''$ in $B(H_{\varphi})$. We now have an action of $S_{\mu}U(2)$ on R_{λ} .

THEOREM 4. The injective normal *-homomorphism $\Gamma: R_{\lambda} \longrightarrow R_{\lambda} \overline{\otimes} \pi_{h}(A)''$ as the normal extension of Γ_{2} is an action of $S_{\mu}U(2)$ on R_{λ} .

We shall determine the fixed point subalgebra of R_{λ} under the above action Γ . Let e be a projection in $M_2 \otimes M_2$ such that

$$e = \frac{1}{1+\lambda} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 1 & -\sqrt{\lambda} & 0 \\ 0 & -\sqrt{\lambda} & \lambda & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

Let $\{e_n\}_{n=1}^{\infty}$ be projections such that

$$e_1=e\otimes 1_{M_2}\otimes \cdots, \quad e_2=1_{M_2}\otimes e\otimes 1_{M_2}\cdots, \quad e_3=1_{M_2}\otimes 1_{M_2}\otimes e\otimes 1_{M_2}\cdots,\cdots.$$

By [7, 5.5.Notation], each e_i ($i=1,2,\cdots$) is in R_{λ} and the sequence of the projections satisfies the following Jones relations:

$$e_i e_{i\pm 1} e_i = (\lambda + \lambda^{-1} + 2)^{-1} e_i, \quad e_i e_j = e_j e_i, \quad \text{for } |i - j| > 1.$$

By [3, Proposition 9], it was shown that

$$M_2^{\infty \Gamma_1} = C^* \{1, e_1, e_2, \cdots \}.$$

Let φ_{λ} be the Powers state on R_{λ} . Then φ_{λ} restricting to the *-subalgebra of R_{λ} generated by the projections e_n is the Markov trace tr of modulus $\lambda + \lambda^{-1} + 2$ by [7, 5.5 Notation]. By [2, Theorem 4.1.1], the von Neumann algebra generated by the projections e_n with tr is the AFD II_1 -factor. Therefore by the standard argument (cf. [3]), we can reach the following:

THEOREM 5. The fixed point algebra $R_{\lambda}^{\widetilde{S_{\mu}U(2)}}$ is the AFD II₁-factor which is generated by $\{e_n\}_{n=1}^{\infty}$.

REFERENCES

- 1. F. M. Goodman, P. de la Harpe and V. F. R. Jones, "Coxeter graphs and towers of algebras," Mathematical Sciences Reserch Institute Publications, vol. 14, Springer-Verlag, 1989.
- 2. V. F. R. Jones, Index for subfactors, Invent. Math. 72 (1983), 1-25.
- 3. Y. Konishi, M. Nagisa and Y. Watatani, Some remarks on actions of compact matrix quantum groups on C*-algebras, Pacific J. Math. (to appear).
- 4. T. Masuda, K. Mimachi, Y. Nakagami, M. Noumi and K. Ueno, "Representation of quantum groups," Mappings of operator algebras, eds. H. Araki and R. V. Kadison, Birkhäuser, 1990, pp. 119-128.

- 5. T. Masuda, Y. Nakagami and J. Watanabe, Non commutative differential geometry on the quantum SU(2), I-an algebraic viewpoint-, K-theory 4 (1990), 157-180.
- 6. Y. Nakagami and M. Takesaki, "Duality for crossed products of von Neumann algebras," Lecture Notes in Math., Vol. 731, Springer-Verlag, 1979.
- 7. M. Pimsner and S. Popa, Entropy and index for subfactors, Ann. Sci. Ècole Norm. Sup. 19 (1986), 57-106.
- 8. S. L. Woronowicz, Compact matrix pseudogroups, Comm. Math. Phys. 111 (1987), 613-665.
- 9. ———, Twisted SU(2) group. An example of a non-commutative differential calculus, Publ. Res. Inst. Math. Sci. 23 (1987), 117-181.

Received Jan. 10, 1992