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A Note on Actions of Compact Matrix Quantum Groups
on von Neumann Algebras

Yuii KoNisHI

Abstract. In this paper we consider the object S:IY(2) coming from S,U(2) defined by S. L.

Woronowicz, and construct an action of S,U(2) on the Powers factor R if A = u3. Moreover
we show that the fixed point algebra under the action is the AFD II)-factor which is generated
by Jones projections.

1. Introduction

In [8] Woronowicz introduced a concept of a compact matrix quantum group (a compact
matrix pseudogroup) which is a certain deformation of the dual object of compact groups.
Let G = (A,u) be a compact matrix quantum group and & : A — A ®min A be a *-
homomorphism called a comultiplication where A is a unital C*-algebra as in [8]. The
comultiplication ® is an action of G on itself.

In [3] the author, Nagisa and Watatani constructed an action of G on the Cuntz alge-
bra O, or the UHF-algebra M° of type n™. The forms of the actions ¥ and ¢’ were
represented as follows :

Y :O0p — Opn ®min A, 'Qb, : M:O — M,‘,’° Omin A.

Especially in [3] they considered the actions of S,U(2) (Woronowicz, [9]) on O, and M3°,
and showed the fixed point algebras under the actions were generated by Jones projections.
This means a C*-algebra version of a deformation of the result of the case for the action
of SU(2) by Jones in [1] and [2]. _

In this paper we construct an action of S,U(2) coming from S,U(2) on the Powers factor
Ry if A = p? using the Kac-Takesaki operator introduced by Nakagami and Takesaki in
[4] and [6]. Moreover we show that the fixed point algebra under the action is the AFD
II;-factor which is generated by the Jones projections {e,}3%; such that

€i€it+16i = (A + p ks + 2)_16,',
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e;e; = eje;, for Ii—j|> 1.

This is a von Neumann algebra version of the above result in [3], and can be regarded as
a new method to construct the Temperley-Lieb-Pimsner-Popa representation of the Jones
relations by Pimsner and Popa in [7].

2. Jones projections and an action of S,,W2) on R,.

We shall study the Temperley-Lieb-Pimsner-Popa representation of the Jones relations
using compact matrix quantum groups. We shall first collect the facts of the properties of
the compact matrix quantum group S,U(2).

Let A be the universal C*-algebra generated by a and v satisfying
ata+yty=1, aa* + plyy* =1,
=77, me=ay, pya=ay
where —1 < u < 1. Let
a

= (f; —ﬂz‘) € My(A).

Then G = (4, u) is a compact matrix quantum group which is denoted by S,U(2) as in
[9, Theorem 1.4]. The comultiplication ® associated with S,U(2) is defined by

Pla)=a@a—py"®7y, PB()=7Qa+a*®1.

Let A denote the dense *-subalgebra of A generated by o and v with the above relations.
For any k € Z and m,n € N U {0}, we set

{ ok y*man for k>0
a —
kmn (a.)—k.y*may" for k < 1.

By [9, Theorem 1.2], the family of all elements am, forms a basis of the vector space A.
Let h be the Haar measure on S,U(2) in the sense of [8, Theorem 4.2], that is, k is a state
on A such that

(h®id)®(a) = (id @ h)®(a) = h(a)l, for a € A.
By [8, Appendices 1], the Haar measure h satisfies

h(axmn) =0, fork#0orm#n
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and
2

*_\m 1-—
A N™) = Tt

It is known that the Haar measure h is faithful on A by [5, Corollary 2.3]. Let {my, Hp}
be the GNS-representation of A induced by k. Then 7 (A) is *-isomorphic to A. So G' =
(mn(A) , (id ® 74)u) is a compact matrix quantum group. Let ®' be the comultiplication
of G'. Let {mhgn , Hron , Argn} be the GNS-representation of A ®min A induced by
h® h. It is well known that

{mheon , Hrgr} = {mn ® 71, Hy ® Hp}.
Let W be the Kac-Takesaki operator on the Hilbert space H, ® Hj defined by
WArgr(a ®b) = Argn(®(a)(1® D)), for a,b € A.

By the property of the Haar measure h, W is a unitary operator implementing the comul-
tiplication @' of G’ as in [4, §2] :

®'(74(a)) = W(mh(a) ® 1)W*, for a € A.

Therefore we can define an injective normal *-homomorphism & : my(A) —
7 (A)"®my(A)"” such that

P(z) =W(@®1)W*,  for z € m(A4)".
It is easy to see that ® has the property of a coassociativity :
(id®®) o & = (BRid) 0 ®.
Put S,U(2) = (m(A)" , (id ® m4)u).

DEFINITION 1. Let M be a von Neumann algebra and § : M — MQ®m4(A)" be

a normal *-homomorphism. Then § is called an action of S,:EZ2) on M if it satisfies the
following condition :

(6Qid) 0 § = (id®®) o 6.

DEFINITION 2. Let M be a von Neumann algebra and 6§ be an action of S;ﬁ&) on
M. We define the fixed point subalgebra M?® of M by § as follows :

Mi={zeM;bz)=201} (=M»U®)

We suppose that g € (—=1,1) \ {0}. We denote by MF the K-times tensor product of
M,, and M3° the UHF-algebra of type 2. For each m, n > 1, let ® be a bilinear map of
(M ® A) x (M} ® A) to MJ**" ® A defined by

(z®a)® (y®b) =2Qy®ab
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for any z € M;*, y € M7, and a,b € A (cf. [8, §2]). Let uX be

K times

uK=ue---eu.

As in [3, Remark 4], there exists a *-homomorphism T : M3° — M3$° ®upmin A called an
(product type) action of S,U(2) = (4, u) on M§° such that

Ti(z) = u¥(z ® 1,)(«¥)*, for z € M¥.

Let 1 be a state on M, such that

n(z) = 1 +A ([(1) ?\] z) , for z € M,

where T'r is the canonical trace on M. Let ¢ be a state on M5° defined by

K
o(2) = [[ n(z:)

i=1

for = @K 2, € M. Then we have the following :

PROPOSITION 3. If A = p? then I'; preserves ¢, that is,

(p ®id)I1(2z) = p(z)14

for any z € Mg°.

PROOF. We shall show the proposition by induction on the number of the tensor
product of M,. Let {exi}1<k,i<c2 be a system of matrix units of M,. It is clear that the
assertion holds on M.

For z =e;,;, ® - ® ey jx € Mf, Ty(z) is represented as follows ([3, Corollary 3]) :

p—vg i o 0o 0 . ‘ o o o .
Ti(z) = E : €arby @ - @ €apby @ Ug,i, Uapin Upgjx Upyjye
oy ek
b1, K

We may assume that the claim holds for K, namely, I'; preserves ¢ on M. Then we have

H’?(etm)lA = Z Hq(edzbl)“hu ot Uagig Upgix " Ubyj, -

@K =1
'1 0K

Put X = H{;l n(eij;)1a. For y = €5, ® -+ ® €ixyrjne: € MET!, by the induction
hypothesis,
p(y)1a = 'I(e"x+1,jx+1 )X.
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Now we have

(¢®id)T1 (y)

= c e e e . * . e * .
= § : (I I ”(edtbt))ﬂ(eax+1,bk+1)ufll'x Uasg1,ik+1%bx 41, K41 Up,j,
a1, 8K 41 =1
b1, b4

1
= 1 +A § : Hn(ealbl)ualil ' uaK‘Kul ‘K+1u1 JK+1ubKJK ubljl

19K
51 e =1

* * *
1 + A § : Hn(ealbl)ual’l e udK‘K“2,iK+1u2,jK+1 ub}(]x e ubljl'

ox 1=1
If (ik+1,ik+1) = (1,1), the above term is

A 1 R
AN . _ - L] *) X.
Xl + XY T X (e +p%y77) n(e11)

Similarly we can calculate for each case (ix41,jx+1) = (1,2), (2,1) and (2,2). Therefore
the assertion holds also for K + 1.

In the rest of the paper, we suppose that A = u2. Let {74 , Hoon , Apon} be the
GNS-representation of M$° ®min A induced by ¢ ® k. It is well known that

{moon s Hogn} ={mp ®m , H, ® Hy},

where {7, H,} is the GNS-representation of M$° induced by ¢. Let I'; : 7, (M5°) —
To(M$°) ®min Th(A) be the action of G' = (m4(A4), (id ® ms)u) on 7, (Mz°) such that

(rp @ @)ooy =Ty0m,.
Let V be the Kac-Takesaki operator on the Hilbert space H, ® Hj defined by
VAoer(z ®a) = Apgn(T1(2)(1 ®a)), =€ M;°, a€ A
Then by Proposition 3, we can see that V is a unitary operator on H, ® H; implementing

I'; similarly to [4, §2] (cf [6, Chapter III. §2]).
Let R be the Powers factor, that is, Ry = 7,(M$°)" in B(H,). We now have an action

of S,‘U(2) on R,.

THEOREM 4. The injective normal *-homomorphism I' : Ry — R \®m;(A)" as
the normal extension of I'; is an action of S,U(2) on Rj.
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We shall determine the fixed point subalgebra of Ry under the above action I. Let e be
a projection in My ® M, such that

0 0 0 0
__1 o 1_ =X o
*TI+x[0 VX a0
0 0 0 0
Let {€,}3%, be projections such that
61=6®1M2®"', 62=1M3®e®1M3"'1 e3=1Mg®1M2®e®1M2"',"’

By [7, 5.5.Notation], each e; (i = 1,2,---) is in R, and the sequence of the projections
satisfies the following Jones relations :

eieiziei = A+ A"V +2)7le;, eiej =eje;, for|i—j |> 1.
By [3, Proposition 9], it was shown that
Mt = C*{1,e1,€3,-- - }.

Let ¢ be the Powers state on Ry. Then ¢, restricting to the *-subalgebra of R, generated
by the projections e, is the Markov trace ¢r of modulus A + A~! + 2 by [7, 5.5 Notation].
By [2, Theorem 4.1.1], the von Neumann algebra generated by the projections e, with ¢r
is the AFD II,-factor. Therefore by the standard argument (cf. [3]), we can reach the
following :

THEOREM 5. The fixed point algebra Rf“U(z) is the AFD II,-factor which is gen-
erated by {e,}5%,.
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