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Schur’s theorem for naturally reductive Riemannian $S$-manifolds
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Abstract

One considers the theorem of Schur for the class of naturally reductive Riemannian
S-manifolds. This class includes the nearly K\"ahler manifolds and the naturally reductive
locally s-regular spaces.

1. Introduction

The simplest examples of Riemannian and K\"ahler manifolds are those of constant
sectional and constant holomorphic sectional curvature. Their classification relies on the
important theorem of Schur. It plays a similar role in the classification of some other
classes of manifolds. For example, it is proved in [9] that Schur’s theorem is still val$id$ for
the class of nearly K\"ahler manifolds.

These nearly K\"ahler manifolds have remarkable properties. See, for example, [ $2$} $\leftrightarrow[S$}.
In [3] a lot of examples appear as naturally reductive 3-symmetric spaces. The latter form
a subclass of the k-symmetric spaces and the (locally) s-regular manifolds, introduced in
[1] and studied extensively in [7]. These locally homogeneous spaces generalize the locally
symmetric spaces.
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In [8] the first author extended this further and introduced the notion of Riemannian
$S$-mamifold. In particular, since the natural reductivity plays a key role in many properties,
he concentrated on the subclass of naturally reductive S-manifolds. This led to a new
characterization theorem, in terms of the curvature, for the naturally reductive locally
s-regular manifolds. It extends the similar one obtained in [3] for the naturally reductive
nearly Kabler manifolds.

The Riemannian S-manifolds are endowed in a natural way with some $sm\infty th$ dis-
tributions which are equipped with an almost Hermitian structure. The main purpose
of this paper is to discuss Schur’s theorem for the corresponding holomorphic sectional
curvatures. Hopefully it will be a step towards a classification of these spaces.

2. Preliminaries

In the whole paper $(M,g)$ denotes a connected, $sm\infty th$, finite-dimensional Riemannian
manifold with Levi Civita connection V and associated Riemann curvature tensor $R$ defined
by

$R_{XY}=[\nabla_{X}, \nabla_{Y}]-\nabla_{[X,Y]}$

where $X,Y\in \mathcal{X}(M)$ , the Lie algebra of $sm\infty th$ vector fields on $M$ .
We start by recalling the definition of the class of manifolds we will consider and we

collect some results from [8].

Deflnition 1. A Ricmannian S-manifold $(-\cdot\backslash f,g, S)$ is a Riemannian manifold $(M,g)$ to-
gether with a $(1,1)$-tensor field $S$ such that $g$ and $\nabla S$ are S-invariant, that is,

$g(SX, SY)=g(X, Y)$ , $(\nabla_{SX}S)SY=S(\nabla_{X}S)Y$

for all $X,$ $Y$ in $\mathcal{X}(M)$ , and $I-S$ is non-singular.

There is no scarcity of examples. Of course, any Riemannian manifold is a $(-I)-$

manifold but this aspect is of no interest for our considerations. Further, any K\"ahler
manifold is a J-manifold. Since a quasi-K5h1er manifold is an almost Hermitian manifold
$(M,g, J)$ such that

$(\nabla_{X}J)Y+(\nabla_{JX}J)JY=0$ ,

it is a $(-\frac{1}{2}I+2L3J)$-manifold. Locally s-regular manifolds $M$ are endowed with a so-called
s-structure and they are S-manifolds where $S_{m}=s_{m}.(m)$ for all $m\in M$ (see [1], [7] for
more details). Finally, other examples may be constructed by taking products.

Now, on any $(M,g,S)$ we define atensor field $D$ of type $(1,2)$ by

$D(x, Y)=D_{X}Y=t\nabla_{(I-S)-1}x^{S)S^{-1}Y}$

for all $X,$ $Y\in \mathcal{X}(M)$ . Then a connection V is defined by

V$xY=\nabla_{X}Y-D_{X}Y$,
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$X,$ $Y\in \mathcal{X}(M)$ . It follows easily that V is a metric connection, or equivalently

$g(D_{X}Y, Z)+g(Y, D_{X}Z)=0$

for all $X,Y,Z\in \mathcal{X}(M)$ . Moreover, $\overline{\nabla}S=0$ . Hence, the eigenvalues of $S$ , regarded as a
field of orthogonal endomorphisms, are constant. Thus, the eigenvalues of $S$ have the form

$e^{\pm i\theta_{1}}=c_{1}\pm is_{1},$
$\ldots,$

$e^{\pm i\theta_{r}}=c_{r}\pm is_{r}$

where $0<\theta_{1}$ , ..., $\theta_{r}<\pi$ , together with-l as the only possible real eigenvalue.
We make the following

Assumption. In the rest of the paper we assume that-l does not occur as an eigenvalue
for any $(M,g, S)$ under consideration.

Next, associated with $\theta_{1},$

$\ldots,$

$\theta_{r}$ , smooth distributions $\mathcal{D};,i=1,$ $\ldots,r$ are defined by

$\mathcal{D}_{i}=ker(S^{2}-2c_{i}S+I)$ .

It follows that any $X\in \mathcal{X}(M)$ has a unique decomposition into a sum of distribution vector
fields, that is, $X=X_{1}+\ldots+X_{r}$ where $X_{i}\in \mathcal{D}_{i},$ $i=1,$ $\ldots,$

$r$ . Moreover, we define $sm\infty th$

projection tensor fields $I_{i}$ by $I_{i}X=X;$ . Finally, an almost complex structure $J$ is defined
by

$JX=\sum_{i=1}^{r}\frac{1}{s_{1}}(S-c;I)X_{i}$

and $g$ is then almost Hermitian.
The following useful lemma follows from the S-invariance of $\nabla S$ (see [8, Lemma 2.5]):

Lemma 1. For any $i,j,$ $k$ either

i) $I_{i}D_{Y_{k}}X_{j}=0$ for all $X_{j},X_{k}$ , or

ii) cos $\theta_{k}=\cos(\theta_{i}+\alpha_{ijk}\theta_{j})$ where the only possibilities are

a) $\alpha_{ijk}=1$ if $\theta_{i}+\theta_{j}+\theta_{k}=\pi$ or $\theta_{k}=\theta_{i}+\theta_{j}$ ,
and

b) $\alpha_{ijk}=-1$ if $\theta_{j}=\theta_{k}+\theta_{i}$ or $\theta;=\theta_{k}+\theta_{j}$ .

In case ii) we have

(1) $I_{i}(JD_{Y_{k}}X_{j}+\alpha_{ijk}D_{Y_{l}}JX_{j})=0$

for all $X_{j},$ $Y_{k}$ .

Now, we consider a special class of S-manifolds.
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Deflnition 2. A Riemannian S-manifold is said to be naturally reductive if the tensor
field $T$ defined by

$T(X,Y, Z)=g(D_{X}Y, Z)$ ,

$X,Y,Z\in \mathcal{X}(M)$ , is skew-symmetric.

Note that, since V is metric, the condition of skew-symmetry is equivalent to

$D_{X}X=0$

for all $X\in \mathcal{X}(M)$ .

Nearly K\^ahler manifolds are almost Hermitian manifolds $(M,g, J)$ such that

$(\nabla_{X}J)X=0$

for all $X\in \mathcal{X}(M)$ . So, since they are also $quasi- K\ddot{a}hle\dot{n}an$, they provide examples of
naturally reductive $(-\frac{1}{2}I+Ls2J)$-manifolds.

In [3] a characterization of nearly Kahler (that is, naturally reductive) 3-symmetric
spaces is given by means of $\nabla R$. The main result of [8] is an extension of this criterion to
the class of naturaMy reductive locally s-regular manifolds. We have ([8, Theorem 2.2]) :

Theorem 1. Let $(M,g, S)$ be a naturally reductive S-manifold with associated eigenspace
distribu $t$ions $\mathcal{D}_{1},$ $\ldots,\mathcal{D}_{r}$ . Then $(M,g, S)$ is a locally s-regular manifold $\mathfrak{n}\prime ith$ symmetry
tensor field $S$ if and only if

$(\nabla_{X_{i}}R)(X_{i}, JX_{i},X;, JX_{i})=0$

for each $X;\in \mathcal{D};,i=1,$ $\ldots,r$ .

From the $pr\infty f$ of [8, Theorem 2.2] we have the following relations for $R$ and the
curvature tensor $\overline{R}$ of V. First,

$g(\overline{R}(Z,W)Y,X)=\overline{R}(X, Y, Z, W)$

(2) $=R(X, Y, Z, W)+g(D\lambda Z, D\gamma W)-g(DxW,D\gamma Z)$

$-2g(D_{X}Y,D_{Z}W)$ .

Also

(3) $\overline{R}(SX, SY, Z, W)=\overline{R}(X,Y, Z, W)$

and

(4) $(\overline{\nabla}\nu\overline{R})(SX,SY, Z, W)=(\overline{\nabla}V\overline{R})(X,Y,Z, W)$
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for all $X,$ $Y,$ $Z,$ $V,$ $W\in \mathcal{X}(M)$ . Rom (3) and (4) we see that

(5) $\overline{R}(X_{h}, Y_{j}, Z_{k}, Wc)=0$ unless $X_{h},$ $Y_{j},$ $Z_{k},$ $Wp\in \mathcal{D}_{i}$ for some $i$

and similarly

(6) $(\overline{\nabla}_{V_{n}}\overline{R})(X_{h}, Y_{j}, Z_{k}, W_{t})=0$ unless $X_{h},$ $Y_{j},$ $Z_{k},$ $Wp,$ $V_{m}\in \mathcal{D}_{i}$ for some $i$ .

Moreover, for each $i=1,$
$\ldots,$

$r$ we have

(7) $\overline{R}(JX;, JY_{j}, Z;, W_{i})=\overline{R}(X;, Yj, Z;, W;)$

and

(8) $(\overline{\nabla}_{V}:\overline{R})(JX_{i}, JY_{i}, Z_{i}, W_{i})=(\overline{\nabla}_{V}:\overline{R})(X;, Y_{1}, Z;, W:)$ .

3. The theorem of Schur for naturally reductive S-manifolds

Let $\mathcal{D}_{i}$ be an eigenspace distribution on $(M, g, S)$ . We say that $\mathcal{D}_{i}$ has constant
holomorphic sectional curvature $K_{i}$ if $K_{i}$ is a smooth function on $M$ such that at each
point $p\in M$ the sectional curvature $K_{i}(p)$ of every J-invariant two-plane $P$ at $p$ contained
in $D$; takes the value $K_{i}(p)$ . We prove

Theorem 2. Let $(M,g, S)$ be a naturally reductive S-manifold with almost complex
stru $ct$ure $J$ as defin$ed$ above and suppose $\mathcal{D}$; is an eigenspace distribution of dimension
$>2$ which $h$as constant holomorphic sectional curvature $K_{i}$ . Then $K$: is constant on $M$ .

Proof. First, we define tensor fields $A,$ $B$ of type $(0,4)$ by

$A(X,Y, Z, M^{r})=2g(D(X, Y),$ $D(Z, W))+g(D(X, Z),$ $D(Y, W))-g(D(X, W),$ $D(Y, Z))$

and
$B(X, Y, Z, W)=g(X, Z)g(Y, W)-g(X, W)g(Y, Z)+g(X, JZ)g(Y, JW)$

$-g(X, JW)g(Y, JZ)+2g(X, JY)g(Z, JW)$

for all $X,$ $Y,$ $Z,$ $W\in \mathcal{X}(M)$ . Then $A$ and $B$ satisfy the usual Riemannian curvature tensor
identities, that is,

a) $T(X, Y, Z, W)=-T(Y,X, Z, W)=-T(X, Y, W,Z)$ ;

b) $T(X, Y, Z, W)=T(Z, W,X, Y)$ ;

c) $T(X,Y, Z, W)+T(X, Z, W,Y)+T(X, W, Y, Z)=0$ .
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In addition, we have

(9) $B(JX, J\}^{\prime}Z, W)=B(X, 1^{r}, Z, W)$

and

(10) $B(X, JX,X, JX)=4(g(X,X))^{2}$ .

Also, from Lemma 1 and the skew-symmetry of $D$ , we $ha\iota^{r}e$

$D(X;, JX_{i})=0$

from which

(11) $A(X_{i}, Y_{1}, Z_{i}, W_{i})-A(JX_{i}, JY_{j}, Z;, W_{1})=4g(D(X_{i},Y:),D(Z_{i}, W:))$

and

(12) $A(X_{i}, JX_{i},X_{i}, JX_{i})=0$

for all $X;,$ $Yj,$ $Z;,$ $Wi\in \mathcal{D};$ .
Next, we note from (2) and (7) that

(13) $\overline{R}(X;, JXiX;, JX;)=R(X;, JX;,X;, JXi)$

and

(14) $ R(j,;,ii,i\cdot$
Now, we define the $(0,4)$-tensor $T_{i}$ by

$\tau_{:}(X, Y, Z, W)=R(X, Y, Z, W)-A(X, Y, Z, \dagger\dagger^{\gamma})-\frac{1}{4}K;B(X, Y, Z, W)$ .

Then $T$ satisfies the curvature identities (a), (b) and (c). Also, for all $X_{i},$ $Y_{1},$ $Z;,$ $W:\in \mathcal{D}_{i}$ ,
we get

$T_{1}(X_{i}, Y_{j}, Z;, W_{i})=T_{i}(JX_{i}, JY_{i}, Z_{i}, W_{i})$

and from the conditions of the theorem

$T_{i}(X_{i}, JX_{i},X;, JX_{i})=0$ .

This implies [6, Chap. IX, p. 166] that $T_{i}=0$ when restricted to $\mathcal{D}_{i}$ . Thus

$(1S)$ $R(X;, Yj, Zi, Wi)=\frac{1}{4}K;B(Xj, Yi, ZiWi)+A(Xi, Yj, Zi, Wi)$ .
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Also from (2) we have

$\overline{R}(X;]^{\prime}:, zi, \nu V;)=\frac{1}{4}KiB(X;, YiZ_{j,i}W)+2g(D(X;, Z;),$ $D(Yi, W;))$
(16)

$-2g(D(X_{i}, W_{i}),$ $D(Y_{j}, Z_{i}))$ .

Again from [8], we know that $\nabla S$ and $\nabla^{2}S$ are S-invariant and it follows from [1] that
$\overline{\nabla}(\nabla S)=0$ . So $\overline{\nabla}D=0$ . Now, $X;\in D_{i}$ if and only if

$(S^{2}-2c_{i}S+I)X;=0$

and since $\overline{\nabla}S=0$ , we see that, for all $V\in \mathcal{X}(M),\overline{\nabla}_{V}X;\in \mathcal{D}_{i}$ . Hence, from (16) we have

(17) $(\overline{\nabla}V\overline{R})(X;, Y;, Z;, W_{1})=\frac{1}{4}V(I^{\prime}1j)B(X;, Y:, Zi, Wi)$ .

Since the torsion tensor field $\overline{T}$ of V is defined by

$\overline{T}(X, Y)=-2D(X$, }’ $)$ ,

we get, from (17) and the second Bianchi identity,

(18) GS $\{(\overline{\nabla}_{V:}\overline{R})(X;, Y_{j}, Z;, W_{i})-2\overline{R}(X_{i}, l_{i}^{\prime}, D(V:, Zt), Wi)\}=0$

$wllere$ (S5 denotes the cyclic sum with respect to $V_{i},$ $Z;,$ $W_{i}$ . Equivalently, we have from
(17) and (18)

(19) 6 $\{\frac{1}{4}V_{i}(K_{i})B(X;, Y_{i}, Z;, W_{i})-2\overline{R}(X;, Y;, D(V;, Z_{i}), W_{1})\}=0$ .

Next, for any point $p\in M$ choose $V_{j}\in T_{p}M$ and choose a unit vector $X_{i}$ such that $X$; and
$JX_{i}$ are orthogonal to $V_{1}$ . Then it follows easily from (16) that (19) reduces to $t_{i}^{r}’(K_{i})=0$ .
Further, let $V_{j}\in T_{p}\Lambda p$ for $j\neq i$ . Then, from (6), (10) and (17), we also get $V_{j}(K;)=0$ .
Thus,

$V(K_{i})=0$

for all $V\in T_{p}M$ . So, $K_{i}$ is constant on the connected $M$ as required.

Using this result we finally prove

Theorem 3. Let $(M,g, S)$ be a naturally reductive S-manifold with almost complex
structure as defin $ed$ above and suppose each $\mathcal{D};,$ $i=1,$ $\ldots,$

$rh$as dimension $>2$ and $h$as
constant holomorphic sectional curvature $K_{i}$ . Then $(M,g)$ is a locally s-regular $m$anifold
with symmetry field $S$ .

Proof. Under the hypotheses, (6), (17) and Theorem 2 yield V $\overline{R}=0$ on $M$ . Hence, from
(2) we have $\overline{\nabla}R=0$ since $\overline{\nabla}g=\overline{\nabla}D=0$ . But then

$\nabla_{X}R=D_{X}R$
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for $X\in \mathcal{X}(M)$ and it follows that $\nabla R$ is S-invariant. Then the results from [8] imply that
$(M,g, S)$ is a locally s-regular manifold with symmetry tensor field $S$.
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