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WANDERING VECTORS OF FINITE SUBDIAGONAL ALGEBRAS

GUOXING JI, LINA ZHOU AND ZE LI

ABSTRACT. In this note we consider wandering vectors and their multipliers for fi-
nite subdiagonal algebras. We prove that the set of completely wandering vectors of
a finite subdiagonal algebra is connected and is closed if and only if the finite subdi-
agonal algebra is antisymmetric. We also prove that the set of all wandering vector
multipliers for an antisymmetric finite subdiagonal algebra forms a group.

1. INTRODUCTION

The notion of wandering vectors was introduced in [1] by Arveson to study fac-
torization in finite subdiagonal algebras. This notion is very useful in the study of
analytic operator algebras (cf. [1, 3, 6, 10, 11, 12] and so on). On the other hand,
wandering vectors and their multipliers for unitary systems are systemically studied
by several authors (cf. [2, 4, 5, 7]). It is noted that the structure of wandering vectors
of both subdiagonal algebras and unitary systems is very interesting. In this note we
consider wandering vectors of a finite subdiagonal algebra.

Arveson introduced the notion of subdiagonal algebras to study the analyticity in
operator algebras in [1]. Let $\mathcal{M}$ be a $\sigma- finite$ von Neumann algebra on $\mathcal{H}$ and $\mathfrak{D}$ a von
Neumann subalgebra of $\mathcal{M}$ . Let $\Phi$ be a faithful normal conditional expectation from
$\mathcal{M}$ onto $\mathfrak{D}$ . A subalgebra $\mathfrak{U}$ of $\mathcal{M}$ , containing $\mathfrak{D}$ , is called a subdiagonal algebra of $\mathcal{M}$

with respect to $\Phi$ if

(i) $\mathfrak{U}\cap \mathfrak{U}^{*}=\mathfrak{D}$ ,
(ii) $\Phi$ is multiplicative on $\mathfrak{U}$ , and
(iii) $\mathfrak{U}+\mathfrak{U}^{*}$ is $\sigma$-weakly dense in $\mathcal{M}$ .

The algebra $\mathfrak{D}$ is called the diagonal of $\mathfrak{U}$ . Although subdiagonal algebras are not
assumed to be $\sigma$-weakly closed in [1], the $\sigma$-weak closure of a subdiagonal algebra is
again a subdiagonal algebra of $\mathcal{M}$ with respect to $\Phi$ (Remark 2.1.2 in [1]). Thus we
assume that our subdiagonal algebras are always $\sigma$-weakly closed. We say that $\mathfrak{U}$ is a
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maximal subdiagonal algebra in $\mathcal{M}$ with respect to $\Phi$ in case that $\mathfrak{U}$ is not properly
contained in any other subalgebra of $\mathcal{M}$ which is subdiagonal with respect to $\Phi$ . If
there is a faithful normal finite trace $\tau$ on $\mathcal{M}$ such that $\tau\circ\Phi=\tau$ , then we say that
$\mathfrak{U}$ is a finite subdiagonal algebra with respect to $\Phi$ . Exel in [3] proved that a finite
subdiagonal algebra is maximal subdiagonal. We call a finite subdiagonal algebra $\mathfrak{U}$ is
antisymmetric if $\mathfrak{D}=\mathbb{C}I$ .

We now assume that $\mathfrak{U}$ is a finite subdiagonal algebra with respect to $\Phi$ in $\mathcal{M}$

and let $\tau$ be the faithful normal finite trace on $\mathcal{M}$ such that $\tau\circ\Phi=\tau$ . Let $\mathfrak{U}_{0}=\{X\in$

$\mathfrak{U}:\Phi(X)=0\}$ . Then $\mathfrak{U}_{0}$ is a two sided ideal of $\mathfrak{U}$ (cf. [1]). Let $L^{p}(\mathcal{M})(1\leq p\leq+\infty)$

be the non-commutative Lebesgue space associated with $\tau$ (cf. [13]). Then $L^{2}(\mathcal{M})$ is
a Hilbert space with the inner product $(x, y\rangle$ $=\tau(y^{*}x)$ . For $T\in \mathcal{M}$ and $x\in L^{2}(\mathcal{M})$ ,
let $L_{T}(x)=Tx$ (resp. $R_{T}(x)=xT$). We have that $\mathcal{L}=\{L_{T} : T\in \mathcal{M}\}$ (resp.
$\mathcal{R}=\{R_{T} : T\in \mathcal{M}\})$ is a von Neumann algebra and $\mathcal{L}^{\prime}=\mathcal{R}$ . Furthermore, the map
$T\rightarrow L_{T}$ (resp. $T\rightarrow R_{T}$ ) is $a*$-isomorphism (resp. $*$-anti-isomorphism) of $\mathcal{M}$ onto $\mathcal{L}$

(resp. $\mathcal{R}$) and the identity $I$ is a cyclic and separating vector for $\mathcal{L}$ (resp. $\mathcal{R}$). For a
subset $E$ of $L^{2}(\mathcal{M})$ , we denote by $[E]$ the closed subspace of $L^{2}(\mathcal{M})$ generated by $E$ .
Let $H^{2}=[\mathfrak{U}]$ and $H_{0}^{2}=[\mathfrak{U}_{0}]$ . We easily have $L^{2}(\mathcal{M})=H^{2}\oplus(H_{0}^{2})^{*}=H_{0}^{2}\oplus[\mathfrak{D}]\oplus(H_{0}^{2})^{*}$

(cf. [6]). We also have $\mathfrak{U}H^{2}\subseteq H^{2}$ and $\mathfrak{U}H_{0}^{2}\subseteq H_{0}^{2}$ .
In this note we consider wandering vectors of finite subdiagonal algebras in $L^{2}(\mathcal{M})$

and their multipliers. We prove that the set of completely wandering vectors of a finite
subdiagonal algebra is connected. It is closed if and only if the finite subdiagonal
algebra is antisymmetric. We also prove that the set of all wandering vector multipliers
for an antisymmetric finite subdiagonal algebra forms a group.

2. WANDERING VECTORS OF $\mathfrak{U}$

Let $\xi\in L^{2}(\mathcal{M})$ be a non-zero vector. The vector $\xi$ is called to be a right (resp.

left) wandering vector of $\mathfrak{U}$ if ( $\xi A,\xi\rangle$ $=0$ (resp. $\langle A\xi,$ $\xi\rangle=0$) for any $A\in \mathfrak{U}_{0}$ . Note that
right and left wandering vectors are symmetric for $\mathfrak{U}$ , so we consider the right wandering
vectors only and call them wandering vectors. The following lemma is proved in [1].

Lemma 1. ([1, Lemma 4.4.2/) If $\xi$ is a wandering vector of $\mathfrak{U}$ , then there exists a
partial isometry $U$ in $\mathcal{M}$ such that $L_{U}\xi\in[\mathfrak{D}]$ , and $L_{U^{*}U}\tau s$ the projection on $[\xi \mathcal{M}]$ .

A wandering vector $\xi$ is called to be completely wandering if it is also right cyclic
(i.e. cyclic for $\mathcal{R}$). It is known that a vector is right cyclic if and only if it is left
separating. Put $W(\mathfrak{U})=$ { $\xi\in L^{2}(\mathcal{M})$ : $\xi$ is a completely wandering vector of $\mathfrak{U}$ }. A
unitary operator $U$ on $L^{2}(\mathcal{M})$ is called to be a wandering vector multiplier of $\mathfrak{U}$ if
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$UW(\mathfrak{U})\subseteq W(\mathfrak{U})$ . We denote by $M_{\mathfrak{U}}$ the set of all wandering vector multipliers of
$\mathfrak{U}$ . Note that for any unitary operator $U\in \mathcal{M}$ , we have $L_{U}\in M_{\mathfrak{U}}$ . The following
proposition is elementary.

Proposition 1. Let $\xi\in W(\mathfrak{U})$ . Then $L^{2}(\mathcal{M})=[\xi \mathfrak{U}]\oplus[\xi \mathfrak{D}]\oplus[\xi \mathfrak{U}_{0}^{*}]$ .

Proof. Note that $\langle\xi A, \xi\rangle=0$ for all $A\in \mathfrak{U},$ $\mathfrak{D}\mathfrak{U}_{0}\subseteq \mathfrak{U}_{0}$ and $\mathfrak{D}\mathfrak{U}_{0}\subseteq \mathfrak{U}_{0}$ , we easily have

three subspaces $[\xi \mathfrak{U}_{0}],$ $[\xi \mathfrak{D}]$ and $[\xi \mathfrak{U}_{0}^{*}]$ are orthogonal each other. On the other hand,
$\mathfrak{U}_{0}+\mathfrak{D}+\mathfrak{U}_{0}^{*}$ is $\sigma$-weakly dense in $\mathcal{M}$ . We thus have the proposition since $\xi$ is right
cyclic. The proof is complete. $\square $

Lemma 2. Let $\xi\in W(\mathfrak{U})$ and let $\xi=V|\xi|$ be the polar decomposition of $\xi$ . Then $V$

is unitary and $|\xi|\in W(\mathfrak{U})$ .

Proof. We know that $V\in \mathcal{M}$ is a partial isometry. For any $A\in \mathfrak{U}_{0}$ , we have
$(|\xi|A, |\xi|\rangle=\tau(|\xi|^{2}A)=\tau(\xi^{*}\xi A)=(\xi A,$ $\xi\rangle$ $=0$ , that is, $\xi$ is wandering. Thus we have
$[|\xi|\mathfrak{U}_{0}],$ $[|\xi|\mathfrak{D}]$ and $[|\xi|\mathfrak{U}_{0}^{*}]$ are orthogonal each other. On the other hand, $V|\xi|A=\xi A$

for all $A\in \mathcal{M}$ . Then $V[|\xi|\mathfrak{U}]=[\xi \mathfrak{U}],$ $V[|\xi|\mathfrak{D}]=[\xi \mathfrak{D}]$ and $V[|\xi|\mathfrak{U}_{0}^{*}]=[\xi \mathfrak{U}_{0}^{*}]$ , which
implies that $L_{V}$ is surjective. Thus $V$ is a co-isometry. Note that $\mathcal{M}$ is finite, we have
$V$ is unitary and $[|\xi|\mathfrak{U}]\oplus[|\xi|\mathfrak{D}]\oplus[|\xi|\mathfrak{U}_{0}^{*}]=L^{2}(\mathcal{M})$ . It follows that $|\xi|$ is right cyclic
and therofore $|\xi$ I $\in W(\mathfrak{U})$ . The proof is complete. $\square $

Theorem 1. Let $\mathfrak{U}$ be a finite subdiagonal algebra with $7espect$ to $\Phi$ in $\mathcal{M}$ . Then $W(\mathfrak{U})$

is connected in $L^{2}(\mathcal{M})$ .

Proof. Let $\xi\in W(\mathfrak{U})$ . Then by Lemma 1, there is a partial isometry $U$ in $\mathcal{A}$ such that
$L_{U}\xi\in[\mathfrak{D}]$ , and $L_{UU}$ is the projection on $[\xi \mathcal{M}]$ . We note that $\xi$ is right cyclic, which
implies that $U$ is an isometry. Therefore $U$ is a unitary operator in $\mathcal{M}$ since $\mathcal{M}$ is

finite. Let $\eta=L_{U}\xi=U\xi\in[\mathfrak{D}]$ . Then $\eta$ is also a completely wandering vector for $\mathfrak{U}$ ,

that is, $\eta\in W(\mathfrak{U})$ . In fact, for any $A\in \mathfrak{U}_{0},$ $\langle\eta A, A\rangle=\langle L_{U}\xi A, L_{U}\xi\rangle=\langle\xi A, \xi\rangle=0$ and
$[\eta \mathcal{M}]=[L_{U}\xi \mathcal{M}]=L_{U}[\xi \mathcal{M}]=L^{2}(\mathcal{M})$ . Let $\eta=V|\eta|$ be the polar decomposition of
$\eta$ . Then we have $V$ is unitary and $|\eta|\in[\mathfrak{D}]$ is also a completely wandering vector by

Lemma 2. Note that $\xi=L_{U^{*}V}|\eta|=U$
“

$V|\eta|$ . Thus without loss of generality, we assume
that $\eta$ itself is positive. So we have for any $\xi\in W(\mathfrak{D})$ , there is a unitary element $T\in \mathcal{M}$

and a positive completely wandering vector $\eta\in[\mathfrak{U}]$ such that $\xi=T\eta$ . It is known that
the set of all unitary elements in $\mathcal{M}$ is connected and $L_{T}\in M_{\mathfrak{U}}$ for any unitary element
$T\in \mathcal{M}$ , which implies that $\xi$ connects with a positive completely wandering vector in
$[\mathfrak{D}]$ . Thus it is enough to show that the set of all positive completely wandering vectors
in $[\mathfrak{D}]$ is connected. Note that $I\in[\mathfrak{D}]$ is a positive completely wandering vector. If
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$\eta\in[\mathfrak{D}]$ is also a positive completely wandering vector, then for any $\lambda\in(0,1)$ , so
is $\eta(\lambda)=\frac{\lambda I+(1-\lambda)\eta}{\Vert\lambda I+(1-\lambda)\eta\Vert}$ In fact, $\eta(\lambda)$ is right wandering. To show it is complete, it is
enough to prove that $\eta(\lambda)$ is left separating. Let $T\in \mathcal{M}$ be a positive element such
that $T\eta(\lambda)=0$ . Then we have $\tau(T\eta(\lambda))=0$ since $L^{2}(\mathcal{M})\subset L^{1}(\mathcal{M})$ . It follows that

$\tau(\lambda T+(1-\lambda)(T\eta))=\lambda_{\mathcal{T}}(T)+(1-\lambda)\tau(T^{\frac{1}{2}}\eta T^{\frac{1}{2}})=0$ .

Both $\tau(T)$ and $\tau(T^{\frac{1}{2}}\eta T^{\frac{1}{2}})$ are positive and $\tau$ is faithful, so $T=0$ . Thus, $\eta(\lambda)\in W(\mathfrak{U})$ .
It is trivial that $\eta(\lambda)$ is continuous on $[0,1]$ connects $I$ and $\eta$ . We have $W(\mathfrak{U})$ is
connected. The proof is complete. $\square $

We recal that a finite subdiagonal algebra $\mathfrak{U}$ is antisymmetric if $\mathfrak{D}=\mathbb{C}I$ .

Theorem 2. $W(\mathfrak{U})$ is closed if and only if $\mathfrak{U}$ is antisymmetric.

Proof. If $\mathfrak{D}=\mathbb{C}I$ , then by the proof of Theorem 1, for any $\xi\in W(\mathfrak{U})$ , there is a unitary
operator $U\in \mathcal{M}$ such that $\xi=UI=U$ . Thus $W(\mathfrak{U})=$ { $U\in \mathcal{M}$ : $U$ is unitary} in
$L^{2}(\mathcal{M})$ . Let $V_{n}$ be a sequence in $W(\mathfrak{U})$ converging to an element $U$ in $L^{2}(\mathcal{M})$ . It folows
that there is a subsequence $U_{n_{i}}$ of $\{V_{n}\}$ such that $\lim_{i\rightarrow\infty}U_{n},$

$=U_{0}$ in the weak operator

topology for some operator $U_{0}\in \mathcal{M}$ . In particular, we have $\lim_{i\rightarrow\infty}\Vert U_{n_{i}}-U\Vert_{2}\rightarrow 0$ in
$L^{2}(\mathcal{M})$ . It follows that for any $x\in L^{2}(\mathcal{M})$ ,

$\lim_{i\rightarrow\infty}((U_{n_{i}}-U), x\rangle=\lim_{i\rightarrow\infty}((U_{n}$. $-U)I,$ $ x\rangle$ $=(U_{0}-U,$ $ x\rangle$ $=0$ .

Thus we have $U=U_{0}$ . Now

$\lim_{i\rightarrow\infty}|\langle U_{n}^{*}:(U_{n}$. $-U_{0})I, x\rangle|\leq\lim_{i\rightarrow\infty}\Vert U_{n_{i}}-U_{0}\Vert_{2}\Vert x\Vert_{2}=0$

and

$\lim_{i\rightarrow\infty}(U_{0},$
$ U_{n_{i}}x\rangle$ $=\langle U_{0}, U_{0}x\rangle=\langle U_{0}^{*}U_{0}I, x\rangle$ .

It follows that (I, $ x\rangle$ $=(U_{0}^{*}U_{0},x\rangle$ for any $x\in L^{2}(\mathcal{M})$ , which implies that $U_{0}^{*}U_{0}=I$

and therefore $U_{0}=U$ is a unitary element. Thus $W(\mathfrak{U})$ is closed.
Conversely, assume that $W(\mathfrak{U})$ is closed. If there is a non trivial projection $P\in \mathfrak{D}$ ,

then for any $\lambda>0$ , as proved above, we similarly have $\frac{P+\lambda I}{\Vert P+\lambda I||}\in W(\mathfrak{U})$ . It follows that
$P\in W(\mathfrak{U})$ by letting $\lambda\rightarrow 0$ . However, since $P$ is nontrivial, $P$ is not left separating.
This contradiction implies that $\mathfrak{D}=\mathbb{C}I$ . The proof is complete. $\square $

By the proof of Theorem 2, we have the following corollary.

Corollary 1. If $\mathfrak{U}i$ an antisymmetric finite subdiagonal algebra, then $W(\mathfrak{U})$ conststs

of all unitary elements of $\mathcal{M}$ .
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The first author and Saito in [7] proved that the wandering vector multipliers for
a unitary group forms a group. We note that the proof of Theorem 1 in [7] relies on
two key facts. One is that the wandering vectors of the unitary group consists of all
unitary elements in the associated von Neumann algebra $\mathcal{M}$ . Another is a well-known
theorem of Kadison in [8]. By Corollary 1 and Kadison’s theorem, we similarly have
the following theorem without proof.

Theorem 3. If $\mathfrak{U}$ is an $antisy7r|,rr\iota et7^{\cdot}i,c$ subdiugonal finite algebra, then $M_{\mathfrak{U}}$ forms a
group.

We do not know whether $M_{\mathfrak{U}}$ forms a group for a finite subdiagonal algebra $\mathfrak{U}$ . It
may be an interesting problem.
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