An example of a totally geodesic foliation which is perpendicular to a certain non-singular Killing field on an arbitrary three-dimensional Lorentzian lens space

Ken Yokumoto

Abstract

We construct a totally geodesic foliation which is perpendicular to a certain non-singular Killing field on an arbitrary three-dimensional Lorentzian lens space.

Keywords : Lorentzian manifolds, totally geodesic foliations, Killing fields 2000 Mathematics Subject Classification : Primary 57R30; Secondary 53C50

1 Introduction

Totally geodesic foliations on Lorentzian manifolds are studied by several authors ([BMT], [CR], [M], [Y1], [Y2], [Y3], [Z2], [Z3], [Z4]).

An example of a codimension-1 totally geodesic foliation containing spacelike, timelike, and lightlike leaves appeared first in [Y1], and it was obtained as $\operatorname{ker} g(X, \cdot)$, where X is a non-singular Killing field for a Lorentzian metric g on the 2-torus T^{2}. So it seemed a "typical" example of a codimension- 1 totally geodesic foliation. These typical examples, i.e., codimension- 1 totally geodesic foliations perpendicular to non-singular Killing fields, were treated and classified in [Y3].

In [Y2], we constructed Lorentzian geodesible foliations of closed 3-manifolds having Heegaard splittings of genus one, i.e., lens spaces $L(p, q)$ of type (p, q), the 3 -sphere $S^{3} \cong L(1,0)$, and $S^{2} \times S^{1} \cong L(0,1)$. Here a Lorentzian geodesible foliation means a totally geodesic foliation for some, in general incomplete, Lorentzian metric. However, the constructed example of a totally geodesic foliation \mathcal{F} was not a typical example, that is, \mathcal{F} was not obtained as $\operatorname{ker} g(X, \cdot)$ for some non-singular Killing field X. So the natural question concerning the existence problem of typical examples arises. More precisely, we have

Question 1 Can we give a non-singular Killing field X for some Lorentzian metric of a 3-manifold such that the distribution $\operatorname{ker} g(X, \cdot)$ is completely integrable?

A natural idea to solve Question 1 is using a non-singular Killing field X of a Riemannian manifold (M, g) such that $\operatorname{ker} g(X, \cdot)$ is completely integrable. In this setting, we can solve Question 1 by the following theorem.
Theorem 4 Let X be a non-singular vector field on a closed manifold M. Then X is a Killing field for some Riemannian metric on M if and only if X is a timelike Killing field for some Lorentzian metric on M. Moreover we can choose the exchange between the Riemannian metric and the Lorentzian metric so that the orthogonal distribution to X is coincide.

By Theorem 4, we can easily solve Question 1 for the 3 -manifolds admitting codimension- 1 totally geodesic foliations perpendicular to non-singular Killing fields. However $L(p, q)$ except $L(0,1) \cong S^{2} \times S^{1}$ does not admit a codimension-1 totally geodesic foliation by $[\mathrm{BH}]$. So we need another idea to construct examples on $L(p, q)$. Fortunately a careful usage of the tricks stated in [Y2] works well on $L(p, q)$. Hence we have the following.
Theorem 5 Let $L(p, q)$ denote a 3-dimensional lens space of type (p, q). (we allow $(p, q)=(0,1),(1,0)$.) Then there exists a Lorentzian metric g on $L(p, q)$ and a non-singular Killing field X for g such that the distribution $\operatorname{ker} g(X, \cdot)$ is completely integrable.

In Section 4, we consider 3-manifolds admitting totally geodesic foliations perpendicular to non-singular Killing fields. If a totally geodesic foliation contains more than one kind of leaves among spacelike, timelike, and lightlike leaves, we have the following.

Theorem 10 Let (M, g) be a Lorentzian manifold and X a non-singular Killing field for g such that the distribution $\operatorname{ker} g(X, \cdot)$ is completely integrable. Denote the foliation defined by $\operatorname{ker} g(X, \cdot)$ by \mathcal{F}. Assume that \mathcal{F} contains more than one kind of leaves among spacelike, timelike, and lightlike leaves. Then M is a Seifert fibered space.

2 Killing fields for Riemannian metrics and Lorentzian metrics

In this section, we refer to relations between non-singular Killing fields for Riemannian metrics and those for Lorentzian metrics.

First we consider a modification of a Riemannian metric into a certain Lorentzian metric as follows.

Proposition 2 Let (M, g) be a Riemannian manifold and X a non-singular Killing field for g. Assume that there exists a constant $k>0$ such that $g\left(X_{x}, X_{x}\right)>1 / k$ for all $x \in M$. Then $h=g-k g(X, \cdot) \otimes g(X, \cdot)$ is a Lorentzian metric on M and X is a Killing field for h. Furthermore the orthogonal complement of X with respect to g is perpendicular to X with respect to h.

Proof. It is easy to prove that h is a Lorentzian metric on M. So it is sufficient to prove that $\mathcal{L}_{X}(g(X, \cdot))=0$. Put $\omega=g(X, \cdot)$. By straight computation, we have $\left(\mathcal{L}_{X} \omega\right)(Y)=X(g(X, Y))-g(X,[X, Y])$. If $Y \in \Gamma(\operatorname{ker} g(X, \cdot))$, then we have $g(X, Y)=0$ and $[X, Y] \in \Gamma(\operatorname{ker} g(X, \cdot))$, since the distribution $\operatorname{ker} g(X, \cdot)$ is preserved by the flow generated by X by [Y3]. If $Y=X$, then we have $X(g(X, Y))=0$ and $[X, Y]=0$. Therefore we have $\mathcal{L}_{X} \omega=0$. This proves the proposition.

Second we consider a kind of a converse of Proposition 2. We can prove it in the same way as above.

Proposition 3 Let (M, h) be a Lorentzian manifold and X a non-singular Killing field. Assume that X is timelike and there exists a constant $k>0$ such that $h\left(X_{x}, X_{x}\right)<-1 / k$ for all $x \in M$. Then $g=h+k h(X, \cdot) \otimes h(X, \cdot)$ is a Riemannian metric and X is a Killing field for g. Furthermore the orthogonal complement of X with respect to h is perpendicular to X with respect to g.

By putting Proposition 2 and 3 together, we have the following.
Theorem 4 Let X be a non-singular vector field on a closed manifold M. Then X is a Killing field for some Riemannian metric on M if and only if X is a timelike Killing field for some Lorentzian metric on M. Moreover we can choose the exchange between the Riemannian metric and the Lorentzian metric so that the orthogonal distribution to X is coincide.

By Theorem 4, we can easily solve Question 1 for the 3 -manifolds admitting codimension- 1 totally geodesic foliations perpendicular to non-singular Killing fields, for example, a surface bundle over S^{1} whose monodromy is isotopic to a periodic map [CG].

3 A construction of a totally geodesic foliation which is perpendicular to a certain non-singular Killing field

In this section, we prove the following.
Theorem 5 Let $L(p, q)$ denote a 3-dimensional lens space of type (p, q). (we allow $(p, q)=(0,1),(1,0)$.) Then there exists a Lorentzian metric g on $L(p, q)$ and a non-singular Killing field X for g such that the distribution $\operatorname{ker} g(X, \cdot)$ is completely integrable.

The proof of this theorem is essentially similar to the proof in [Y2].
Proof of Theorem 5. If $p=0$, that is, $L(0,1) \cong S^{2} \times S^{1}$, the Lorentzian metric $\left.d s^{2}\right|_{S^{2}}-d t^{2}$ and the Killing field $\partial / \partial t$ satisfy the desired conditions. Hereafter we assume that $p \neq 0$.

Let V_{i} denote an oriented $D^{2} \times S^{1}$, and let m_{i} (resp. l_{i}) be a meridian (resp. longitude) in $V_{i}(i=1,2)$. Put

$$
A=\left(\begin{array}{ll}
q & r \\
p & s
\end{array}\right), p, q, r, s \in \mathbf{Z}, q s-p r=-1
$$

Let $f: \partial V_{2} \rightarrow \partial V_{1}$ be the orientation reversing diffeomorphism defined by

$$
f:\binom{\theta_{2}}{t_{2}} \mapsto A\binom{\theta_{2}}{t_{2}}
$$

where $\left(\theta_{2}, t_{2}\right) \in \partial V_{2}$ denotes the coordinate defined by

$$
\left(\theta_{2}, t_{2}\right) \mapsto\left(\cos \theta_{2}, \sin \theta_{2}, t_{2}\right) \in \partial V_{2}
$$

Note that $V_{1} \bigcup_{f} V_{2}$ is diffeomorphic to the lens space $L(p, q)$ of type (p, q). Let E denote the negative eigenvalue of A, that is,

$$
E=\left(q+s-\sqrt{(q-s)^{2}+4 p r}\right) / 2
$$

and put

$$
R=\left(q-s-\sqrt{(q-s)^{2}+4 p r}\right) / 2 p
$$

Step 1. We can construct a Lorentzian metric g_{i} on V_{i} and a non-singular Killing field X_{i} for g_{i} which are suitable for us as follows.

Lemma 6 There exist a Lorentzian metric g_{i} on V_{i}, a non-singular Killing field X_{i} for g_{i} and a codimension-1 Reeb foliation \mathcal{F}_{i} on V_{i} which satisfy the following conditions.
(1) The foliation \mathcal{F}_{i} is obtained as $\operatorname{ker} g\left(X_{i}, \cdot\right)$.
(2) (Note that $\partial V_{i} \in \mathcal{F}_{i}$ is lightlike by the result of [Y2].) The linear foliation defined by the lightlike vectors on the boundary leaf $\partial V_{i} \in \mathcal{F}_{i}$ is equal to the eigenspace corresponding to the negative eigenvalue of A.
(3) The metric g_{i} satisfies the assumptions of Proposition 3.6 in [Y2].
(4) The gluing map f is an "isometry" from ($\partial V_{2},\left.g_{2}\right|_{\partial V_{2}}$) to ($\partial V_{1},\left.g_{1}\right|_{\partial V_{1}}$), that is,

$$
f^{*}\left(\left.g_{1}\right|_{\partial V_{1}}\right)=\left.g_{2}\right|_{\partial V_{2}} .
$$

(5) The gluing map f maps $\left.X_{2}\right|_{\partial V_{2}}$ to $\left.X_{1}\right|_{\partial V_{1}}$.

Proof. Let (x, y, t) be coordinates of $D^{2} \times \mathbf{R}$, where (x, y) and (t) are the canonical coordinates of \mathbf{R}^{2} and \mathbf{R}, respectively. Define the diffeomorphism $\varphi: D^{2} \times \mathbf{R} \rightarrow$ $D^{2} \times \mathbf{R}$ by

$$
(x, y, t) \mapsto(x \cos (R t)+y \sin (R t),-x \sin (R t)+y \cos (R t), t)
$$

Consider $\varphi^{*} g_{0}$, where g_{0} is the Lorentzian metric on $D^{2} \times \mathbf{R}$ in Example 3.5 in [Y2]. By straight computation, $\varphi^{*} g_{0}$ is given by

$$
\left(\begin{array}{ccc}
\frac{G_{11}^{\prime}}{2\left(a^{2}-2\right)\left(x^{2}+y^{2}\right)^{2}} & \frac{G_{12}^{\prime}}{2\left(a^{2}-2\right)\left(x^{2}+y^{2}\right)^{2}} & \frac{a x}{\sqrt{x^{2}+y^{2}}}+\frac{a^{2} R y}{2\left(x^{2}+y^{2}\right)} \\
\frac{G_{12}^{\prime}}{2\left(a^{2}-2\right)\left(x^{2}+y^{2}\right)^{2}} & \frac{G_{22}^{\prime}}{2\left(a^{2}-2\right)\left(x^{2}+y^{2}\right)^{2}} & \frac{a y}{\sqrt{x^{2}+y^{2}}}-\frac{a^{2} R x}{2\left(x^{2}+y^{2}\right)} \\
\frac{a x}{\sqrt{x^{2}+y^{2}}}+\frac{a^{2} R y}{2\left(x^{2}+y^{2}\right)} & \frac{a y}{\sqrt{x^{2}+y^{2}}}-\frac{a^{2} R x}{2\left(x^{2}+y^{2}\right)} & \frac{a^{2} R^{2}}{2}+a^{2}-1
\end{array}\right),
$$

Define the vector field X_{1} by

$$
R\left(x \frac{\partial}{\partial y}-y \frac{\partial}{\partial x}\right)+\frac{\partial}{\partial t}
$$

Since $\varphi_{*} X_{1}=\partial / \partial t$, the vector field X_{1} is a non-singular Killing field for $\varphi^{*} g_{0}$. The distribution defined by $\operatorname{ker} \varphi^{*} g_{0}\left(X_{1}, \cdot\right)$ is completely integrable. Since the metric $\varphi^{*} g_{0}$ on $D^{2} \times \mathbf{R}$ is invariant by $\partial / \partial t$, it defines the metric on $D^{2} \times \mathbf{R} / 2 \pi \mathbf{Z}$.

Let V_{1} and V_{2} be two copies of an oriented $D^{2} \times S^{1}$. Let (x_{i}, y_{i}, t_{i}) denote the coordinate of $V_{i}=D^{2} \times S^{1}(i=1,2)$. Put

$$
\begin{array}{r}
g_{1}=\varphi^{*} g_{0}, X_{1}=R\left(x_{1} \frac{\partial}{\partial y_{1}}-y_{1} \frac{\partial}{\partial x_{1}}\right)+\frac{\partial}{\partial t_{1}} \text { on } V_{1}, \\
g_{2}=\frac{1}{E^{2}} \varphi^{*} g_{0}, X_{2}=\frac{1}{E}\left(R\left(x_{2} \frac{\partial}{\partial y_{2}}-y_{2} \frac{\partial}{\partial x_{2}}\right)+\frac{\partial}{\partial t_{2}}\right) \text { on } V_{2}
\end{array}
$$

These g_{i}, X_{i} satisfy conditions (1), (2), and (5). We will see that they satisfy conditions (3) and (4) in Step 2.

We change coordinates from $\left(x_{i}, y_{i}, t_{i}\right) \in V_{i}$ to $\left(r_{i}, \theta_{i}, t_{i}\right)$, where $x_{i}=r_{i} \cos \theta_{i}$ and $y_{i}=r_{i} \sin \theta_{i}$. The metric g_{1} is represented by

$$
\left(\begin{array}{ccc}
\left(a^{2}-1\right) /\left(a^{2}-2\right) & 0 & a \\
0 & a^{2} / 2 & -a^{2} R / 2 \\
a & -a^{2} R / 2 & a^{2} R^{2} / 2+a^{2}-1
\end{array}\right)
$$

with respect to $\left(r_{1}, \theta_{1}, t_{1}\right)$. Define the collar neighborhood by

$$
h_{i}: \partial V_{i} \times[0, \varepsilon] \rightarrow V_{i}, \quad\left(\theta_{i}, t_{i}, u_{i}\right) \mapsto\left(1-u_{i}, \theta_{i}, t_{i}\right)
$$

Recall that the gluing map $f: \partial V_{2} \cong \mathbf{R}^{2} / 2 \pi \mathbf{Z}^{2} \rightarrow \partial V_{1} \cong \mathbf{R}^{2} / 2 \pi \mathbf{Z}^{2}$ is defined by

$$
f:\binom{\theta_{2}}{t_{2}} \mapsto\left(\begin{array}{ll}
q & r \\
p & s
\end{array}\right)\binom{\theta_{2}}{t_{2}} .
$$

Step 2. Denote coordinates of $\partial V_{1} \times[0,1]$ by (θ, t, u), where $\theta=\theta_{1}$ and $t=t_{1}$. Consider the glued manifold $V_{1} \cup_{\text {id }}\left(\partial V_{1} \times[0,1]\right) \cup_{f} V_{2}$.

We prove a lemma similar to Lemma 3.8 in [Y2].
Lemma 7 There exists a Lorentzian metric g^{\prime} on $\partial V_{1} \times[0,1]$ which is the extension of the metric $g_{1} \cup g_{2}$ restricted on $\partial V_{1} \times\{0\}$ to the metric $g_{1} \cup g_{2}$ on $\partial V_{1} \times\{1\}$ and satisfies the following conditions:
(1) All the components of g^{\prime} with respect to (θ, t, u) depend on only $u \in$ $[0,1]$.
(2) The foliation $\left\{\partial V_{1} \times\{*\}\right\}$ is perpendicular to a non-singular lightlike Killing field for g^{\prime}, hence, the foliation $\left\{\partial V_{1} \times\{*\}\right\}$ is totally geodesic with respect to g^{\prime}.
Proof. Recall that

$$
g_{1}=\left(\begin{array}{ccc}
\left(a^{2}-1\right) /\left(a^{2}-2\right) & 0 & a \\
0 & a^{2} / 2 & -a^{2} R / 2 \\
a & -a^{2} R / 2 & a^{2} R^{2} / 2+a^{2}-1
\end{array}\right)
$$

where the right hand side is the matrix of components of g_{1} with respect to $\left(r_{1}, \theta_{1}, t_{1}\right) \in$ V_{1}. When we use the collar coordinates $\left(\theta_{1}, t_{1}, u_{1}\right) \in \partial V_{1} \times[0,1]$, we have another expression of g_{1} as

$$
g_{1}=\left(\begin{array}{ccc}
a^{2} / 2 & -a^{2} R / 2 & 0 \\
-a^{2} R / 2 & a^{2} R^{2} / 2+a^{2}-1 & -a \\
0 & -a & \left(a^{2}-1\right)\left(a^{2}-2\right)
\end{array}\right)
$$

By restricting g_{1} on $\partial V_{1} \times\{0\} \subset \partial V_{1} \times[0, \varepsilon]$, we have

$$
g_{1}=\left(\begin{array}{ccc}
1 / 2 & -R / 2 & 0 \\
-R / 2 & R^{2} / 2 & -1 \\
0 & -1 & 0
\end{array}\right)
$$

Hence the metric on $\partial V_{1} \times\{0\} \subset \partial V_{1} \times[0,1]$ is represented by

$$
\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)\left(\begin{array}{ccc}
1 / 2 & -R / 2 & 0 \\
-R / 2 & R^{2} / 2 & -1 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & -1
\end{array}\right)=\left(\begin{array}{ccc}
1 / 2 & -R / 2 & 0 \\
-R / 2 & R^{2} / 2 & 1 \\
0 & 1 & 0
\end{array}\right)
$$

with respect to the coordinates $(\theta, t, u) \in \partial V_{1} \times[0,1]$. Since $X_{1}=R \partial / \partial \theta_{1}+\partial / \partial t_{1}$ on V_{1}, we have

$$
X_{1}=R \frac{\partial}{\partial \theta}+\frac{\partial}{\partial t}
$$

on $\partial V_{1} \times\{0\} \subset \partial V_{1} \times[0,1]$. Note that the inverse map $f^{-1}: \partial V_{1} \times\{1\} \rightarrow \partial V_{2}$ is represented by

$$
\left(\begin{array}{cc}
-s & r \\
p & -q
\end{array}\right)
$$

Figure : f and id
and

$$
g_{2}=\frac{1}{E^{2}}\left(\begin{array}{ccc}
a^{2} / 2 & -a^{2} R / 2 & 0 \\
-a^{2} R / 2 & a^{2} R^{2} / 2+a^{2}-1 & -a \\
0 & -a & \left(a^{2}-1\right) /\left(a^{2}-2\right)
\end{array}\right)
$$

with respect to the collar coordinates $\left(\theta_{2}, t_{2}, u_{2}\right) \in \partial V_{2} \times[0, \varepsilon]$. These expressions imply that

$$
\begin{array}{r}
\left(\begin{array}{ccc}
-s & p & 0 \\
r & -q & 0 \\
0 & 0 & 1
\end{array}\right) \cdot \frac{1}{E^{2}}\left(\begin{array}{ccc}
1 / 2 & -R / 2 & 0 \\
-R / 2 & R^{2} / 2 & -1 \\
0 & -1 & 0
\end{array}\right)\left(\begin{array}{ccc}
-s & r & 0 \\
p & -q & 0 \\
0 & 0 & 1
\end{array}\right) \\
=\frac{1}{E^{2}}\left(\begin{array}{ccc}
(s+p R)^{2} / 2 & -(s+p R)(r+q R) / 2 & -p \\
-(s+p R)(r+q R) / 2 & (r+q R)^{2} / 2 & q \\
-p & q & 0
\end{array}\right)
\end{array}
$$

on $\partial V_{1} \times\{1\} \subset \partial V_{1} \times[0,1]$ with respect to $(\theta, t, u) \in \partial V_{1} \times[0,1]$ (Figure). By the definitions of R and E, we have

$$
(s+p R) / E=1,(r+q R) / E=R
$$

By substituting these, g_{2} is expressed as

$$
g_{2}=\left(\begin{array}{ccc}
1 / 2 & -R / 2 & -p / E^{2} \\
-R / 2 & R^{2} / 2 & q / E^{2} \\
-p / E^{2} & q / E^{2} & 0
\end{array}\right)
$$

with respect to $(\theta, t, u) \in \partial V_{1} \times[0,1]$. By the definition of X_{2}, we have $f_{*} X_{2}=$ $R \partial / \partial \theta+\partial / \partial t$. Define the Lorentzian metric g^{\prime} by

$$
\left.g^{\prime}\right|_{(\theta, t, u)}=\left(\begin{array}{ccc}
1 / 2 & -R / 2 & -u p / E^{2} \\
-R / 2 & R^{2} / 2 & u q / E^{2}+(1-u) \\
-u p / E^{2} & u q / E^{2}+(1-u) & 0
\end{array}\right)
$$

with respect to (θ, t, u). By the straight computation, we have that

$$
\operatorname{det} g^{\prime}=-\frac{1}{2}\left\{\left(\frac{q-R p}{E^{2}}\right) u+(1-u)\right\}^{2} .
$$

Let E^{\prime} denote the positive eigenvalue of A, that is,

$$
E^{\prime}=\left(q+s+\sqrt{(q-s)^{2}+4 p r}\right) / 2 .
$$

We have that $q-R p=E^{\prime}$. Since $E E^{\prime}=-1$, we have $E^{\prime} / E^{2}=\left(E^{\prime}\right)^{3}>0$. Therefore $\operatorname{det} g^{\prime}<0$ for all $u \in[0,1]$.

Note that manifolds $\partial V_{1} \times\{u\}$ is lightlike. Since all the components of g^{\prime} with respect to (θ, t, u) depend on only u and all the components of $R \partial / \partial \theta+\partial / \partial t$ are constant, the vector field $R \partial / \partial \theta+\partial / \partial t$ is a non-singular Killing field for g^{\prime}. The distribution $\operatorname{ker} g^{\prime}(R \partial / \partial \theta+\partial / \partial t, \cdot)$ is equal to $\operatorname{Span}\{\partial / \partial \theta, \partial / \partial t\}$, hence it defines the foliation $\left\{\partial V_{1} \times\{*\}\right\}$. This proves Lemma 7 .
Step 3. We change the parameter u of each component of g^{\prime} to $w(u)$, where w is a function which satisfies the following:
(1) the function $w:[0,1] \rightarrow[0,1]$ is a C^{∞} monotone increasing function.
(2) $\frac{d^{n}}{d s^{n}} w(0)=\frac{d^{n}}{d s^{n}} w(1)=0$ for all integer $n>0$.

We denote a new metric by the same symbol g^{\prime}.
Put

$$
g=\left\{\begin{array}{lll}
g_{1} & \text { on } & V_{1}, \\
g^{\prime} & \text { on } & \partial V_{1} \times[0,1], \\
g_{2} & \text { on } & V_{2} .
\end{array}\right.
$$

Note that g is a C^{∞} Lorentzian metric on $V_{1} \cup_{\mathrm{id}}\left(\partial V_{1} \times[0,1]\right) \cup_{f} V_{2}$ by Proposition 3.6 in [Y2]. We define the vector field X by

$$
X=\left\{\begin{array}{lll}
X_{1} & \text { on } & V_{1}, \\
R \partial / \partial \theta+\partial / \partial t & \text { on } & \partial V_{1} \times[0,1], \\
X_{2} & \text { on } & V_{2} .
\end{array}\right.
$$

Note that X is a smooth non-singular Killing field for g and the distribution $\operatorname{ker} g(X, \cdot)$ is completely integrable. This completes the proof.

Remark 8 We wanted to construct a totally geodesic foliation perpendicular to a Killing field on $V_{1} \bigcup_{\mathrm{id}}\left(\partial V_{1} \times[0,1]\right) \bigcup_{f} V_{2}$. So we cannot rotate the one-dimensional lightlike subfoliation \mathcal{L} on the lightlike totally geodesic foliation $\left\{\partial V_{1} \times\{*\}\right\}$. Hence \mathcal{L} must coincide with an eigenspace of the matrix A. If we use the negative eigenvalue of A, the directions of the lightcones on ∂V_{2} and the Killing field X_{2} are reversed by the gluing $\operatorname{map} f$ (see Figure). So we can use the only one model ($\left.\varphi^{*} g_{0}, \varphi^{*} \partial / \partial t\right)$. If we use the positive eigenvalue of A, the directions of the lightcones and X_{2} are preserved by f. So we must use two models. This is the reason why we use the negative eigenvalue of A.

4 Manifolds admitting totally geodesic foliations perpendicular to Killing fields

In this section, we consider 3-manifolds admitting totally geodesic foliations perpendicular to Killing fields.

First we quote Zeghib's theorem concerning Killing fields on Lorentzian 3-manifolds.
Theorem 9 ([Z1] Theorem 0) Let ($M,<,>$) be a compact Lorentz 3-manifold and ϕ^{t} an isometric flow on it, which is not equicontinuous (a flow ϕ^{t} is equicontinuous iff the closure of $\left\{\phi^{t}\right\}$ in Homeo M is compact). Then exactly one of the following two possibilities can occur:
i) The flow is (everywhere) spacelike and Anosov.
ii) The flow is (everywhere) lightlike and preserves a complete Lorentz metric of constant negative curvature on M.

By using the above theorem, we have the following.
Theorem 10 Let (M, g) be a Lorentzian manifold and X a non-singular Killing field for g such that the distribution $\operatorname{ker} g(X, \cdot)$ is completely integrable. Denote the foliation defined by $\operatorname{ker} g(X, \cdot)$ by \mathcal{F}. Assume that \mathcal{F} contains more than one kind of leaves among spacelike, timelike, and lightlike leaves. Then M is a Seifert fibered space.

Proof. Let ϕ^{t} denote the one-parameter group generated by X. Since X is a non-singular Killing field, each orbit of X is spacelike, timelike, or lightlike. By the assumption that \mathcal{F} contains more than one kind of leaves, there exist two orbits of X such that they have distinct types each other. By Zeghib's theorem, the closure $\mathrm{Cl}\left\{\phi^{t}\right\}$ in Homeo M is compact. Since $\left\{\phi^{t}\right\}$ is abelian, so is $\mathrm{Cl}\left\{\phi^{t}\right\}$. Hence $\mathrm{Cl}\left\{\phi^{t}\right\}$ is a torus \mathbf{T} of some dimension. Take a compact one-parameter subgroup $\left\{a^{t}\right\}$ sufficiently near $\left\{\phi^{t}\right\}$ in $\mathrm{Cl}\left\{\phi^{t}\right\}$ so that $\left\{a^{t}\right\}$ defines a locally free action on M. Therefore M is a Seifert fibered space.

References

[BH] R. A. Blumenthal and J. J. Hebda, De Rham decomposition theorems for foliated manifolds, Ann. Inst. Fourier, 33(1983), 225-235
[BMT] C. Boubel, P. Mounoud, and C. Tarquini, Foliations admitting a transverse connection; applications in dimension three, preprint
[CG] Y. Carrière and E. Ghys, Feuilletages totalement géodésiques, An. Acad. Brasil. Ciênc. 53(1981), 427-432.
[CR] Y. Carrière and L. Rozoy, Complétude des Métriques Lorentziennes de \mathbb{T}^{2} et Difféomorphismes du Cercle, Bol. Soc. Bras. Mat. 25(1994), 223-235
[ON] B. O'Neill, Semi-Riemannian geometry, Academic press 1983
[M] P. Mounoud, Complétude et flots nul-géodésibles en géométrie lorentzienne, Bull. Soc. Math. France 132(2004), 463-475
[Y1] K. Yokumoto, Mutual exclusiveness among spacelike, timelike, and lightlike leaves in totally geodesic foliations of lightlike complete Lorentzian twodimensional tori, Hokkaido Math. J. 31(2002), 643-663
[Y2] K. Yokumoto, Examples of Lorentzian geodesible foliations of closed threemanifolds having Heegaard splittings of genus one, Tôhoku Math. J. 56(2004), 423-443
[Y3] K. Yokumoto, On totally geodesic foliations perpendicular to Killing fields, to appear in Hokkaido Math. J.
[Z1] A. Zeghib, Killing fields in compact Lorentz 3-manifolds, J. Diff. Geom. 43(1996), 859-894
[Z2] A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. Part I: Foundations of Lorentz dynamics, GAFA 9(1999), 775-822
[Z3] A. Zeghib, Isometry groups and geodesic foliations of Lorentz manifolds. Part II: Geometry of analytic Lorentz manifolds with large isometry groups, GAFA 9(1999), 823-854
[Z4] A. Zeghib, Geodesic foliations in Lorentz 3-manifolds, Comm. Math. Helv. 74(1999), 1-21

Division of Mathematics
Graduate School of Science
Hokkaido University
Sapporo 060-0810, JAPAN
E-mail: yoku@math.sci.hokudai.ac.jp
Received 4 March, 2005 Revised 26 May, 2005

