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An example of a totally geodesic foliation which is
perpendicular to a certain non-singular Killing field
on an arbitrary three-dimensional Lorentzian lens
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Abstract

We construct a totally geodesic foliation which is perpendicular to a certain
non-singular Killing field on an arbitrary three-dimensional Lorentzian lens
space.
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1 Introduction
Totally geodesic foliations on Lorentzian manifolds are studied by several authors

([BMT], [CR], [M], [Y1], [Y2], [Y3], [Z2], [Z3], [Z4]).
An example of a codimension-l totaly geodesic foliation containing spacelike,

timelike, and lightlike leaves appeared first in [Y1], and it was obtained as ker $g(X, \cdot)$ ,
where $X$ is a non-singular Killing field for a Lorentzian metric $g$ on the 2-torus
$T^{2}$ . So it seemed a “typical” example of a codimension-l totally geodesic foliation.
These typical examples, i.e., codimension-l totally geodesic foliations perpendicular
to non-singular Killing fields, were treated and classified in [Y3].

In [Y2], we constructed Lorentzian geodesible foliations of closed 3-manifolds
having Heegaard splittings of genus one, i.e., lens spaces $L(p, q)$ of type $(p, q)$ , the
3-sphere $S^{3}\cong L(1,0)$ , and $S^{2}\times S^{1}\cong L(0,1)$ . Here a Lorentzian geodesible foliation
means a totally geodesic foliation for some, in general incomplete, Lorentzian metric.
However, the constructed example of a totally geodesic foliation $\mathcal{F}$ was not a typical
example, that is, $\mathcal{F}$ was not obtained as ker $g(X, \cdot)$ for some non-singular Kiling field
X. So the natural question concerning the existence problem of typical examples
arises. More precisely, we have

Question 1 Can we give a non-singular Killing field $X$ for some Lorentzian metric
of a 3-manifold such that the distribution ker $g(X, \cdot)$ is completely integrable?

–67–



A natural idea to solve Question 1 is using a non-singular Killing field $X$ of a
Riemannian manifold $(M, g)$ such that ker $g(X, \cdot)$ is completely integrable. In this
setting, we can solve Question 1 by the following theorem.
Theorem 4 Let $X$ be a non-singular vector field on a closed manifold M. Then
$X$ is a Killing field for some Riemannian metric on $M$ if and only if $X$ is a timelike
Killing field for some Lorentzian metric on M. Moreover we can choose the exchange
between the Riemannian metric and the Lorentzian metric so that the orthogonal
distribution to $X$ is coincide.

By Theorem 4, we can easily solve Question 1 for the 3-manifolds admitting
codimension-l totaly geodesic foliations perpendicular to non-singular Killing fields.
However $L(p, q)$ except $L(O, 1)\cong S^{2}\times S^{1}$ does not admit a codimension-l totally
geodesic foliation by [BH]. So we need another idea to construct examples on $L(p, q)$ .
Fortunately a careful usage of the tricks stated in [Y2] works wel on $L(p, q)$ . Hence
we have the following.
Theorem 5 Let $L(p, q)$ denote a 3-dimensional lens space of type $(p, q)$ . (we allow
$(p, q)=(0,1),$ $(1,0).)$ Then there exists a Lorentzian metric $g$ on $L(p, q)$ and a
non-singular Killing fidd $X$ for $g$ such that the distribution ker $g(X, \cdot)$ is completely
integmble.

In Section 4, we consider 3-manifolds admitting totaly geodesic foliations per-
pendicular to non-singular Kiling fields. If a totaly geodesic foliation contains more
than one kind of leaves among spacelike, timelike, and lightlike leaves, we have the
following.

Theorem 10 Let $(M,g)$ be a Lorentzian manifold and $X$ a non-singular Killing
field for $g$ such that the distribution ker $g(X, \cdot)$ is completely integrable. Denote the
foliation defined by ker $g(X, \cdot)$ by $\mathcal{F}$ . Assume that $\mathcal{F}$ contains more than one kind
of leaves among spacelike, timelike, and lightlike leaves. Then $M$ is a Seifert fibered
space.

2 Killing fields for Riemannian metrics and
Lorentzian metrics

In this section, we refer to relations between non-singular $Kill\dot{i}g$ fields for Rie-
mannian metrics and those for Lorentzian metrics.

First we consider a modification of a Riemannian metric into a certain Lorentzian
metric as folows.

Proposition 2 Let $(M,g)$ be a Riemannian manifold and $X$ a non-singular Killing
field for $g$ . Assume that there exists a constant $k>0$ such that $g(X_{x}, X_{x})>1/k$ for
all $x\in M$ . Then $h=g-kg(X, \cdot)\otimes g(X, \cdot)$ is a Lorentzian metric on $M$ and $X$ is
a Killing field for $h$ . Furthermore the orthogonal complement of $X$ with respect to
$g$ is perpendicular to $X$ with respect to $h$ .
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Proof. It is easy to prove that $h$ is a Lorentzian metric on $M$ . So it is sufficient
to prove that $\mathcal{L}_{X}(g(X, \cdot))=0$ . Put $\omega=g(X, \cdot)$ . By straight computation, we
have $(\mathcal{L}_{X}\omega)(Y)=X(g(X, Y))-g(X, [X, Y])$ . If $Y\in\Gamma(kerg(X, \cdot))$ , then we have
$g(X, Y)=0$ and [X, $Y$] $\in\Gamma(kerg(X, \cdot))$ , since the distribution ker $g(X, \cdot)$ is pre-
served by the flow generated by $X$ by [Y3]. If $Y=X$ , then we have $X(g(X, Y))=0$

and [X, $Y$] $=0$ . Therefore we have $\mathcal{L}_{X}\omega=0$ . This proves the proposition. $\square $

Second we consider a kind of a converse of Proposition 2. We can prove it in the
same way as above.

Proposition 3 Let $(M, h)$ be a Lorentzian manifold and $X$ a non-singular Killing
field. Assume that $X$ is timelike and there exists a constant $k>0$ such that
$h(X_{x}, X_{x})<-1/k$ for all $x\in M$ . Then $g=h+kh(X, \cdot)\otimes h(X, \cdot)$ is a Riemannian
metric and $X$ is a Killing field for $g$ . Furthermore the orthogonal complement of $X$

with respect to $h$ is perpendicular to $X$ with respect to $g$ .

By putting Proposition 2 and 3 together, we have the following.

Theorem 4 Let $X$ be a non-singular vector field on a closed manifold M. Then $X$

is a Killing field for some Riemannian metric on $M$ if and only if $X$ is a timelike
Killing field for some Lorentzian metric on M. Moreover we can choose the exchange
between the Riemannian metric and the Lorentzian metric so that the orthogonal
distribution to $X$ is coincide.

By Theorem 4, we can easily solve Question 1 for the 3-manifolds admitting
codimension-l totally geodesic foliations perpendicular to non-singular Killing fields,
for example, a surface bundle over $S^{1}$ whose monodromy is isotopic to a periodic
map [CG].

3 A construction of a totally geodesic foliation
which is perpendicular to a certain non-singular
Killing field

In this section, we prove the following.

Theorem 5 Let $L(p, q)$ denote a 3-dimensional lens space of type $(p, q)$ . (we allow
$(p, q)=(0,1),$ $(1,0).)$ Then there exists a Lorentzian metric $g$ on $L(p, q)$ and a
non-singular Killing field $X$ for $g$ such that the distrebution ker $g(X, \cdot)$ is completely
integrable.

The proof of this theorem is essentially similar to the proof in [Y2].

Proof of Theorem 5. If $p=0$ , that is, $L(O, 1)\cong S^{2}\times S^{1}$ , the Lorentzian metric
$ds^{2}|_{S^{2}}-dt^{2}$ and the Killing field $\partial/\partial t$ satisfy the desired conditions. Hereafter we
assume that $p\neq 0$ .
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Let $V_{i}$ denote an oriented $D^{2}\times S^{1}$ , and let $m_{i}$ (resp. $l_{i}$ ) be a meridian (resp.
longitude) in $V_{i}(i=1,2)$ . Put

$A=\left(\begin{array}{ll}q & r\\p & s\end{array}\right),$ $p,$ $q,r,$ $s\in Z$ , qs-pr $=-1$ .

Let $f$ : $\partial V_{2}\rightarrow\partial V_{1}$ be the orientation reversing diffeomorphism defined by

$f$ : $\left(\begin{array}{l}\theta_{2}\\t_{2}\end{array}\right)\leftrightarrow A\left(\begin{array}{l}\theta_{2}\\t_{2}\end{array}\right)$ ,

where $(\theta_{2}, t_{2})\in\partial V_{2}$ denotes the coordinate defined by

$(\theta_{2},t_{2})\leftrightarrow$ ( $\cos\theta_{2}$ , sin $\theta_{2},t_{2}$ ) $\in\partial V_{2}$ .

Note that $V_{1}\bigcup_{f}V_{2}$ is diffeomorphic to the lens space $L(p, q)$ of type $(p, q)$ . Let $E$

denote the negative eigenvalue of $A$ , that is,

$E=(q+s-\sqrt{(q-s)^{2}+4pr})/2$ ,

and put
$R=(q-s-\sqrt{(q-s)^{2}+4_{\Psi}})/2p$ .

Step 1. We can construct a Lorentzian metric $g_{i}$ on $V_{i}$ and a non-singular Kiling
field $X_{i}$ for $g_{i}$ which are suitable for us as folows.

Lemma 6 There exist a Lorentzian metric $g_{1}$ on $V_{1}$ , a non-singular Killing field
$X_{i}$ for $g_{i}$ and a codimension-l Reeb foliation $\mathcal{F}_{i}$ on $V_{i}$ which satisfy the following
conditions.
(1) The foliation $\mathcal{F}_{i}$ is obtained as ker $g(X_{i}, \cdot)$ .
(2) (Note that $\partial V_{i}\in \mathcal{F}_{i}$ is lightlike by the result of $[Y2].$ ) The linear foliation defined
by the lightlike vectors on the boundary leaf $\partial V_{i}\in \mathcal{F}_{i}$ is equal to the eigenspace
corresponding to the negative eigenvalue of $A$ .
(3) The metric $g_{i}$ satisfies the assumptions of Proposition 3.6 in $\int Y2J$.
(4) The gluing map $f$ is an “isometry” from $(\partial V_{2},g_{2}|_{\partial V_{2}})$ to $(\partial V_{1},g_{1}|_{\partial V_{1}})$ , that is,

$f^{*}(g_{1}|_{\partial V_{1}})=g_{2}|_{\partial V_{2}}$ .

(5) The gluing map $f$ maps $X_{2}|_{\partial V_{2}}$ to $X_{1}|_{\partial V_{1}}$ .

Proof. Let $(x, y, t)$ be coordinates of $D^{2}\times R$ , where $(x, y)$ and $(t)$ are the canonical
coordinates of $R^{2}$ and $R$ , respectively. Define the diffeomorphism $\varphi$ : $ D^{2}\times R\rightarrow$

$D^{2}\times R$ by

$(x,y,t)\leftrightarrow(x\cos(Rt)+y\sin(Rt), -x\sin(Rt)+y\cos(Rt),t)$ .
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Consider $\varphi^{*}g_{0}$ , where $g_{0}$ is the Lorentzian metric on $D^{2}\times R$ in Example 3.5 in [Y2].
By straight computation, $\varphi^{*}g_{0}$ is given by

$\frac{\frac{G_{1}^{\prime}}{2(a^{2}-2)(xG_{2}^{\prime}}}{\frac,x^{2}-\frac{222^{+y^{2})^{2}}2+y^{2})^{2}a^{2}Rx}{2(x^{2}+y^{2})}\sqrt{}+y^{2}2(a^{l}-2)(xay}$
$\frac{\frac{ax}{\sqrt{x^{2}+y^{2}}ay}}{\sqrt{x^{2}+y^{2}},\underline{a}_{2}^{2}R^{2}-}-\frac{\infty_{2(x.+y)}a^{2}Rxa^{2}R}{2(x^{2}+y^{2})}+a^{2}-1+)$ ,

$G_{11}^{\prime}$ $=$ $2(a^{2}-1)(x^{2}+y^{2})x^{2}+a^{2}(a^{2}-2)y^{2}$ ,
$G_{12}^{\prime}$ $=$ $2(a^{2}-1)(x^{2}+y^{2})xy-a^{2}(a^{2}-2)xy$ ,
$G_{22}^{\prime}$ $=$ $2(a^{2}-1)(x^{2}+y^{2})y^{2}+a^{2}(a^{2}-2)x^{2}$ .

Define the vector field $X_{1}$ by

$R(x\frac{\partial}{\partial y}-y\frac{\partial}{\partial x})+\frac{\partial}{\partial t}$ .

Since $\varphi_{*}X_{1}=\partial/\partial t$ , the vector field $X_{1}$ is a non-singular Killing field for $\varphi^{*}g_{0}$ . The
distribution defined by ker $\varphi^{*}g_{0}(X_{1}, \cdot)$ is completely integrable. Since the metric
$\varphi^{*}g_{0}$ on $D^{2}\times R$ is invariant by $\partial/\partial t$ , it defines the metric on $D^{2}\times R/2\pi Z$ .

Let $V_{1}$ and $V_{2}$ be two copies of an oriented $D^{2}\times S^{1}$ . Let $(x_{i}, y_{i}, t_{i})$ denote the
coordinate of $V_{i}=D^{2}\times S^{1}(i=1,2)$ . Put

$g_{1}=\varphi^{*}g_{0},$ $X_{1}=R(x_{1}\frac{\partial}{\partial y_{1}}-y_{1}\frac{\partial}{\partial x_{1}})+\frac{\partial}{\partial t_{1}}$ on $V_{1}$ ,

$g_{2}=\frac{1}{E^{2}}\varphi^{*}g_{0},$
$X_{2}=\frac{1}{E}(R(x_{2}\frac{\partial}{\partial y_{2}}-y_{2}\frac{\partial}{\partial x_{2}})+\frac{\partial}{\partial t_{2}})$ on $V_{2}$ .

These $g_{i},$ $X_{i}$ satisfy conditions (1), (2), and (5). We will see that they satisfy
conditions (3) and (4) in Step 2. $\square $

We change coordinates from $(x_{i}, y_{i}, t_{i})\in V_{i}$ to $(r_{i}, \theta_{i},t_{i})$ , where $x_{i}=r_{i}$ cos $\theta_{i}$ and
$y_{i}=r_{i}$ sin $\theta_{i}$ . The metric $g_{1}$ is represented by

( $(a^{2}-1)/(a^{2}-2)a0$ $-a^{2}R/2a^{2}/20$ $a^{2}R^{2}/2+a^{2}-1-a^{2}R/2a$ ),
with respect to $(r_{1}, \theta_{1}, t_{1})$ . Define the collar neighborhood by

$h_{i}$ : $\partial V_{i}\times[0, e]\rightarrow V_{i}$ , $(\theta_{i}, t_{i}, u_{i})->(1-u_{i}, \theta_{i}, t_{i})$ .

Recall that the gluing map $f$ : $\partial V_{2}\cong R^{2}/2\pi Z^{2}\rightarrow\partial V_{1}\cong R^{2}/2\pi Z^{2}$ is defined by

$f$ : $\left(\begin{array}{l}\theta_{2}\\t_{2}\end{array}\right)$ -$ $\left(\begin{array}{ll}q & r\\p & s\end{array}\right)\left(\begin{array}{l}\theta_{2}\\t_{2}\end{array}\right)$ .
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Step 2. Denote coordinates of $\partial V_{1}\times[0,1]$ by $(\theta,t, u)$ , where $\theta=\theta_{1}$ and $t=t_{1}$ .
Consider the glued manifold $V_{1}\bigcup_{id}(\partial V_{1}\times[0,1])\bigcup_{f}V_{2}$ .

We prove a lemma similar to Lemma 3.8 in [Y2].

Lemma 7 There exists a Lorentzian metric $g^{\prime}$ on $\partial V_{1}\times[0,1]$ which is the extension
of the metric $g_{1}\cup g_{2}$ restricted on $\partial V_{1}\times\{0\}$ to the metric $g_{1}\cup g_{2}$ on $\partial V_{1}\times\{1\}$ and
satisfies the following conditions:

(1) All the components of $g^{\prime}$ with respect to $(\theta, t, u)$ depend on only $ u\in$

$[0,1]$ .
(2) The foliation $\{\partial V_{1}\times\{*\}\}$ is perpendicular to a non-singular lightlike
Killing field for $g^{j}$ , hence, the foliation $\{\partial V_{1}\times\{*\}\}$ is totally geodesic
with respect to $g^{\prime}$ .

Proof. Recal that

$g_{1}=($ $(a^{2}-1)/(a^{2}-2)a0$ $-a^{2}R/2a^{2}/20a^{2}R^{2}/2+a^{2}-1-a^{2}R/2a$ ),
where the right hand side is the matrix of components of $g_{1}$ with respect to $(r_{1}, \theta_{1}, t_{1})\in$

$V_{1}$ . When we use the colar coordinates $(\theta_{1},t_{1}, u_{1})\in\partial V_{1}\times[0,1]$ , we have another
expression of $g_{1}$ as

$g_{1}=\left(\begin{array}{llllll}a^{2}/2 & -a^{2}R/2 & & & 0 & \\-a^{2}R/2 & a^{2}R^{2}/2+a^{2} & -l & & -a & \\0 & -a & & (a^{2} & -1)(a^{2} & -2)\end{array}\right)$ .

By restricting $g_{1}$ on $\partial V_{1}\times\{0\}\subset\partial V_{1}\times[0, e]$ , we have

$g_{1}=\left(\begin{array}{lll}1/2 & & 0\\-R/2 & -R/2R^{2}/2 & -1\\0 & -1 & 0\end{array}\right)$ .

Hence the metric on $\partial V_{1}\times\{0\}\subset\partial V_{1}\times[0,1]$ is represented by

$\left(\begin{array}{ll}1 & 00\\0 & 10\\0 & 0-1\end{array}\right)\left(\begin{array}{lll}1/2 & -R/2 & 0\\-R/2 & R^{2}/2 & -1\\0 & -1 & 0\end{array}\right)\left(\begin{array}{ll}1 & 00\\0 & 10\\0 & 0-1\end{array}\right)=\left(\begin{array}{lll}l/2 & -R/2 & 0\\-R/2 & R^{2}/2 & l\\0 & 1 & 0\end{array}\right)$

with respect to the coordinates $(\theta, t,u)\in\partial V_{1}\times[0,1]$ . Since $X_{1}=R\partial/\partial\theta_{1}+\partial/\partial t_{1}$

on $V_{1}$ , we have
$X_{1}=R\frac{\partial}{\partial\theta}+\frac{\partial}{\partial t}$

on $\partial V_{1}\times\{0\}\subset\partial V_{1}\times[0,1]$ . Note that the inverse map $f^{-1}$ : $\partial V_{1}\times\{1\}\rightarrow\partial V_{2}$ is
represented by

$\left(\begin{array}{ll}-s & r\\p & -q\end{array}\right)$ ,
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Figure: $f$ and $id$

and

$g_{2}=\frac{1}{E^{2}}\left(\begin{array}{llllll}a^{2}/2 & -a^{2}R/2 & & & 0 & \\-a^{2}R/2 & a^{2}R^{2}/2+a^{2} & -1 & & -a & \\0 & -a & & (a^{2} & -1)/(a^{2} & -2)\end{array}\right)$

with respect to the colar coordinates $(\theta_{2}, t_{2}, u_{2})\in\partial V_{2}\times[0,\epsilon]$ . These expressions
imply that

$\left(\begin{array}{lll}-s & p & 0\\r & -q & 0\\0 & 0 & 1\end{array}\right)\cdot\frac{1}{E^{2}}\left(\begin{array}{lll}1/2 & -R/2 & 0\\-R/2 & R^{2}/2 & -l\\0 & -l & 0\end{array}\right)\left(\begin{array}{lll}-s & r & 0\\p & -q & 0\\0 & 0 & 1\end{array}\right)$

$=\frac{1}{E^{2}}(-(s+pR)(r+qR)/2(s+pR)^{2}/2-p$ $-(s+pR)(r+qR)/2(r+qR)^{2}/2q$ $-p0q)$

on $\partial V_{1}\times\{1\}\subset\partial V_{1}\times[0,1]$ with respect to $(\theta, t, u)\in\partial V_{1}\times[0,1]$ (Figure). By the
definitions of $R$ and $E$ , we have

$(s+pR)/E=1,$ $(r+qR)/E=R$ .

By substituting these, $g_{2}$ is expressed as

$g_{2}=($ $-p/E^{2}-R/21/2$ $-R/2q/E^{2}R^{2}/2$ $-p/E^{2}q/_{o}E^{2}$ ),
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with respect to $(\theta, t,u)\in\partial V_{1}\times[0,1]$ . By the definition of $X_{2}$ , we have $f_{*}X_{2}=$

$R\partial/\partial\theta+\partial/\partial t$ . Define the Lorentzian metric $g^{\prime}$ by

$g^{\prime}|_{(\theta,t,u)}=\left(\begin{array}{lll}1/2 & -R/2 & -up/E^{2}\\-R/2 & R^{2}/2 & uq/E^{2}+(1-u)\\-up/E^{2} & uq/E^{2}+(1-u) & 0\end{array}\right)$

with respect to $(\theta,t,u)$ . By the straight computation, we have that

det $g^{\prime}=-\frac{1}{2}\{(\frac{q-Rp}{E^{2}})u+(1-u)\}^{2}$

Let $E^{\prime}$ denote the positive eigenvalue of $A$ , that is,

$E^{\prime}=(q+s+\sqrt{(q-s)^{2}+4_{\Psi}})/2$ .

We have that $q- Rp=E^{\prime}$ . Since $EE^{\prime}=-1$ , we have $E^{\prime}/E^{2}=(E^{\prime})^{3}>0$ . Therefore
det $g^{\prime}<0$ for al $u\in[0,1]$ .

Note that manifolds $\partial V_{1}\times\{u\}$ is lightlike. Since al the components of $g^{\prime}$ with
respect to $(\theta, t, u)$ depend on only $u$ and al the components of $R\partial/\partial\theta+\partial/\partial t$ are
constant, the vector field $R\partial/\partial\theta+\partial/\partial t$ is a non-singular Killing field for $g^{\prime}$ . The
distribution ker $g^{\prime}(R\partial/\partial\theta+\partial/\partial t, \cdot)$ is equal to $Span\{\partial/\partial\theta, \partial/\partial t\}$ , hence it defines
the foliation $\{\partial V_{1}\times\{*\}\}$ . This proves Lemma 7. $\square $

Step 3. We change the parameter $u$ of each component of $g^{\prime}$ to $w(u)$ , where $w$ is
a function which satisfies the folowing:

(1) the function $w$ : $[0,1]\rightarrow[0,1]$ is a $C^{\infty}$ monotone increasing function.
(2) $\frac{d^{\mathfrak{n}}}{ds^{\mathfrak{n}}}w(O)=\frac{d^{n}}{ds^{n}}w(1)=0$ for al integer $n>0$ .

We denote a new metric by the same symbol $g^{j}$ .
Put

$g=\left\{\begin{array}{ll}g_{1} & on V_{1},\\g^{\prime} & on \partial V_{1}\times[0,1],\\g_{2} & on V_{2}.\end{array}\right.$

Note that $g$ is a $C^{\infty}$ Lorentzian metric on $V_{1}\bigcup_{id}(\partial V_{1}\times[0,1])\bigcup_{f}V_{2}$ by Proposition
3.6 in [Y2]. We define the vector field $X$ by

$X=\left\{\begin{array}{ll}X_{1} & on V_{1},\\R\partial/\partial\theta+\partial/\partial t & on \partial V_{1}\times[0,1],\\X_{2} & on V_{2}.\end{array}\right.$

Note that $X$ is a smooth non-singular Killing field for $g$ and the distribution ker $g(X, \cdot)$

is completely integrable. This completes the proof. $\square $
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Remark 8 We wanted to construct a totally geodesic foliation perpendicular to a
Killing field on $V_{1}\bigcup_{id}(\partial V_{1}\times[0,1])\bigcup_{f}V_{2}$ . So we cannot rotate the one-dimensional
lightlike subfoliation $\mathcal{L}$ on the lightlike totally geodesic foliation $\{\partial V_{1}\times\{*\}\}$ . Hence
$\mathcal{L}$ must coincide with an eigenspace of the matrix $A$ . If we use the negative eigenvalue
of $A$ , the directions of the lightcones on $\partial V_{2}$ and the Killing field $X_{2}$ are reversed by
the gluing map $f$ (see Figure). So we can use the only one model $(\varphi^{*}g_{0}, \varphi^{*}\partial/\partial t)$ .
If we use the positive eigenvalue of $A$ , the directions of the lightcones and $X_{2}$ are
preserved by $f$ . So we must use two models. This is the reason why we use the
negative eigenvalue of $A$ .

4 Manifolds admitting totally geodesic foliations
perpendicular to Killing fields

In this section, we consider 3-manifolds admitting totally geodesic foliations per-
pendicular to Killing fields.

First we quote Zeghib’s theorem concerning Killing fields on Lorentzian 3-manifolds.

Theorem 9 ([Z1] Theorem $0$) Let $(M, <, >)$ be a compact Lorentz 3-manifold
and $\phi^{t}$ an isometric flow on it, which is not equicontinuous (a flow $\phi^{t}$ is equicon-
tinuous iff the closure of $\{\phi^{t}\}$ in Homeo $M$ is compact). Then exactly one of the
following two possibilities can occur.
i) The flow is (everywhere) spacelike and Anosov.
ii) The flow is (everywhere) lightlike and preserues a complete Lorentz metric of
constant negative curuature on $M$ .

By using the above theorem, we have the following.

Theorem 10 Let $(M, g)$ be a Lorentzian manifold and $X$ a non-singular Killing
field for $g$ such that the $dist7\dot{\eta}bution$ ker $g(X, \cdot)$ is completely integrable. Denote the
foliation defined by ker $g(X, \cdot)$ by $\mathcal{F}$ . Assume that $\mathcal{F}$ contains more than one kind
of leaves among spacelike, timelike, and lightlike leaves. Then $M$ is a Seifert fibered
space.

Proof. Let $\phi^{t}$ denote the one-parameter group generated by $X$ . Since $X$ is a
non-singular Killing field, each orbit of $X$ is spacelike, timelike, or lightlike. By the
assumption that $\mathcal{F}$ contains more than one kind of leaves, there exist two orbits of
$X$ such that they have distinct types each other. By Zeghib’s theorem, the closure
Cl $\{\phi^{t}\}$ in Homeo $M$ is compact. Since $\{\phi^{t}\}$ is abelian, so is Cl $\{\phi^{t}\}$ . Hence Cl $\{\phi^{t}\}$

is a torus $T$ of some dimension. Take a compact one-parameter subgroup $\{a^{t}\}$

sufficiently near $\{\phi^{t}\}$ in Cl $\{\phi^{t}\}$ so that $\{a^{t}\}$ defines a locally free action on $M$ .
Therefore $M$ is a Seifert fibered space. $\square $
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