On Four-dimensional Generalized Complex Space Forms

Richard S. Lemence

Abstract

F. Tricerri and L. Vanhecke [8] proved that a $2 n(n \geq 3)$-dimensional generalized complex space is a real space form or a complex space form. In this note, we shall show that this result is extendable to 4 -dimensional case.

1 Introduction

Let (V, g) be an n-dimensional real vector space with positive definite inner product g and denote by $\mathcal{R}(V)$ the subspace of $V^{*} \otimes V^{*} \otimes V^{*} \otimes V^{*}$ consisting of all tensors having the same symmetries as the curvature tensor of a Riemannian manifold, including the first Bianchi identity. F. Tricerri and L. Vanhecke [8] gave the complete and irreducible decomposition of $\mathcal{R}(V)$ under the action of $\mathcal{U}(n)$. They then applied these algebraic results to the curvature tensors of almost Hermitian manifolds.

A $2 n(n \geq 2)$-dimensional almost Hermitian manifold $M=(M, J, g)$ is called a generalized complex space form if the curvature tensor R takes the following form:

$$
\begin{align*}
R & =\frac{\tau+3 \tau^{*}}{16 n(n+1)}\left(\pi_{1}+\pi_{2}\right)+\frac{\tau-\tau^{*}}{16 n(n-1)}\left(3 \pi_{1}-\pi_{2}\right) \tag{1.1}\\
& =\frac{(2 n+1) \tau-3 \tau^{*}}{8 n(n-1)(n+1)} \pi_{1}+\frac{(2 n-1) \tau^{*}-\tau}{8 n(n-1)(n+1)} \pi_{2}
\end{align*}
$$

for some smooth functions τ and τ^{*} and here

$$
\pi_{1}(x, y) z=g(y, z) x-g(x, z) y
$$

and

$$
\pi_{2}(x, y) z=g(J y, z) J x-g(J x, z) J y-2 g(J x, y) J z
$$

for all $x, y, z \in T_{p} M, p \in M$.
The concept of generalized complex space form is a natural generalization of a complex space form (i.e. Kähler manifold of constant holomorphic sectional curvature) which has been introduced by F. Tricerri and L. Vanhecke [8]. They showed
that an almost Hermitian manifold is a generalized complex space form if and only if Einsteinian and weakly *- Einsteinian and Bochner flat,i.e., $B(R)=0$ and further proved that a $2 n(n \geq 3)$-dimensional generalized complex space is a real space form or a complex space form.

In this paper, we shall show that the result of F. Tricerri and L. Vanhecke [8] is partially extendable to 4 -dimensional case under compactness hypothesis, namely, we shall prove the following:

Theorem A. Let $M=(M, J, g)$ be a 4-dimensional generalized complex space form. Then M is locally a real space form or globally conformal Kähler manifold. In the latter case, $\left(M, J, g^{*}\right)$ with $g^{*}=\left(3 \tau^{*}-\tau\right)^{\frac{2}{3}} g$ is a Kähler manifold, where τ and τ^{*} are the scalar curvature and the $*$-scalar curvature of M, respectively.

Theorem B. Let $M=(M, J, g)$ be a compact 4-dimensional generalized complex space form. Then M is a real space form of constant non-positive sectional curvature or compact complex space form.

Remark. There is an example of 4-dimensional compact non-Hermitian, almost Hermitian flat manifold (cf. [1]). Further, there does not exist 4-dimensional compact Hermitian manifold of negative constant sectional curvature (cf. [5]). However, the author does not know whether there exist a 4-dimensional compact non-Hermitian almost Hermitian manifolds of negative constant sectional curvature or not.

2 Preliminaries

Let $M=(M, J, g)$ be a $2 n$-dimensional almost Hermitian manifold with the almost complex structure J and the metric g. We denote by ∇, R, ρ and τ the LeviCivita connection, the Riemannian curvature tensor, the Ricci tensor and the scalar curvature tensor, respectively. We assume that the Riemannian curvature tensor R is defined by

$$
\begin{equation*}
R(X, Y) Z=\nabla_{X}\left(\nabla_{Y} Z\right)-\nabla_{Y}\left(\nabla_{X} Z\right)-\nabla_{[X, Y]} Z \tag{2.1}
\end{equation*}
$$

for X, Y and $Z \in \mathfrak{X}(M)(\mathfrak{X}(M)$ denotes Lie algebra of all smooth vector fields on $M)$. Further, we denote by ρ^{*} and τ^{*} the Ricci $*$-tensor and the $*$-scalar curvature of M, respectively. The tensor ρ^{*} is defined pointwisely by

$$
\begin{align*}
\rho^{*}(x, y) & =\operatorname{trace}(z \mapsto R(J z, x) J y) \tag{2.2}\\
& =-\sum_{i=1 .}^{2 n} R\left(x, e_{i}, J y, J e_{i}\right) \\
& =-\frac{1}{2} \sum_{i=1}^{2 n} R\left(x, J y, e_{i}, J e_{i}\right)
\end{align*}
$$

for $x, y, z \in T_{p} M, p \in M$, where $R(x, y, z, w)=g(R(x, y) z, w)$ and $\left\{e_{i}\right\}$ is an orthonormal basis of $T_{p} M$. The $*$-scalar curvature of M is defined by $\tau^{*}=$ trace of Q^{*}, where Q^{*} is the Ricci $*$ - operator defined by $\rho^{*}(x, y)=g\left(Q^{*} x, y\right)$, for x, $y \in T_{p} M, p \in M$. We note that ρ^{*} satisfies $\rho^{*}(J x, J y)=\rho^{*}(y, x)$ for $x, y \in T_{p} M$, $p \in M$, but is not symmetric in general. An almost Hermitian manifold M is called a weakly $*$-Einstein manifold if $\rho^{*}=\frac{\tau^{*}}{2 n} g(\operatorname{dim} M=2 n)$ holds, and in addition, if τ^{*} is constant-valued, then M is called *-Einstein manifold. There exist many examples of weakly $*$ - Einstein but not $*$ - Einstein manifolds (cf. [9], [10] and [11]).

Now we return to 4-dimensional almost Hermitian manifold $M=(M, J, g)$ under consideration. We denote by $\wedge^{2} M$ the real vector bundle of all the real 2 -forms on M. The $\wedge^{2} M$ inherits a natural inner product coming from the Riemannian metric g and we have the following orthogonal decomposition:

$$
\begin{equation*}
\wedge^{2} M=\mathbb{R} \Omega \oplus L M \oplus \wedge_{0}^{1,1} M \tag{2.3}
\end{equation*}
$$

where $L M$ (resp. $\wedge_{0}^{1,1} M$) is the bundle of J-skew invariant (J-invariant) effective 2-forms on M. We can identify the bundle $\mathbb{R} \Omega \oplus L M$ (resp. $\wedge_{0}^{1,1} M$) with the bundle $\wedge_{+}^{2} M$ (resp. $\wedge_{-}^{2} M$) of the self-dual (resp. anti-self dual) 2-forms on M. The bundle $L M$ is endowed with the complex structure (denoted also by J) given by $(J \Phi)(X, Y)=-\Phi(J X, Y)$, for any local section of Φ of $L M$ and any $X, Y \in \mathfrak{X}(M)$. We note that the almost complex structure J acts also on 1-form σ by $(J \sigma)=$ $-\sigma(J X)$, for any $X \in \mathfrak{X}(M)$. Corresponding to the decomposition (2.3), we may set

$$
\begin{equation*}
\nabla \Omega=\alpha \otimes \Phi+\beta \otimes J \Phi \tag{2.4}
\end{equation*}
$$

for some local 1-forms α and β, where $\Phi, J \Phi$ is a local orthonormal basis of $L M$. It is well-known that the almost complex structure J of M is integrable if and only if $\left(\nabla_{X} J\right) Y=\left(\nabla_{J X} J\right) J Y$ holds for $X, Y \in \mathfrak{X}(M)$. So, from (2.4), we see that J is integrable if and only if $\beta=J \alpha$ holds on a neighborhood of any point of M. Since the $\operatorname{dim} M=4$, we see that there does not exist effective 3 -forms on M and hence, any 3 -form η is represented as $\eta=\sigma \wedge \Omega$ for some 1 -form σ. Thus, we may set especially

$$
\begin{equation*}
d \Omega=\omega \wedge \Omega \tag{2.5}
\end{equation*}
$$

for some 1-form ω on M. The 1-form ω is called the Lee form of M, and is given by

$$
\begin{equation*}
\omega=-\delta \Omega \circ J \tag{2.6}
\end{equation*}
$$

Let $\left\{e_{i}\right\}=\left\{e_{1}, e_{2}=J e_{1}, e_{3}, e_{4}=J e_{3}\right\}$ be any (local) unitary basis of $T_{p} M(p \in M)$ and $\left\{e^{i}\right\}=\left\{e^{1}, e^{2}=J e^{1}, e^{3}, e^{4}=J e^{3}\right\}$ be the dual basis of $\left\{e_{i}\right\}$. Then, the Kähler
form Ω is represented by $\Omega=e^{1} \wedge e^{2}+e^{3} \wedge e^{4}$. Further, we see that

$$
\begin{align*}
\{\Phi, J \Phi\}= & \left\{\frac{1}{\sqrt{2}}\left(e^{1} \wedge e^{3}-e^{2} \wedge e^{4}\right), \frac{1}{\sqrt{2}}\left(e^{1} \wedge e^{4}+e^{2} \wedge e^{3}\right)\right\} \\
\left\{\psi_{1}, \psi_{2}, \psi_{3}\right\}= & \left\{\frac{1}{\sqrt{2}}\left(e^{1} \wedge e^{2}-e^{3} \wedge e^{4}\right), \frac{1}{\sqrt{2}}\left(e^{1} \wedge e^{3}-e^{2} \wedge e^{4}\right)\right. \tag{2.7}\\
& \left.\frac{1}{\sqrt{2}}\left(e^{1} \wedge e^{4}-e^{2} \wedge e^{3}\right)\right\}
\end{align*}
$$

are (locally) orthonormal bases of $L M$ and $\wedge_{0}^{1,1} M=\wedge_{-}^{2} M$, respectively. In this paper, for any (local) unitary basis $\left\{e_{i}\right\}$ of $T_{p} M$ at any point $p \in M$, we shall adopt the following notational convention:

$$
\begin{gather*}
J_{i j}=g\left(J e_{i}, e_{j}\right) \\
\nabla_{i} J_{j k}=g\left(\left(\nabla_{e_{i}} J\right) e_{j}, e_{k}\right), \ldots, \nabla_{\bar{i}} J_{\bar{j} \bar{k}}=g\left(\left(\nabla_{J e_{i}} J\right) J e_{j}, J e_{k}\right) \tag{2.8}\\
R_{i j k l}=g\left(R\left(e_{i}, e_{j}\right) e_{k}, e_{l}\right), \ldots, R_{i j \bar{k} \bar{l}}=g\left(R\left(J e_{i}, J e_{j}\right) J e_{k}, J e_{l}\right),
\end{gather*}
$$

and so on where the latin indices ranges over $1,2,3,4$. Following this notational convention, from (2.6), we have

$$
\begin{equation*}
\omega_{k}=\sum_{i, j}\left(\nabla_{i} J_{i j}\right) J_{k j} \tag{2.9}
\end{equation*}
$$

3 Proofs of Theorem A and B

First we prove Theorem A.
Let $M=(M, J, g)$ be a 4 -dimensional generalized complex space form. Then (1.1) reduces to

$$
\begin{align*}
R(x, y, z, w)= & \frac{5 \tau-3 \tau^{*}}{48}\{g(y, z) g(x, w)-g(x, z) g(y, w)\} \tag{3.1}\\
& +\frac{3 \tau^{*}-\tau}{48}\{g(J x, w) g(J y, z)-g((J y, w) g(J x, z) \\
& -2 g(J x, y) g(J z, w)\}
\end{align*}
$$

for $x, y, z, w \in T_{p} M(p \in M)$. First of all, from (3.1), we may note that M is $\operatorname{Einstein}\left(\rho=\frac{\tau}{4} g\right)$ and weakly $*$-Einstein ($\left.\rho^{*}=\frac{\tau^{*}}{4} g\right)$; and, further a space of pointwise constant holomorphic sectional curvature $\frac{1}{24}\left(3 \tau^{*}+\tau\right)$. Now, from (3.1),
we also get

$$
\begin{align*}
& \left(\nabla_{u} R\right)(x, y, z, w) \tag{3.2}\\
= & -\frac{1}{16} u\left(\tau^{*}\right)\{g(x, w) g(y, z)-g(y, w) g(x, z) \\
& -g(J x, w) g(J y, z)+g(J y, w) g(J x, z) \\
& +2 g(J x, y) g(J z, w)\}+\frac{3 \tau^{*}-\tau}{48}\left\{g(J y, z) g\left(\left(\nabla_{u} J\right) x, w\right)\right. \\
& +g(J x, w) g\left(\left(\nabla_{u} J\right) y, z\right)-g(J x, z) g\left(\left(\nabla_{u} J\right) y, w\right) \\
& -g(J y, w) g\left(\left(\nabla_{u} J\right) x, z\right)-2 g(J x, y) g\left(\left(\nabla_{u} J\right) z, w\right) \\
& \left.-2 g(J z, w) g\left(\left(\nabla_{u} J\right) x, y\right)\right\}
\end{align*}
$$

for $u, x, y, z, w \in T_{p} M(p \in M)$.
Let $\left\{e_{i}\right\}$ be any unitary basis of $T_{p} M$ at any poiny $p \in M$. Then, since M is Einstein, from (3.2), we get

$$
\begin{align*}
0= & \left(\nabla_{w} \rho\right)(y, z)-\left(\nabla_{z} \rho\right)(y, w) \tag{3.3}\\
= & \sum_{i=1}^{4}\left(\nabla_{e_{i}} R\right)\left(e_{i}, y, z, w\right) \\
= & -\frac{1}{16}\left\{w\left(\tau^{*}\right) g(y, z)-z\left(\tau^{*}\right) g(y, w)+(J w)\left(\tau^{*}\right) g(J y, z)\right. \\
& \left.-(J z)\left(\tau^{*}\right) g(J y, w)-2(J y)\left(\tau^{*}\right) g(J z, w)\right\} \\
& +\frac{3 \tau^{*}-\tau}{48}\left\{-g\left(\left(\nabla_{J w} J\right) y, z\right)+g\left(\left(\nabla_{J z} J\right) y, w\right)\right. \\
& +(J \omega)(w) g(J y, z)-(J \omega)(z) g(J y, w) \\
& \left.-2(J \omega)(y) g(J z, w)+2 g\left(\left(\nabla_{J y} J\right) z, w\right)\right\}
\end{align*}
$$

for $y, z, w \in T_{p} M(p \in M)$.
By setting $w=e_{1}, y=z=e_{3}$ in (3.3) we get

$$
\begin{equation*}
e_{1}\left(3 \tau^{*}-\tau\right)+3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{4}} J\right) e_{1}, e_{3}\right)=0 \tag{3.4}
\end{equation*}
$$

Similarly, by setting $w=e_{1}, y=z=e_{4}$ in (3.3) we get

$$
\begin{equation*}
e_{1}\left(3 \tau^{*}-\tau\right)-3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{3}} J\right) e_{1}, e_{4}\right)=0 \tag{3.5}
\end{equation*}
$$

Further, we get the following:

$$
\begin{align*}
& e_{2}\left(3 \tau^{*}-\tau\right)+3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{4}} J\right) e_{2}, e_{3}\right)=0 \tag{3.6}\\
& e_{2}\left(3 \tau^{*}-\tau\right)-\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{3}} J\right) e_{2}, e_{4}\right)=0 \tag{3.7}\\
& e_{3}\left(3 \tau^{*}-\tau\right)-3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{2}} J\right) e_{1}, e_{3}\right)=0 \tag{3.8}
\end{align*}
$$

$$
\begin{align*}
& e_{3}\left(3 \tau^{*}-\tau\right)+3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{1}} J\right) e_{2}, e_{3}\right)=0 \tag{3.9}\\
& e_{4}\left(3 \tau^{*}-\tau\right)-3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{2}} J\right) e_{1}, e_{4}\right)=0 \tag{3.10}\\
& e_{4}\left(3 \tau^{*}-\tau\right)+3\left(3 \tau^{*}-\tau\right) g\left(\left(\nabla_{e_{1}} J\right) e_{2}, e_{4}\right)=0 \tag{3.11}
\end{align*}
$$

From (3.4)~(3.11), taking the account of (2.4) and (2.7), we have

$$
\begin{equation*}
\left(3 \tau^{*}-\tau\right)(\beta-J \alpha)=0 \tag{3.12}
\end{equation*}
$$

Let $M_{o}=\left\{p \in M \mid 3 \tau^{*}-\tau=0\right.$ at $\left.p\right\}$. Since M is Einstein, M is real analytic as Riemannian manifold. Thus, if the interior of M_{o} is not empty, then M is locally a real space form of dimension 4 by (3.1). In the sequel, we assume that the interior of M_{o} is empty. Then we see that the complement M_{o}^{\prime} of M_{o} in M is an open dense subset of M, and $\beta-J \alpha=0$ holds on a neighborhood of any point M_{o}^{\prime} by virtue (3.12). Thus, we see that J is integrable. Therefore, we get $\left(\nabla_{X} J\right) Y=\left(\nabla_{J X} J\right) J Y$ holds for any $X, Y \in \mathfrak{X}(M)$.

By direct calculation, we get

$$
\begin{gathered}
g\left(\left(\nabla_{e_{4}} J\right) e_{1}, e_{3}\right)=-g\left(\left(\nabla_{e_{4}} J\right) e_{2}, e_{4}\right)=g\left(\left(\nabla_{e_{4}} J\right) e_{4}, e_{2}\right), \\
g\left(\left(\nabla_{e_{3}} J\right) e_{1}, e_{4}\right)=g\left(\left(\nabla_{e_{3}} J\right) e_{2}, e_{3}\right)=-g\left(\left(\nabla_{e_{3}} J\right) e_{3}, e_{2}\right),
\end{gathered}
$$

and hence

$$
\begin{equation*}
-g\left(\left(\nabla_{e_{4}} J\right) e_{1}, e_{3}\right)=g\left(\left(\nabla_{e_{3}} J\right) e_{1}, e_{4}\right)=-\frac{1}{2} \omega_{1} \tag{3.13}
\end{equation*}
$$

by virtue of (2.9). Similarly, we get

$$
\begin{align*}
-g\left(\left(\nabla_{e_{4}} J\right) e_{2}, e_{3}\right) & =g\left(\left(\nabla_{e_{3}} J\right) e_{2}, e_{4}\right)=-\frac{1}{2} \omega_{2} \\
g\left(\left(\nabla_{e_{2}} J\right) e_{1}, e_{3}\right) & =-g\left(\left(\nabla_{e_{1}} J\right) e_{2}, e_{3}\right) \tag{3.14}
\end{align*}=-\frac{1}{2} \omega_{3}, ~=-g\left(\left(\nabla_{e_{1}} J\right) e_{2}, e_{4}\right)=-\frac{1}{2} \omega_{4} .
$$

Thus, by (3.4)~(3.11), (3.13) and (3.14), we have finally the following differential equation

$$
\begin{equation*}
d\left(3 \tau^{*}-\tau\right)+\frac{3}{2}\left(3 \tau^{*}-\tau\right) \omega=0 \tag{3.15}
\end{equation*}
$$

By (3.15) and our hypothesis, we can immediately see that the function $3 \tau^{*}-\tau$ vanishes nowhere on M. Thus, taking the exterior derivative of equality (3.15), we have further

$$
\begin{equation*}
d \omega=0 \text { on } M \tag{3.16}
\end{equation*}
$$

Therefore, it follows from (3.16) that M is locally conformal Kähler manifold.
Now, we consider a new Riemannian metric g^{*} defined by $g^{*}=\left(3 \tau^{*}-\tau\right)^{\frac{2}{3}} g$. Then, we see that (M, J, g^{*}) is a (real) 4-dimensional Hermitian manifold with the corresponding Kähler form $\Omega^{*}=\left(3 \tau^{*}-\tau\right)^{\frac{2}{3}} \Omega$. By (2.5) and (3.15), we may easily check that $d \Omega^{*}=0$ holds on M, and hence, (M, J, g) is a Kähler manifold of real dimension 4. This completes the proof of Theorem A.

Next, we shall prove Theorem B. From (3.1), taking account of the result by Koda ([1], Prop. 4.1), we see that a 4-dimensional generalized complex space form is a self-dual Einstein manifold. On one hand, it is well-known that a 4-dimensional sphere does not admit almost complex structure. Therefore, we see that Theorem B follows immediately from the arguments in this section and the following result ([2] and [5])

Theorem C. Let $M=(M, J, g)$ be a compact self-dual Einstein Hermitian surface. Then M is a compact complex space form.

Acknowledgment. The author wishes to thank Prof. Dr. Kouei Sekigawa for his comments and suggestions.

References

[1] T. Koda, Self-dual and anti-Self-dual Hermitian Surfaces, Kodai Math. J. 10 (1987), 335-342
[2] T. Koda and K. Sekigawa, Self-Dual Einstein Hermitian Surfaces, Advanced Studies in Pure Mathematics, Vol. 22 (1993) 123-131
[3] K. Matsuo, Pseudo-Bochner Curvature Tensor on Hermitian Manifolds, Colloquium Mathematicum, Vol. 80, No. 2 (1999), 201-209
[4] K. Sekigawa, On some 4-dimensional compact almost Hermitian manifolds, J. Ramanujan Math. Soc. 2 (1987), 101-116
[5] K. Sekigawa and T. Koda, Compact Hermitian Surfaces of Pointwise Constant Holomorphic Sectional Curvature, Glasgow Math. J. 37 (1994), 343-349
[6] S. Tachibana, On the Bochner Curvature Tensor, Natural Science Report, Ochanomizu University, Vol. 18. No. 1, 1967, 15-19
[7] S. Tachibana and R.C. Liu, Notes on Kahlerian Metrics with Vanishing Bochner Curvature Tensor, Kodai Math. Sem. Rep. 22 (1970), 313-321
[8] F. Tricerri and L. Vanhecke, Curvature Tensors on Almost Hermitian Manifolds, Transactions of the American Mathematical Society, Vol. 267, No. 2, October 1981, 365-398
[9] L. Vanhecke, The Bochner curvature tensor on almost Hermitian manifolds, Rend. Sem. Mat. Univ. Politec. Torino 34 (1975-76), 21-38
[10] L. Vanhecke, On the Decomposition of curvature tensor fields on almost Hermitian manifolds, Proc. Conf. Differential Geometry, Michigan State Univ., East Lansing, Mich., 1976, pp. 16-33
[11] L. Vanhecke and F. Bouten, Constant type for almost Hermitian manifolds, Bull. Math. Soc. Sci. Math. R.S. Roumanie 20 (1976), 415-422

Department of Mathematical Science, Graduate School of Science and Technology, Niigata University, Niigata, 950-2181 Japan
email: f02n406h@mail.cc.niigata-u.ac.jp

Recieved 5 August, 2004 Revised 24 September, 2004

