SOME LINEAR FUNCTIONAL AND FOURIER TRANSFORM OVER $\mathcal{K}'_{e,k}$

BYUNG KEUN SOHN

ABSTRACT. We introduce the space $\mathcal{K}_{e,k}$ that is the vector space of all C^{∞} - functions f such that $exp(e^{k|x|})\partial^{\alpha}f$ vanishes at infinity for all $\alpha \in N^n, k \in \mathbb{Z}, k < 0$ and its dual $\mathcal{K}'_{e,k}$. For $f,g \in \mathcal{K}'_{e,k}$, we study the linear functional $f \circledast g$ on $\mathcal{K}_{e,k}$ defined by

$$< f \circledast g> \ = \ < f(x), < g(y), \phi(x+y)>>, \quad \phi \in \mathcal{K}_{e,k}.$$

Also, we show a representation theorem for the usual distributional Fourier transform over the spaces $\mathcal{K}'_{e,k}$, and an inversion formula which enables to prove that $\mathcal{K}'_{e,k}$ is a commutative algebra with unit element with respect to \circledast

1. Introduction

In the meantime, the Schwartz space \mathcal{S} is extended by G. Sampson and Z. Zielezny in [5]. They introduced the space $\mathcal{K}_p, p > 1$, of the space of all infinitely differentiable functions f on R^n such that $e^{k|x|^p}\partial^{\alpha}f(x)$ vanishes at infinity for all $k \in \mathbb{Z}$ and all $\alpha \in \mathbb{N}^n$. The space $\mathcal{K}_p, p > 1$, is equipped with the locally convex topology defined by the family of seminorms $(\gamma_{k,\alpha}) = e^{k|x|^p} |\partial^{\alpha}f(x)|$, where k runs

Key words and phrases. linear functional, Fourier transform.

²⁰⁰⁰ Mathematics Subject Classifications. 46F10, 46F05

E-mail address: mathsohn @ ijnc.inje.ac.kr

This work was supported by Inje Research and Scholarship Foundation Grant 2003-2004

through N and α through N^n . They also studied convolution over \mathcal{K}'_p , the dual of \mathcal{K}_p , in terms of their Fourier transform.

The extended Schwartz space \mathcal{K}_p , is extended to the spaces \mathcal{K}_e by D. H. Pahk in [4]. D. H. Pahk denote \mathcal{K}_e the space of all functions $\phi \in C^{\infty}(\mathbb{R}^n)$ such that

$$u_k(\phi) = \sup_{x \in R^n, |\alpha| \leq k} exp(e^{k|x|}) |D^{lpha}\phi(x)| < \infty, k = 1, 2,$$

The space \mathcal{K}_e with seminorms $\nu_k, k = 1, 2, ...$ is a Frechét space and the space of C^{∞} -functions with compact support \mathcal{D} is a dense subset of \mathcal{K}_e . By \mathcal{K}'_e we mean the space of continuous linear functionals on \mathcal{K}_e .

Motivated by the space \mathcal{K}_e , we introduce the spaces $\mathcal{K}_{e,k}(R^n)$, $k \in \mathbb{Z}, k < 0$ that is defined as the vector spaces of all functions f defined on R^n which possess continuous partial derivatives of all orders and satisfy the condition that if $\alpha \in \mathbb{N}^n$ and $\epsilon > 0$, then there exists $C = C(f, \alpha, \epsilon) > 0$ such that

$$exp(e^{k|x|})|\partial^{\alpha}f(x)| \leq \epsilon,$$

for $|x| > C(f, \alpha, \epsilon)$.

In what follows, we shall write $\mathcal{K}_{e,k}$ instead of $\mathcal{K}_{e,k}(\mathbb{R}^n)$. For every $\alpha \in \mathbb{N}^n$ and fixed $k \in \mathbb{Z}, k < 0$, we define on $\mathcal{K}_{e,k}$ the seminorms

$$q_{k,\alpha}(f) = \max_{x \in R^n} exp(e^{k|x|})|\partial^{\alpha} f(x)|.$$

The space $\mathcal{K}_{e,k}$ equipped with the countable family of seminorms is a locally convex space. Then \mathcal{D} is a dense subspace of $\mathcal{K}_{e,k}$. By $\mathcal{K}'_{e,k}$, we mean the space of continuous linear functionals on $\mathcal{K}_{e,k}$.

In this paper, we will study convolutional type of linear functional on $\mathcal{K}_{e,k}$ as in the case of \mathcal{S}_k in [1]. We will prove that for $f,g\in\mathcal{K}'_{e,k},k\in Z,k<0$, the linear functional $f\circledast g$ defined by

$$\langle f \circledast g, \phi \rangle = \langle f(x), \langle g(y), \phi(x+y) \rangle \rangle, \quad \phi \in \mathcal{K}_{e,k},$$

has sense as the application of the functional $f \in \mathcal{K}'_{e,k}$ to $< g(y), \phi(x+y)> \in \mathcal{K}_{e,k}.$

Lastly, as in the case on \mathcal{S}_k in [2] we will show that we can derive a representation theorem for the usual distributional Fourier transform over the spaces $\mathcal{K}'_{e,k}, k \in \mathbb{Z}, k < 0$, and an inversion formula which enables us to prove that $\mathcal{K}'_{e,k}$ is a commutative algebra with unit element with respect to \circledast .

Throughout this paper we will use the notations and terminologies of [3].

2. Convolutional type of linear functional over $\mathcal{K}_{e,k}'$

First, we will prove that for $f, g \in \mathcal{K}'_{e,k}, \phi \in \mathcal{K}_{e,k}, k \in \mathbb{Z}, k < 0$, the linear functional $f \circledast g$ defined by

(1)
$$< f \circledast g, \phi > = < f(x), < g(y), \phi(x+y) > >$$

has sense as the application of the functional $f \in \mathcal{K}'_{e,k}$ to $\langle g(y), \phi(x+y) \rangle \in \mathcal{K}_{e,k}$. It is also obtained that $f \circledast g \in \mathcal{K}'_{e,k}$.

For the proof of the above results, we need the following several lemmas.

Lemma 2.1. Let $x \in \mathbb{R}^n$ be a fixed vector, $\phi \in \mathcal{K}'_{e,k}$, $k \in \mathbb{Z}$, k < 0, then $\phi(x+y) \in \mathcal{K}_{e,k}$.

Proof. Since $\phi \in \mathcal{K}'_{e,k}$, for all $\epsilon > 0$ and $\alpha \in \mathbb{N}^n$, there exists $A(\phi, \alpha, \epsilon) > 0$ such that

$$exp(e^{k|z|})|\partial^{\alpha}\phi(z)| \leq \epsilon,$$

for $|z| > A(\phi, \alpha, \epsilon)$. Then, since k < 0, if we take $B(\phi, \alpha, \epsilon, x) = A(\phi, \alpha, \epsilon) + |x|$, then for $|y| > B(\phi, \alpha, \epsilon, x)$,

$$\begin{aligned} \exp(e^{k|y|})|\partial^{\alpha}\phi(x+y)| &= \exp(e^{k|y|} - e^{k|x+y|} + e^{k|x+y|})|\partial^{\alpha}\phi(x+y)| \\ &\leq \frac{\exp(e^{k|y|})}{\exp(e^{k|x+y|})}\epsilon \\ &\leq \frac{\exp(e^{k|x+y|} \cdot e^{-k|x|})}{\exp(e^{k|x+y|})}\epsilon \\ &\leq \frac{\exp(\frac{1}{2}(e^{k|x+y|})^{2}) \cdot \exp(\frac{1}{2}(e^{-k|x|})^{2})}{\exp(e^{k|x+y|})}\epsilon \\ &\leq C\exp(\frac{1}{2}(e^{-k|x|})^{2})\epsilon. \end{aligned}$$

Therfore, for each fixed vector $x \in \mathbb{R}^n$, $\phi(x+y) \in \mathcal{K}_{e,k}$. \square

Lemma 2.2. If $g \in \mathcal{K}'_{e,k}$ and $\phi \in \mathcal{K}_{e,k}$ with $k \in \mathbb{Z}, k < 0$, then, for all $m \in \mathbb{N}^n$,

(3)
$$\partial^m < g(y), \phi(x+y) > = \langle g(y), \partial^m \phi(x+y) \rangle.$$

Proof. We will prove (3) by induction on |m|. Assume |m| = 1. For each fixed $x \in \mathbb{R}^n$ and each fixed i = 1, 2, ...n, set $h_i = (h_{i,1}, h_{i,2}, ..., h_{i,n}) \in \mathbb{R}^n$ given by $h_{i,i} = \Delta x_i \neq 0$ and $h_{i,j} = 0$ for $j \neq i$. Now consider

$$egin{aligned} rac{1}{ riangle x_i} \{ < g(y), \phi(x+y+h_i) > - < g(y), \phi(x+y) > \} \ - < g(y), rac{\partial}{\partial x_i} \phi(x+y) > = < g(y), heta_{h_i,x}(y) > , \end{aligned}$$

where

$$heta_{h_i,x}(y) = rac{1}{ riangle x_i} \{\phi(x+y+h_i) - \phi(x+y)\} - rac{\partial}{\partial x_i} \phi(x+y).$$

We will prove that $\theta_{h_i,x} \to 0$, in $\mathcal{K}_{e,k}$ for $|h_i| \to 0$, which assures that

$$rac{\partial}{\partial x_i} < g(y), \phi(x+y) > = < g(y), rac{\partial}{\partial x_i} \phi(x+y) > .$$

First, we will check that $\theta_{h_i,x}(y) \in \mathcal{K}_{e,k}$. For all $\alpha \in \mathbb{N}^n$ and $y \in \mathbb{R}^n$,

$$\partial^{\alpha}\phi(x+y+h_{i})=\partial^{\alpha}\phi(x+y)+\triangle x_{i}\frac{\partial}{\partial x_{i}}\partial^{\alpha}\phi(x+y)$$

$$+\int_{0}^{\triangle x_{i}}(\triangle x_{i}-\xi)rac{\partial^{2}}{\partial x_{i}^{2}}\partial^{lpha}\phi(x+y+t_{i,\xi})d\xi,$$

where $t_{i,\xi}=(t_{i,1,\xi},t_{i,2,\xi},...,t_{i,n,\xi})$ with $t_{i,j,\xi}=\xi$ for j=i and $t_{i,j,\xi}=0$ for $j\neq i$. Therefore,

$$\partial^{\alpha} heta_{h_i,x}(y) = \int_0^{\triangle x_i} (\triangle x_i - \xi) \frac{\partial^2}{\partial x_i^2} \partial^{\alpha} \phi(x + y + t_{i,\xi}) d\xi.$$

Since $\phi \in \mathcal{K}_{e,k}$, given $\epsilon > 0$ and $\alpha \in \mathbb{N}^n$, there exist $A(\phi, \alpha, \epsilon) > 0$ such that if $|z| > A(\phi, \alpha, \epsilon)$, then

$$exp(e^{k|z|})|rac{\partial^2}{\partial z_i^2}\partial^lpha\phi(z)|<\epsilon.$$

Now, for $|t| \leq |h_i| < 1$,

$$exp(e^{k|y|})|\frac{\partial^2}{\partial y_i^2}\partial^{\alpha}\phi(x+y+t)|$$

$$(4) \qquad = \exp(e^{k|y|} - e^{k|x+y+t|} + e^{k|x+y+t|}) \left| \frac{\partial^2}{\partial y_i^2} \partial^\alpha \phi(x+y+t) \right|.$$

Since $\phi \in \mathcal{K}_{e,k}$, we have that for $|t| \leq 1$ and $|x+y+t| > A(\phi, \alpha, \epsilon)$,

$$exp(e^{k|x+y+t|})|\frac{\partial^2}{\partial y_i^2}\partial^{\alpha}\phi(x+y+t)|<\epsilon.$$

If we let $B(\phi, \alpha, \epsilon, x) = A(\phi, \alpha, \epsilon) + |x| + 1$, since k < 0, we have that for $|y| > B(\phi, \alpha, \epsilon, x)$ and $|t| \le 1$, (4) is less than or qual to

$$\begin{split} \exp(e^{k|y|} - e^{k|x+y+t|})\epsilon &\leq \frac{\exp(e^{k|y|})}{\exp(e^{k|x+y+t|})}\epsilon \\ &\leq \frac{\exp(e^{k|x+y+t|} \cdot e^{-k|x+t|})}{\exp(e^{k|x+y+t|})}\epsilon \\ &\leq \frac{\exp(\frac{1}{2}(e^{k|x+y+t|})^2) \cdot \exp(\frac{1}{2}(e^{-k|x+t|})^2)}{\exp(e^{k|x+y+t|})}\epsilon \\ &\leq C\exp(\frac{1}{2}(e^{-k|x+t|})^2)\epsilon \\ &\leq C\exp(\frac{1}{2}(e^{-k|x|})^2 \cdot (e^{-k|t|})^2)\epsilon \\ &\leq C\exp(\frac{1}{2}(e^{-k})^2 \cdot (e^{-k|x|})^2)\epsilon. \end{split}$$

So, for $|y| > B(\phi, \alpha, \epsilon, x)$,

$$\begin{aligned} exp(e^{k|y|})|\partial^{\alpha}\theta_{h_{i},x}(y)| &\leq C\frac{exp(\frac{1}{2}(e^{-k})^{2}\cdot(e^{-k|x|})^{2})\epsilon}{|\triangle x_{i}|} \int_{0}^{\triangle x_{i}}(\triangle x_{i}-\xi)d\xi \\ &= \frac{|\triangle x_{i}|}{2}exp(\frac{1}{2}(e^{-k})^{2}\cdot(e^{-k|x|})^{2})\epsilon, \end{aligned}$$

and thus $\theta_{h_i,x}(y) \in \mathcal{K}_{e,k}$. On the other hand, for $|y| \leq B(\phi,\alpha,\epsilon,x)$ and $|y| \leq 1$,

$$exp(e^{k|y|})|rac{\partial^2}{\partial y_i^2}\partial^lpha\phi(x+y+t)|\leq M_1,$$

for some constant M_1 . Setting $M_2 = \max\{M_1, \exp(\frac{1}{2}(e^{-k})^2 \cdot (e^{-k|x|})^2)\epsilon\}$ and taking into account (5), for all $y \in \mathbb{R}^n$,

$$egin{align} exp(e^{k|y|})|\partial^{lpha} heta_{h_i,x}(y)| &\leq rac{M_2}{ riangle x_i} \int_0^{ riangle x_i} (riangle x_i - \xi) d\xi \ &= rac{| riangle x_i|}{2} M_2, \end{split}$$

which tends to 0 as $|h_i| \to 0$. This proves the conclusion for |m| = 1. Now, the result of this lemma follows by induction on |m|. \square

Lemma 2.3. If
$$g \in \mathcal{K}'_{e,k}$$
, $\phi \in \mathcal{K}_{e,k}$, $k \in \mathbb{Z}$, $k < 0$, then $\langle g(y), \phi(x+y) \rangle \in \mathcal{K}_{e,k}$.

Proof. From Lemma 2.2, one has that $\langle g(y), \phi(x+y) \rangle$ is smooth. It remains to prove that for any $m \in N^n$ and any $\epsilon > 0$, there exist B > 0 such that if |x| > B, then $exp(e^{k|x|})|\partial^m < g(y), \phi(x+y) > | \leq \epsilon$. In fact, from Lemma 2.2

and [3, remark of Proposition 2, p.97] there exists a positive constant C and a nonnegative integer r such that

$$| \langle g, \phi \rangle | \leq C \max_{0 \leq s \leq r} q_{k,\alpha_s}(\phi),$$

for $\phi \in \mathcal{K}_{e,k}$.

Here C and r depend on g but not on ϕ . First, we will show that this lemma holds for $\phi \in \mathcal{D}(\mathbb{R}^n)$. Since $\mathcal{D} \subset \mathcal{K}_{e,k}$, by (6), for any $m \in \mathbb{N}^n$ and $\phi \in \mathcal{D}$,

$$\begin{split} \exp(e^{k|x|})|\partial_x^m < g(y), \phi(x+y) > | &= \exp(e^{k|x|})| < g(y), \partial_x^m \phi(x+y) > | \\ &\leq C \max_{0 \leq s \leq r} \max_{y \in R^n} \exp(e^{k|x|}) \exp(e^{k|y|}) \\ &\times |\partial_x^m \partial_y^{\alpha_s} \phi(x+y)| \\ &\leq C \max_{0 \leq s \leq r} \exp(e^{k|x|}) M_{m,\alpha_s}, \end{split}$$

where $M_{m,\alpha_s} = \max_{z \in R^n} |\partial^{m+\alpha_s} \phi(z)|$. Since k < 0, this lemma holds for $\phi \in \mathcal{D}$. Next, since \mathcal{D} is a dense subset of $\mathcal{K}_{e,k}$, for $\phi \in \mathcal{K}_{e,k}$, there exists a sequence $\{\phi_j\} \subset \mathcal{D}$ with $\phi_j \to \phi$ in $\mathcal{K}_{e,k}$ as $j \to \infty$. Hence for any $\epsilon > 0$ and any $\alpha \in N^n$, there exist $j_0^* = j_0^*(\epsilon, \alpha) \in N$ such that

$$\max_{z \in R^n} exp(e^{k|z|}) |\partial^{lpha} \{\phi_j(z) - \phi(z)\}| \leq rac{\epsilon}{2C},$$

for $j \geq j_0^*$. So, for any $\epsilon > 0$ and any $\alpha \in N^n$, if $j \geq j_0 = \max\{j_0^*(\epsilon, m + \alpha_s)\}, s = 0, 1, ...r$,

$$\begin{split} \exp(e^{k|x|})\partial_{x}^{m}|\{&< g(y), \phi_{j}(x+y) > - < g(y), \phi(x+y) > \}|\\ &\leq C \max_{0 \leq s \leq r} \max_{y \in R^{n}} \exp(e^{k|x|}) \exp(e^{k|y|}) |\partial_{y}^{\alpha_{s}} \partial_{x}^{m} \{\phi_{j}(x+y) - \phi(x+y)\}|\\ &= C \max_{0 \leq s \leq r} \max_{y \in R^{n}} \exp(e^{k|x|}) \exp(e^{k|y|})\\ &\qquad \times \exp(-e^{k|x+y|} + e^{k|x+y|}) |\partial^{m+\alpha_{s}} \{\phi_{j}(x+y) - \phi(x+y)\}|\\ &= C \max_{0 \leq s \leq r} \max_{y \in R^{n}} \exp(e^{k|x|} + e^{k|y|} - e^{k|x+y|})\\ &\qquad \times \exp(e^{k|x+y|}) |\partial^{m+\alpha_{s}} \{\phi_{j}(x+y) - \phi(x+y)\}|\\ &\leq C \max_{0 \leq s \leq r} \max_{z \in R^{n}} \exp(e^{k|z|}) |\partial^{m+\alpha_{s}} \{\phi_{j}(z) - \phi(z)\}|\\ &\leq C \max_{0 \leq s \leq r} \max_{z \in R^{n}} \exp(e^{k|z|}) |\partial^{m+\alpha_{s}} \{\phi_{j}(z) - \phi(z)\}|\\ &\leq \frac{\epsilon}{2}. \end{split}$$

Also, since $\langle g(y), \phi_{j_0}(x+y) \rangle \in \mathcal{K}_{e,k}$, for any $\epsilon > 0$ and $m \in \mathbb{N}^n$, there exist $A(\epsilon, m, \phi_{j_0})$ such that

$$exp(e^{k|x|})|\partial_x^m < g(y), \phi_{j_0}(x+y) > |< \frac{\epsilon}{2},$$

for $|x| > A(\epsilon, m, \phi_{j_0})$. Hence taking $B = A(\epsilon, m, \phi_{j_0})$, for |x| > B, then, by (7) and above fact,

$$\begin{split} \exp(e^{k|x|})|\partial_{x}^{m} < g(y), \phi(x+y) > | \\ & \leq \exp(e^{k|x|})|\partial_{x}^{m} < g(y), \phi_{j_{0}}(x+y) > | \\ & + \exp(e^{k|x|})|\{\partial_{x}^{m} < g(y), \phi(x+y) > -\partial_{x}^{m} < g(y), \phi_{j_{0}}(x+y) > \}| \\ & < \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon. \end{split}$$

Thus the result follows.

Lemma 2.4. Assume that $k \in Z, k < 0, g \in \mathcal{K}'_{e,k}$ and $\phi_j \to 0$ in $\mathcal{K}_{e,k}$ for $j \to \infty$, then $\langle g(y), \phi_j(x+y) \rangle \to 0$ in $\mathcal{K}_{e,k}$ as $j \to \infty$.

Proof. By (6) in the proof of Lemma 2.3 above,

$$exp(e^{k|x|})|\partial^m < g(y), \phi_j(x+y) > | \leq C \max_{0 \leq s \leq r} q_{k,m+\alpha_s}(\phi_j).$$

From the above fact the result of this lemma follows immediately. \Box

Now, we conclude that

Theorem 2.5. If $f, g \in \mathcal{K}'_{e,k}$, $k \in \mathbb{Z}$, k < 0, then $f \circledast g \in \mathcal{K}'_{e,k}$.

Proof. Let $\{\phi_j\} \subset \mathcal{K}_{e,k}$ such that $\phi_j \to 0$ in $\mathcal{K}_{e,k}$ as $j \to \infty$. By Lemma 2.1 and Lemma 2.3

$$< f \circledast g, \phi_j> \ = \ < f(x), < g(y), \phi_j(x+y)>>$$

has sense, and by Lemma 2.4 and $f \in \mathcal{K}'_{e,k}, < f \circledast g, \phi_j >$ tends to zero as $j \to \infty$. \square

Remark. Since the weight function $exp(e^{k|x|})$ is not infinitely differentiable, we can not have the structure theorem for $f \in \mathcal{K}'_{e,k}$, i.e., $f \in \mathcal{K}'_{e,k}$ can be identified with the space of all distributions of the form $exp(e^{k|x|}) \sum \partial^{\alpha} \mu_{\alpha}$, where (μ_{α}) is some finite family of measure belonging to the dual of Banach space of all continuous functions on R^n vanishing at infinity. To apply the above form of the distribution in the structure theorem to a test function, one would have to differentiate the product of the weight function $exp(e^{k|x|})$ by a test function, and this differentiation produces terms which are not bounded relative to the weight function. Although the weight function $exp(e^{k|x|})$ can be replaced by an equivalent infinitely differentiable weight function $exp(e^{k(1+|x|^2)^{\frac{1}{2}}})$, there is some difficulties

to provide the reasonable notion of integrable distribution on open sets different from \mathbb{R}^n . Therefore, we can not present that the product defined in (1) is the same as the general convolution f * g in the sense of Laurent Schwartz, or Horváth in [3].

3. Fourier Transform over $\mathcal{K}'_{e,k}$

In this section, we will state a representation theorem for the usual distributional Fourier transform over the space $\mathcal{K}_{e,k}, k \in \mathbb{Z}, k < 0$. It's inversion formula is also obtained, which enables us to prove that $\mathcal{K}'_{e,k}$ is commutative convolution algebra with unit element with respect to the linear functional \circledast defined in (1).

For k < 0 and each $y \in \mathbb{R}^n$, the function $x \mapsto e^{ixy}$ is a member of $\mathcal{K}_{e,k}$. Hence, the application of the functional $f \in \mathcal{K}'_{e,k}$ to e^{ixy} yields the following complex-valued function of y,

(8)
$$F(y) = (\mathcal{F}f)(y)$$
$$= \langle f(x), e^{ixy} \rangle$$

Next, if we only replace $(1+|x|^2)^k$ and \mathcal{S}_k by $exp(e^{k|x|})$ and $\mathcal{K}_{e,k}$, respectively, we can show exactly like Theorem 2.1 in [2] that the function (8) represents the usual distributional Fourier transform when it acts over members $f \in \mathcal{K}'_{e,k}, k \in \mathbb{Z}, k < 0$ and finctions in \mathcal{K}_e , i.e.,

Theorem 3.1. Let $f \in \mathcal{K}'_{e,k}, k \in \mathbb{Z}, k < 0$. Then for all $\phi \in \mathcal{K}_e$, the Parseval equality

$$< f, \mathcal{F}\phi> = <\mathbb{T}_{< f(x), e^{ix}\nu>}, \phi(y)>,$$

follows, where $\mathbb{T}_{\langle f(x), e^{ixy} \rangle}$ is the member of \mathcal{K}'_e given by

$$<\mathbb{T}_{< f(x), e^{ixy}>}, \phi(y)> \ = \ \int_{R^n} < f(x), e^{ixy}> \phi(y) dy,$$

and $\mathcal{F}\phi$ denotes the classical Fourier transform of ϕ , namely,

$$(\mathcal{F}\phi)(t)=\int_{R^n}\phi(y)e^{ixy}dy,\quad t\in R^n.$$

Now, in order to obtain an inversion formula for the Fourier transform over the space $\mathcal{K}_{e,k}$, we need the following lemma. The techniques employed in the next lemma are extracted from B. J. Gonzalez and E. R. Negrin [2, Lemma 3.1] and A. H. Zemmanian [6, Lemma 3.5-2].

Lemma 3.2. Let $\phi_1, ..., \phi_n \in \mathcal{D}(R), x = (x_1, ..., x_n) \in R, t = (t_1, ..., t_n) \in R$, then, for any $k \in Z, k < 0$, one has

$$\frac{1}{\pi^n} \int_{\mathbb{R}^n} \prod_{j=1}^n \phi_j(x_j + t_j) \frac{\sin Y t_j}{t_j} dt \longrightarrow \phi_1(x_1) \cdots \phi_n(x_n)$$

in $\mathcal{K}_{e,k}$ as $Y \to +\infty$.

Proof. First, we will show that for $\phi \in \mathcal{D}(\mathbb{R}^n)$, and $p \in \mathbb{N}, \alpha \in \mathbb{R}, \alpha < 0, Y > 0$, then

(9)
$$\Psi_Y(x) = \frac{1}{\pi} \int_{\infty}^{\infty} \phi(t+x) \frac{\sin Yt}{t} dt \in \mathcal{K}_{e,k},$$

and

(10)
$$\max_{x \in R} exp(e^{\alpha|x|})|D^{p}\{\Psi_{Y}(x) - \phi(x)\}| \longrightarrow 0,$$

for $Y \to +\infty$.

In order to show (9) and (10), we need the following;

$$(11) D_x^p \int_{-\infty}^{\infty} \phi(t+x) \frac{\sin Yt}{t} dt = \int_{-\infty}^{\infty} D_x^p \phi(t+x) \frac{\sin Yt}{t} dt, \ p \in N.$$

For p = 0, (11) is trivial. For p = 1, since $\phi \in \mathcal{D}(R)$, $supp \phi \subset [a, b]$ for some $a, b \in R$ with a < b,

$$\begin{split} D_x \int_{-\infty}^{\infty} \phi(t+x) \frac{\sin Yt}{t} dt &= D_x \int_{a-x}^{b-x} \phi(t+x) \frac{\sin Yt}{t} dt \\ &= -\phi(b) \frac{\sin Y(b-x)}{b-x} + \phi(a) \frac{\sin Y(a-x)}{a-x} + \int_{a-x}^{b-x} D_x \phi(t+x) \frac{\sin Yt}{t} dt \\ &= \int_{a-x}^{b-x} D_x \phi(t+x) \frac{\sin Yt}{t} dt = \int_{a-x}^{\infty} D_x \phi(t+x) \frac{\sin Yt}{t} dt. \end{split}$$

Since $D^p \phi \in \mathcal{D}(R)$, by induction on $p \in N$, we can prove (11) for any $p \in N$. Now, let $\alpha \in R$ with $\alpha < 0$ and $\epsilon > 0$. Then

$$egin{aligned} &| \ exp(e^{lpha |x|})D_x \int_{-\infty}^{\infty} \phi(t+x) rac{\sin Yt}{t} dt \ &| \ &\leq exp(e^{lpha |x|}) \cdot \int_{-\infty}^{\infty} | \ D_x^p \phi(t+x) rac{\sin Yt}{t} \ | \ dt \ &| \ &\leq C(Y) \cdot exp(e^{lpha |x|}) \cdot \int_{a-x}^{b-x} | \ D_x^p \phi(t+x) rac{\sin Yt}{t} \ | \ dt \ &| \ &\leq C(Y) \cdot exp(e^{lpha |x|}) \cdot \sup_{a \leq t \leq b} D^p \phi(t) \cdot (b-a) \end{aligned}$$

for |x| > B, where B > 0 is suitable constant. Hence (9) holds.

For (10), assuming Y > 0 and recalling $\int_{-\infty}^{\infty} \frac{\sin Yt}{t} dt = \pi$, we will prove that for $p \in N$,

(12)
$$\max_{x \in R} |exp(e^{\alpha|x|}) \frac{1}{\pi} D_x^p \int_{-\infty}^{\infty} [\phi(t+x) - \phi(x)] \frac{\sin Yt}{t} dt |$$

$$\to 0$$

as $Y \to +\infty$.

For any $\delta > 0$, (12) is less than or equal to

$$\max_{x\in R}rac{1}{\pi}(\int_{-\infty}^{-\delta}+\int_{-\delta}^{\delta}+\int_{\delta}^{\infty})\mid exp(e^{lpha|x|})D_x^p[\phi(t+x)-\phi(x)]rac{\sin Yt}{t}\mid dt.$$

Let

$$I_1 = \max_{x \in R} rac{1}{\pi} \int_{-\infty}^{-\delta} \mid exp(e^{lpha |x|}) D_x^p [\phi(t+x) - \phi(x)] rac{\sin Yt}{t} \mid dt,$$

$$I_2 = \max_{x \in R} rac{1}{\pi} \int_{-\delta}^{\delta} \mid exp(e^{lpha |x|}) D_x^p [\phi(t+x) - \phi(x)] rac{\sin Yt}{t} \mid dt,$$

and

$$I_3 = \max_{x \in R} rac{1}{\pi} \int_{\delta}^{\infty} \mid exp(e^{lpha |x|}) D_x^p [\phi(t+x) - \phi(x)] rac{\sin Yt}{t} \mid dt.$$

In order to estimate I_2 , let

$$H_{p,\phi}(x,t) = exp(e^{lpha|x|})rac{1}{t}D_x^p[\phi(t+x)-\phi(x)]$$

for $(x,t) \in \mathbb{R}^2$ with $t \neq 0$, and let

$$H_{p,\phi}(x,t) = exp(e^{\alpha|x|})D_x^{p+1}\phi(x)$$

for $(x,t) \in \mathbb{R}^2$ with t = 0.

Since $\lim_{t\to 0} \frac{1}{t} D_x^p[\phi(t+x) - \phi(x)] = D_x^{p+1}\phi(x)$, $H_{p,\phi}(x,t)$ is continuous on R^2 . Moreover, since $\sup p\phi \subset [a,b]$, there exist $L = L(p,\phi)$ such that $|H_{p,\phi}(x,t)| \leq L$ for all $(x,t) \in R \times [-1,1]$. Now, given $\epsilon > 0$ choose δ with $0 \leq \delta \leq 1$ such that

$$I_2 = \max_{x \in R} \mid rac{1}{\pi} \int_{-\delta}^{\delta} H_{p,\phi}(x,t) \sin Y t dt \mid \leq rac{2L\delta}{\pi} < \epsilon.$$

In order to estimate I_1 , consider that

$$I_1 \leq I_{11} + I_{12}$$

where

$$I_{11} = \max_{x \in R} rac{1}{\pi} \int_{-\infty}^{-\delta} \mid exp(e^{lpha \mid x \mid}) D_x^p \phi(t+x) rac{\sin Yt}{t} \mid dt,$$

and

$$I_{12} = \max_{x \in R} rac{1}{\pi} \int_{-\infty}^{-\delta} \mid exp(e^{lpha \mid x \mid}) D_x^p \phi(x) rac{\sin Yt}{t} \mid dt.$$

But, since $D^p \phi \in \mathcal{D}$,

$$I_{12} \leq rac{1}{\pi} \cdot \sup_{a < x \leq b} |D^p \phi(x)| \cdot |\int_{-\infty}^{-Y\delta} rac{\sin z}{z} dz|$$

tend to 0 as $Y \to +\infty$.

On the other hand, by an integration by parts,

$$I_{11} \leq I_{111} + I_{112}$$

where

$$I_{111} = \max_{x \in R} \mid rac{\cos Y \delta}{\pi Y \delta} exp(e^{lpha |x|}) D_x^p \phi(x - \delta) \mid$$

and

$$I_{112} = \max_{x \in R} \mid rac{1}{\pi} \int_{-\infty}^{-\delta} exp(e^{lpha \mid x \mid}) \cos(Yt) D_t [rac{1}{t} D_x^p \phi(t+x)] dt \mid .$$

Since $exp(e^{\alpha|x|}) \le 1$ for $\alpha < 0$,

$$I_{111} \leq \frac{1}{\pi Y \delta} \sup_{a < x < b} |D^p \phi|$$

tend to 0 as $Y \to +\infty$.

Now, since
$$D_t[\frac{1}{t}D_x^p\phi(t+x)] = (-\frac{1}{t^2})D_x^p\phi(t+x) + \frac{1}{t}D_x^{p+1}\phi(t+x)$$
,

$$I_{112} \leq I_{1121} + I_{1122}$$

where

$$I_{1121} = \max_{x \in R} \mid rac{1}{\pi} \int_{-\infty}^{-\delta} exp(e^{lpha |x|}) \cos(Yt) (-rac{1}{t^2}) D_x^p \phi(t+x) dt \mid,$$

and

$$I_{1122} = \max_{x \in R} \mid \frac{1}{\pi} \int_{-\infty}^{-\delta} exp(e^{\alpha|x|}) \cos(Yt) \frac{1}{t} D_x^{p+1} \phi(t+x) dt \mid .$$

Since $exp(e^{\alpha|x|}) \leq 1$ for $\alpha < 0$,

$$I_{1121} \le \frac{1}{\pi Y \delta^2} \sup_{a \le x \le b} |D^p \phi(x)|$$

tend to 0 as $y \to +\infty$ and also,

$$I_{1122} \leq \frac{1}{\pi Y \delta} \sup_{a \leq x \leq b} |D^{p+1} \phi(x)|$$

tend to 0 as $y \to +\infty$. Hence $I_{11} \to 0$ for $p = 0, 1, 2, \cdots$ as $Y \to +\infty$, and analogously $I_3 \to 0$ as $Y \to +\infty$. Thus, (10) holds.

Now, note that, since k < 0, for any $(x_1, ..., x_n) \in R$,

$$\begin{split} exp(e^{k|x|}) &= exp(e^{k(x_1^2 + x_2^2 + \dots + x_n^2)^{\frac{1}{2}}}) \\ &\leq exp(e^{\frac{k}{\sqrt{n}}(|x_1| + |x_2| + \dots + |x_n|)}) \\ &= exp(e^{\frac{k}{\sqrt{n}}|x_1|} \cdot e^{\frac{k}{\sqrt{n}}|x_2|} \cdot \dots \cdot e^{\frac{k}{\sqrt{n}}|x_n|}) \\ &\leq exp(\frac{e^{\frac{k}{\sqrt{n}}|x_1|} + e^{\frac{k}{\sqrt{n}}|x_2|} + \dots + e^{\frac{k}{\sqrt{n}}|x_n|}}{n}) \\ &\leq exp(\frac{1}{n}e^{\frac{k}{\sqrt{n}}|x_1|}) \cdot exp(\frac{1}{n}e^{\frac{k}{\sqrt{n}}|x_2|}) \cdot \dots \cdot exp(\frac{1}{n}e^{\frac{k}{\sqrt{n}}|x_n|}) \end{split}$$

Consider

$$(13) \qquad |\frac{exp(e^{k|x|})}{\pi^n} \partial^p (\int_{R^n} \prod_{j=1}^n \phi_j(x_j + t_j) \frac{\sin Y t_j}{t_j} dt - \phi_1(x_1) \cdots \phi_n(x_n))|$$

for $x=(x_1,x_2,...,x_n)\in R^n$ and $p=(p_1,p_2,...,p_n)\in N^n$. Writing, for j=1,2,...,n,

$$\Psi_{j,Y}(x_j) = rac{1}{\pi} \int_{-\infty}^{\infty} \phi_j(x_j + t_j) rac{\sin Y t_j}{t_j} dt,$$

it follows that (13) can be written as

$$\begin{split} \exp(e^{k|x|})|[\partial_1^{p_1}\Psi_{1,Y}(x_1)\partial_2^{p_2}\Psi_{2,Y}(x_2)\cdots\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &-\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\phi_2(x_2)\cdots\partial_n^{p_n}\phi_n(x^n)]|\\ &=\exp(e^{k|x|})|[\partial_1^{p_1}\Psi_{1,Y}(x_1)\partial_2^{p_2}\Psi_{2,Y}(x_2)\cdots\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &-\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\Psi_{2,Y}(x_2)\cdots\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &+\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\Psi_{2,Y}(x_2)\cdots\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &+\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\phi_2(x_2)\cdots\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &-\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\phi_2(x_2)\cdots\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &+\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\phi_2(x_2)\cdots\partial_{n-1}^{p_n}\phi_{n-1}(x_{n-1})\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &-\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\phi_2(x_2)\cdots\partial_{n-1}^{p_{n-1}}\phi_{n-1}(x_{n-1})\partial_n^{p_n}\Psi_{n,Y}(x_n)\\ &-\partial_1^{p_1}\phi_1(x_1)\partial_2^{p_2}\phi_2(x_2)\cdots\partial_{n-1}^{p_{n-1}}\phi_{n-1}(x_{n-1})\partial_n^{p_n}\phi_n(x_n)]|\\ &\leq |\exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_1|})\partial_1^{p_1}(\Psi_{1,Y}(x_1)-\phi_1(x_1))\exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_2|})\partial_2^{p_2}\Psi_{2,Y}(x_2)\\ &\cdots exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\partial_n^{p_n}\Psi_{n,Y}(x_n)|\\ &+\exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\partial_1^{p_1}\phi_1(x_1)exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_2|})\partial_2^{p_2}(\Psi_{2,Y}(x_2)-\phi_2(x_2))\\ &\cdots exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\partial_n^{p_n}\Psi_{n,Y}(x_n)|\\ &+\cdots +|exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\partial_n^{p_n}\Psi_{n,Y}(x_n)|\\ &+\cdots +|exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\partial_n^{p_n}\Psi_{n,Y}(x_n)|\\ &\cdots |exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\partial_{n-1}^{p_n}\phi_{n-1}(x_{n-1})exp(\frac{1}{n}e^{\frac{1}{\sqrt{n}}|x_n|})\\ &\times\partial_n^{p_n}(\Psi_{n,Y}(x_n)-\phi_n(x_n))| \end{aligned}$$

By (10) and taking $\alpha = \frac{k}{\sqrt{n}} < 0$, it follows that

(14)
$$\max_{x_j \in R} exp(\frac{1}{n} e^{\frac{k}{\sqrt{n}}|x_j|}) |\partial_j^{p_j}(\Psi_{j,Y}(x_j) - \phi_j(x_j))| \to 0,$$

as $Y \to +\infty$, for $1 \le j \le n$. Also, for $1 \le j \le n$,

$$\begin{split} \max_{x_j \in R} & \exp(\frac{1}{n} e^{\frac{k}{\sqrt{n}}|x_j|}) |\partial_j^{p_j}(\Psi_{j,Y}(x_j)| \\ & \leq \max_{x_j \in R} exp(\frac{1}{n} e^{\frac{k}{\sqrt{n}}|x_j|}) \partial_j^{p_j} |(\Psi_{j,Y}(x_j) - \phi_j(x_j))| \\ & + \max_{x_j \in R} exp(\frac{1}{n} e^{\frac{k}{\sqrt{n}}|x_j|}) |\partial_j^{p_j}(\phi_j(x_j)| \end{split}$$

Since $\phi_j \in \mathcal{D}(\mathbb{R}^n)$, there exists a $Q_j > 0$ such that

$$\max_{x_j \in R} exp(\frac{1}{n}e^{\frac{k}{\sqrt{n}}|x_j|})|\partial_j^{p_j}(\phi_j(x_j)| \leq Q_j.$$

Taking into account (14), there exists a $P_j > 0, 1 \le j \le n$, such that

$$\max_{x_j \in R} exp(\frac{1}{n} e^{\frac{k}{\sqrt{n}}|x_j|}) |\partial_j^{p_j}(\Psi_{j,Y}(x_j)| \le P_j,$$

for any $Y \geq 0$, and so,

$$egin{aligned} q_{k,p}(\Psi_{1,Y}(x_1)\Psi_{2,Y}(x_2)\cdots\Psi_{n,Y}(x_n)-\phi_1(x_1)\phi_2(x_2)\cdots\phi_n(x_n) \ &\leq \max_{x_1\in R} exp(rac{1}{n}e^{rac{k}{\sqrt{n}}|x_1|})|\partial_1^{p_j}(\Psi_{1,Y}(x_1)-\phi_1(x_1))|\cdot P_1\cdots P_n \ &+Q_1\cdot \max_{x_2\in R} exp(rac{1}{n}e^{rac{k}{\sqrt{n}}|x_2|})|\partial_2^{p_2}(\Psi_{2,Y}(x_2)-\phi_2(x_2))|\cdot P_3\cdots P_n \ &+\cdots Q_1\cdots Q_{n-1}\cdot \max_{x_n\in R} exp(rac{1}{n}e^{rac{k}{\sqrt{n}}|x_n|})|\partial_n^{p_n}(\Psi_{n,Y}(x_n)-\phi_n(x_n))| \end{aligned}$$

By using (14), we obtains the result. \square

Theorem 3.3. Let $f \in \mathcal{K}'_{e,k}, k \in \mathbb{Z}, k < 0$, and set by $F(y) = (\mathcal{F}f)(y), y \in \mathbb{R}^n$. Then for any $\phi_1, \phi_2, ..., \phi_n \in \mathcal{D}(\mathbb{R}), t = (t_1, t_2, ..., t_n) \in \mathbb{R}^n$, and $\phi(t) = \phi_1(t_1)\phi_2(t_2)\cdots\phi_n(t_n)$, one has

$$< f(t), g(t)> = \lim_{Y o +\infty} < rac{1}{(2\pi)^n} \int_{C(0;Y)} F(y) e^{-ity} dy, \phi(t)>.$$

Here we mean by C(0;Y) the n-tube $[-Y,Y] \times [-Y,Y] \times \cdots \times [-Y,Y]$.

Proof. If we only replace $(1+|x|^2)^k$ by $exp(e^{k|x|})$ in the proof of Lemma 2.2 in [2], we obtained that if $\phi \in \mathcal{K}_e$ and $f \in \mathcal{K}'_{e,k}, k \in \mathbb{Z}, k < 0$, for any Y > 0,

$$\int_{C(0;Y)} < f(x), e^{ixy} \phi(y) dy = < f(x), \int_{C(0;Y)} \phi(y) e^{ixy} dy > .$$

Then, by applying Fubini's theorem and Lemma 3.2,

$$< \frac{1}{(2\pi)^n} \int_{C(0;Y)} F(y) e^{-ity} dy, \phi(t) >$$

$$= < \frac{1}{(2\pi)^n} \int_{C(0;Y)} < f(x), e^{ixy} > e^{-ity} dy, \phi(t) >$$

$$= \frac{1}{(2\pi)^n} \int_{C(0;Y)} < f(x), e^{ixy} > dy \int_{R^n} \phi(t) e^{-ity} dt$$

$$= < f(x), \frac{1}{(2\pi)^n} \int_{C(0;Y)} e^{ixy} dy \int_{R^n} \phi(t) e^{-ity} dt >$$

$$= < f(x), \frac{1}{(2\pi)^n} \int_{R^n} \phi_1(t_1) \cdots \phi_n(t_n) dt \int_{C(0;Y)} e^{i(x-t)y} dy >$$

$$= < f(x), \frac{1}{\pi^n} \int_{R^n} \prod_{j=1}^n \phi_j(x_j + t_j) \frac{\sin Y t_j}{t_j} dt >$$

$$\longrightarrow < f(x), \phi(x) >$$

as $Y \to +\infty$. \square

Let $f, g \in \mathcal{K}'_{e,k}$, $k \in \mathbb{Z}$, k < 0 and F(y) = G(y), for any $y \in \mathbb{R}^n$, where $F(y) = (\mathcal{F}f)(y)$, and $G(y) = (\mathcal{F}g)(y)$. Then, using the Theorem 3.3, we have

$$< f(x), \phi_1(x_1)\phi_2(x_2)\cdots\phi_n(x_n)> \ = \ < g(x), \phi_1(x_1)\phi_2(x_2)\cdots\phi_n(x_n)>,$$

for all $\phi_1, \phi_2, \dots \phi_n \in \mathcal{D}(R)$. Let $\phi \in \mathcal{D}(R^n)$, by [4, Proposition 1, p.369], there exists a sequence whose terms are products of the form $\phi_{i_1} \phi_{i_2} \dots \phi_{i_n}$, being $\phi_{i_j} \in \mathcal{D}(R)$, for j = 1, 2, ..., n and $i_j \in N$, which converges to $\phi \in \mathcal{D}(R^n)$. Since convergence in \mathcal{D} implies convergence in $\mathcal{K}_{e,k}$, it follows that $\langle f, \phi \rangle = \langle g, \phi \rangle$ for any $\phi \in \mathcal{D}(R^n)$. Since \mathcal{D} is dense in $\mathcal{K}_{e,k}$, it follows that f = g in $\mathcal{K}'_{e,k}$. Also, for all $g \in R^n$,

$$(\mathcal{F}(f\circledast g))(y) \ = \ <(f\circledast g)(x), e^{ixy}> \ = \ < f(t), \ < g(x), e^{iy(x+t)}>>$$

$$= \langle f(t), e^{ity} \rangle \langle g(x), e^{ixy} \rangle = F(y) \cdot G(y).$$

Hence it follows that for $f, g, h \in \mathcal{K}'_{e,k}, k \in \mathbb{Z}, k < 0$,

$$f \circledast g = g \circledast f$$

and

$$f \circledast (g \circledast h) = (f \circledast g) \circledast h$$

in $\mathcal{K}'_{e,k}$. Furthermore the Dirac delta belongs to $\mathcal{K}'_{e,k}$ and

$$f \circledast \delta = \delta \circledast f = f$$
.

This shows that $\mathcal{K}'_{e,k}$, $k \in \mathbb{Z}$, k < 0 is a commutative convolution algebra with unit element with respect to \circledast defined in (1).

REFERENCES

- 1. B.J.Gonzalez and E.R.Negrin, Convolution over the space S'_k , J. Math. Anal. Appl. 190 (1995), 829-843.
- 2. B.J.Gonzalez and E.R.Negrin, Fourier Transform over the space S'_k , J. Math. Anal. Appl. 194 (1995), 780-798.
- 3. J.Horvath, Topological Vector Spaces and Distributions, Addison-Wesley, Boston, 1966.
- 4. D. H. Pahk, Hypoelliptic Convolution Equations in the space \mathcal{K}'_e , Trans. Amer. Math. Soc. **298** (1986), 485-495.
- 5. G. Sampson and Z. Zielezny, Hypoelliptic Convolution Equation in $K_p, p > 1$, Trans. Amer. Math. Soc. 223 (1976), 133-154.
- 6. A. H. Zemanian, Generalized Integral Transformations, Interscience, New York, 1968.

DEPARTMENT OF MATHEMATICS, INJE UNIVERSITY, KYUNGNAM, KIMHAE, 621-749, KOREA.

Recieved 5 August, 2004