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SOME LINEAR FUNCTIONAL AND
FOURIER TRANSFORM OVER K.,

ByuNnGg KEUN SOHN

ABSTRACT. We introduce the space K, i that is the vector space of all C*° - func-
tions f such that exp(e*!*1)8° f vanishes at infinity for all &« € N™,k € Z,k < 0 and
its dual KJ’B’ 5+ For f,g € K! ., we study the linear functional f ® g on K, ;. defined

by

<f®g>=<f(z),<g(y),plx+y) >>, d€Kcp-

Also, we show a representation theorem for the usual distributional Fourier trans-
form over the spaces K/ ,, and an inversion formula which enables to prove that
K 18 & commutative algebra with unit element with respect to ®

1. Introduction

The Schwartz space S is the space of all infinitely differentiable function f on
R™ such that (1 + |z|?)*6* f(x) vanishes at infinity for all k € Z and all a € N™.
The space S is equipped with the locally convex topology defined by the family
(gk,o) of seminorms (gk,o) = (1 + |z|?)*|0%f(x)|, where k runs through N and
o through N™. By &', we mean the space of continuous linear functionals on S.
Motivated by the Schwartz space S, J. Horvath introduced the space Sk, k is a
fixed integer, that is defined as the vector space of all functions f on R™ such that
(1 + |z|?)*8* f (z) vanishes at infinity for all & € N™ in [3]. Horvéth defined on Sy
the seminorms (ug,o) = (1 + |z|2)*|6%f(z)| for a fixed k and every o € N™. And
B.J.Gonzalez and E.R.Negrin studied the convolution and Fourier transform over
Sk k€ Z,k <0, in [1] and [2], respectively.

In the meantime, the Schwartz space S is extended by G. Sampson and Z.
Zielezny in [5]. They introduced the space K,,p > 1, of the space of all infinitely
differentiable functions f on R™ such that e*!#I” 9% f(x) vanishes at infinity for all
k € Z and all o € N™. The space K,,p > 1, is equipped with the locally convex
topology defined by the family of seminorms (4 o) = €*1#1°|6* f(x)|, where k runs
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through N and o through N™. They also studied convolution over K, the dual
of Kp, in terms of their Fourier transform.

The extended Schwartz space K,, is extended to the spaces K. by D. H. Pahk
in [4]. D. H. Pahk denote K, the space of all functions ¢ € C*°(R") such that

ve(¢) = sup  exp(e*®!)|D¢(x)| < 00,k =1,2,....
TER™,|a|<k
The space K. with seminorms v,k = 1,2,... is a Frechét space and the space
of C*°-functions with compact support D is a dense subset of .. By K. we mean
the space of continuous linear functionals on ..

Motivated by the space K., we introduce the spaces K. x(R"),k € Z,k < 0
that is defined as the vector spaces of all functions f defined on R™ which possess
continuous partial derivatives of all orders and satisfy the condition that if a € N™
and € > 0, then there exists C = C(f, a,€) > 0 such that

exp(e®1*1)|0 f(z)| < ¢,

for |z| > C(f, a,¢€).
In what follows, we shall write K. i instead of K. (R"). For every a € N™ and
fixed k € Z,k < 0, we define on K. x the seminorms

Gk (f) = max ezp(e"))|0* ()|,

The space K. equipped with the countable family of seminorms is a locally
convex space. Then D is a dense subspace of K, . By KI;’ x> We mean the space
of continuous linear functionals on X, k.

In this paper, we will study convolutional type of linear functional on K, ; as
in the case of Sy in [1]. We will prove that for f,g € K,k € Z,k <0, the linear
functional f ® g defined by

<f®g,¢6>=<f(2),<9()d(z+y)>> ¢EKcx,
has sense as the application of the functional f € K., ; to < g(y),$(z +y) >€
Ke k.
Lastly, as in the case on S in [2] we will show that we can derive a repre-

sentation theorem for the usual distributional Fourier transform over the spaces

ek € Z,k <0, and an inversion formula which enables us to prove that K ,

is a commutative algebra with unit element with respect to ®.

Throughout this paper we will use the notations and terminologies of [3].
2. Convolutional type of linear functional over K

First, we will prove that for f,g € K, ;,¢ € Kex,k € Z,k < 0, the linear
functional f ® g defined by
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1) <f®g,¢>=<f(z),<g()d+y) >>

has sense as the application of the functional f € K, ; to < g(y),¢(z +y) >€
Ke,x- It is also obtained that f ® g € K[ .

For the proof of the above results, we need the following several lemmas.
Lemma 2.1. Letx € R™ be a fixed vector, ¢ € K,k € Z,k <0, then ¢(z+y) €
’Ce,k-

Proof. Since ¢ € K ;, for all € > 0 and o € N™, there exists A(¢,a,€) > 0 such
that

exp(e*)|0%¢(2)| < e,

for |2| > A(¢,a,€). Then, since k < 0, if we take B(¢, a, €, z) = A(d, o, €) + ||,
then for |y| > B(¢, a,¢,z),

exp(e¥¥)|0%3(z + y)| = exp(eF¥! — eH17Hl 1 Hlet1l) |52 g(z + )|
| ezp(ekvl)
- emp(eklm-ﬂll) €
exp(eFlztvl . g—klzl)
exp(ek’-’c+y| )
exp(} (H+3)?) - emp(3 (e H=))
ST eap(ee)

(2) < Cean(5(e7=))e.

€

Therfore, for each fixed vector z € R™, ¢(x +y) € Kex. O
Lemma 2.2. Ifg€ K, and ¢ € K x with k € Z,k <0, then, for all m € N,

(3) O™ < g(y), Pz +y) > =<g(y),0md(z+y) >.

Proof. We will prove (3) by induction on |m|. Assume |[m| = 1. For each fixed
x € R™ and each fixed i = 1,2,...n, set hi = (hi,lyhi,Z’"',h‘i,n) € R" glven by
hi; = Az; # 0 and h; ; = 0 for j # i. Now consider

ZIEZR 9(¥), bl +y+hi) > — < g(¥),(z +y) >}

~ <o), 5‘%¢<x +9)> = < g),Ona®) >
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where

0
Ohi,e(y) = Alm,. {¢@+y+hi) -z +y)} - 5

We will prove that 8, , — 0, in K. for |h;| — 0, which assures that

321_ < 9(y), (= +y) > = < g(y), 6ia:,-¢(x +y)>.

é(x +y).

First, we will check that 0y, (y) € K . For all « € N* and y € R",

9 0*d(z +y)

¢z +y+ h;) = 0%(z+y) + Dz; o

Az 52
+/0 (Az; — g)gﬁa%(x +y + & ¢)dé,

where t.,;,5 = (ti,1,£7ti,2,€a---1ti,n,£) with t.,;’j’g = § for ] = ¢ and t‘i,jaf = 0 for
j # . Therefore,

Az,
o) = [ (Bri— 20 bla+y+tig)dk

Since ¢ € Kk, given € > 0 and a € N, there exist A(¢, a,€) > 0 such that if
|z| > A(¢, a,€), then

02
az?a"‘<}5(z)| <e.

?

exp(eFi#l)|

Now, for |t| < |hi| < 1,

eop(eH¥)| 25 0°9(z +y +1)

o2 :
4) = exp(eklVl — eklz+yt+tl 4 eklz+v+ﬂ)|ﬁaa¢(x +y+1t).

1

Since ¢ € K.k, we have that for [t| <1 and |z + y + t| > A(d, ,¢),

wp(eklz+y+tl)]%60¢(x +y+t) <e.

1

If we let B(¢,a,e,z) = A(p,a,€) + |a:|‘+ 1, since £k < 0, we have that for
lyl > B(¢, o, €,z) and |t| < 1, (4) is less than or qual to



ewp(eklyl)
exp(ek|w+y+t| ) €
exp(eklm"'y"'t{ . e_k|w+tl)
emp(ek|$+y+t| )
2 - 2
exp(3(eHetv+)?) - cap( (o))

< Ceap(z(e™+)")e

€

<

< Ceap(z(e™#1)" - (e™H1H)7)e
< Ceap(5(e™)" - (e7H#!))e.
So, for |yl > B(¢,0,¢, :D),

1(p—k)\2 . (p—klx|}2
exp(eHu)|8°0,, . (y)| < PG _(€T77) )e

® = B8 cap(z () - (eHel)P)e,

| ™ (B — £)de

and thus 6, .(y) € K x. On the other hand, for |y| < B(¢,,¢,x) and Jy| < 1,

52
oy?

?

exp(e®V)| —8%¢(z +y +t)| < My,

for some constant M;. Setting M, = ma.x{Ml,e:z:p(%(e"")2 . (e=*1=1)*)e} and
taking into account (5), for all y € R",

M2 JAV: 7
i [ -0

_ IA(B.,;I
2

exp(e*1¥1)|9%0h, = (y)| <
M27

which tends to 0 as |h;| — 0. This proves the conclusion for |m| = 1, Now, the
result of this lemma follows by induction on |m|. O

Lemma 2.3. Ifge K, ;,¢ € Ko g,k € Z,k <0, then < g(y), ¢(z +y) >€ Ke k-

Proof. From Lemma 2.2, one has that < g(y), ¢(z + y) > is smooth. It remains
to prove that for any m € N™ and any € > 0, there exist B > 0 such that if
|z| > B, then exp(e*l*)|d™ < g(y),é(z +y) > | < €. In fact, from Lemma 2.2
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and [3, remark of Proposition 2, p.97] there exists a positive constant C' and a
nonnegative integer r such that

(6) |<g,¢6>|<C L3X Gk, (&),

for ¢ € Ke .
Here C and r depend on g but not on ¢. First, we will show that this lemma
holds for ¢ € D(R™). Since D C K., by (6), for any m € N™ and ¢ € D,

exp(eF™) |0 < g(y), d(z +y) > | = ezp(e*!®)| < g(v), O (z + ) > |

< klz| klyl
< C max max exp(e™'™ Jexp(e™'¥')

x |0z 05" $(z + y)|

< C max exp(e*=h M.
< C max p(e™* ) My, o,

where M,, ,, = max,cgn |0 +* ¢(z)|. Since k < 0, this lemma holds for ¢ € D.
Next, since D is a dense subset of K., for ¢ € K4, there exists a sequence
{#¢;} C D with ¢; = ¢ in K. as j — oo. Hence for any € > 0 and any a € N,
there exist j; = jg(€, @) € N such that

max exp(eXl*)|0*{¢;(2) — #(2)}] < —2%,

for j > jg. So, for any € > 0 and any @ € N*, if j > jo = max{j}(e,m+a,)},s =
0,1,...r,

exp(e*=)aT|{< g(y), i (x +y) > — < g(y), p(z + ) >}|

< C max max exp(e"™!exp(e*¥!) 05+ 07{4;(z +y) - $(z + y)}

=C ax k|z| klyl
Joax max exp(e”*exp(e™¥!)

x exp(—eHTHul  eklztul)gmia{g; (2 + y) — ¢(z + )}

= C max max exp(eXl®! + eklvl _ gklz+ul)
0<s<ry€ER"

x exp(e*l=*¥)|gm e {¢;(x +y) — d(z + )}

< C max max ezp(eX1) |0t {,(2) — #(2)}|

(7) <

N o

Also, since < g(y), ¢jo(x + y) >€ Ke, for any € > 0 and m € N™, there exist
A(e,m, ¢j,) such that
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exp(e*=)|O7 < 9(y), 810 (z +y) > | < 3,

for |x| > A(e,m, ¢;,). Hence taking B = A(e, m, ¢;,), for |z| > B, then, by (7)
and above fact,

exp(eXl®)|07 < g(y), Pz +y) > |
< exp(e**h) 0™ < g(y), djo(z +y) > |
+ exp(erl=)|{om™ < g(y) p(z +y) > -7 < g(y), djo(x +y) >}

<2+§—

Thus the result follows. [

Lemma 2.4. Assume that k € Z,k < 0,9 € K/, x and ¢; = 0 in K, for j — oo,
then < g(y),¢j(x +y) >— 0in K. as j — oo.

Proof. By (6) in the proof of Lemma 2.3 above,
eap(e1*)|0™ < g(y), $;(x +v) > | < C 18X Gm+a, (¢5)-

From the above fact the result of this lemma follows immediately. [

Now, we conclude that
Theorem 2.5. If f,g € K ;,k € Z,k <0, then f® g € K,

Proof. Let {¢;} C K. such that ¢; — 0in K, s as j — oo. ByLemma21and
Lemma 2.3

<f®g,¢; > =< f(x),< 9(y),dj(z +y) >>

has sense, and by Lemma 2.4 and f € Kers < f ®g,¢; > tends to zero as
j—oo. O

Remark. Since the weight function exp(e*l®!) is not infinitely differentiable,
we can not have the structure theorem for f € lCe ks 1.6, f € K ; can be identified

with the space of all distributions of the form ea:p(e’“'“) Eaap,a, where (pq) is
some finite family of measure belonging to the dual of Banach space of all con-
tinuous functions on R™ vanishing at infinity. To apply the above form of the
distribution in the structure theorem to a test function, one would have to differ-
entiate the product of the weight function ezp(e¥!*!) by a test function, and this
differentiation produces terms which are not bounded relative to the weight func-
tion. Although the weight function exp(e®!*!) can be replaced by an equivalent

infinitely differentiable weight function ea:p(e’““”mmé) , there is some difficulties

— 159 —



to provide the reasonable notion of integrable distribution on open sets different
from R™. Therefore, we can not present that the product defined in (1) is the
same as the general convolution f * g in the sense of Laurent Schwartz, or Horvath
in [3].

3. Fourier Transform over X ,
I

In this section, we will state a representation theorem for the usual distributional
Fourier transform over the space K.,k € Z,k < 0. It’s inversion formula is also
obtained, which enables us to prove that K, , is commutative convolution algebra
with unit element with respect to the linear functional ® defined in (1).

For k < 0 and each y € R", the function z — €**¥ is a member of K, ;. Hence,
the application of the functional f € K ; to €'V yields the following complex-
valued function of y, '

F(y) = (Ff)

® =< f(z),e"¥ >

Next, if we only replace (1 + |:z:|2)'c and S, by exp(e*l=! )‘ and K, i, respectively,
we can show exactly like Theorem 2.1 in [2] that the function (8) represents the

usual distributional Fourier transform when it acts over members f € IC;,,C, k e

Z,k < 0 and finctions in X, i.e.,

Theorem 3.1. Let f € K ;,k € Z,k < 0. Then for all $ € K., the Parseval
eqality

<fLFp>=< T<f(z),e“'">’ ¢(y) >,
follows, where T« f(;),ei=v> is the member of K., given by
<TefemsdW) > = [ < f@e > sy,

and F¢ denotes the classical Fourier transform of ¢, namely,

(Fe)t) = /Rn $w)evdy, te R".

Now, in order to obtain an inversion formula for the Fourier transform over the
space K. r, we need the following lemma. The techniques employed in the next
lemma are extracted from B. J. Gonzalez and E. R. Negrin [2, Lemma 3.1] and A.
H. Zemmanian [6, Lemma 3.5-2].



Lemma 3.2. Let ¢4,...,¢, € D(R),z = (z1,...,2,) € R,t = (t1,..,tn) € R,
then, for any k € Z,k < 0, one has

1 - inYt;
ey /Rn j_I;Ilqu(:cj + ;) smtj Ldt — (1) - - bn(Tn)

inKer asY — +oo.

Proof. First, we will show that for ¢ € D(R"), and p € N,a € R,a < 0,Y > 0,
then

©) W) =2 [ st d e K,
and
(10) max exp(e**!)| DP {¥y (z) — ¢(z)}| — 0,

for Y — 4o0.
~ In order to show (9) and (10), we need the following;

sin Yt sin Yt

pEN.

11)  Dr / ot + )2 g / DP(t + )

For p = 0, (11) is trivial. For p = 1, since ¢ € b(R), suppg C [a,b] for some
a,b € Rwitha<b,

b—=zx s
sin Yt _D, ¢ (t + ) sinY't

= —¢(b) + ¢(a)

b—x
= Dod(t +1x) sin Yt

a—T

dt

D/ o(t + )

sin Y(b x) gt

b—x
smY(ax x) 4 Dx¢(t+:c)8th

a—x

sin Yt

dt = / D, ¢(t + z) dt.

Since DP¢ € D(R), by induction on p € N,we can prove (11) for any p € N.
Now, let @ € R with a < 0 and € > 0. Then
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sin Yt

| exp(e®l) D, / ot +2) 32 gt |

sin Yt

< exp(e®l®) - / | D2g(t + x) | dt

sin Yt

b—zx
< O(Y) - exp(e®l®!) - f | D24(t + ) | dt
< C(Y) - exp(e®l!) - sup DPg(t)- (b— a)
a<t<b
<€,

for |x| > B, where B > 0 is suitable constant. Hence (9) holds.

For (10), assuming Y > 0 and recalling [ #2Ytdt — 7, we will prove that for
PEN,

sin Yt

(12) max | eop(e**) 102 [ (6t +2) - 4(2)]

—0

dt |

as Y — +oo.
For any 6 > 0, (12) is less than or equal to

-5
mo 2[4 [+ [O)capteDipte +2) - N T |t
Let
-8

h=max: [ | eaplehDziott + ) - SN | db

I = max - / | ezp(et=) DE[g(¢t + 2) — (@) o | dt
and

I 1 [ alzly pp sth

s=max T | | exp(e*'™")DE[$(t + ) — ¢(z)] | dt.

In order to estimate I, let

Hy,4(,t) = eap(e”) 3 DE[$(t + ) — $(a)
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for (z,t) € R? with t # 0, and let

Hpg(z,t) = exp(e™®) D1 ¢(z)

for (z,t) € R? with t = 0.

Since lim¢—,0 1 DE[4(t + =) — ¢(z)] = D2H1¢(x), Hpo(z,t) is continuous on R2.
Moreover, since supp$ C [a, b], there exist L = L(p, ¢) such that |H, 4(z,t)| < L
for all (z,t) € R x [—1,1]. Now, given € > 0 choose § with 0 < § < 1 such that

2L6
I, = max | —/ H, 4(z,t)sinYtdt |[< — <¢
In order to estimate I,, consider that

I < Iy + Ig,

where
1 ¢ o] sth
Iy = max — lewp(e )DZé(t + ) | dt,
ER T
and
1 f sin Yt
= alz|y pp .
Iy =max— | Iexp(e )DE¢(z) | dt

But, since DP¢ € D,

1 Y sinz
ha< - sup D7)l | [ T d|

alz<b

tend to 0 as Y — +o0.
On the other hand, by an integration by parts,

Iy < Iy + Iag,
where

cosYd

I 1; = max | ewp(ea|ml)Dp¢($ - 5) |

T€ER

and

-5 : '
1
I3 = max | ;1:'-/ exp(e*l®!) cos(Yt)Dt[—t-Dggb(t + z)]dt | .

—00

Since exp(e®!*) < 1 for a < 0,
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Ii11 < —< sup |DP¢|

Y6 a<z<b

tend to 0 as Y — +-o0.
Now, since D[} DEo(t + x)] = (—F)DEo(t + z) + L1 DEF1¢(t + ),

L1z < Loy + Iny29,

where

1 [ 1
o = max | - [ eop(e”t) cos(¥1) (- ;) D2t + )kt |

and

-5
Iizg = max | 1 / emp(e“'”’)cos(Yt)%Dg’Hqﬁ(t+x)dt|.
X

7r—00

Since exp(e®!*!) < 1 for a < 0,

1
I < ———= sup |DP¢(x
121 s 57s asx2b| ¢(z)|

tend to 0 as y — +o0 and also,

INizg < SUP |Dp+1¢(-'”)|

YJ

tend to 0 as y — +oo. Hence I;; — 0 for p = 0,1,2,--- as Y — 400, and
analogously I3 — 0 as Y — +oo. Thus, (10) holds. :

Now, note that, since k < 0, for any (z3,...,z,) € R,

exp(eklzl) = ezp(ek($12+w23+...+xn2)%)

< exp(ev";;(lw:l+lle+---+lznl))
- exp(eﬁf'*'zll cedRlmal eﬁ,—.lwnl)

67",-"371|+e‘7k=|32|+,..+e§=|3n!
n

< exp(

Consider



k

1z (EReT) ”)af’(/ H¢J<J+t>sm”tﬂdt—¢1<w1> - $n(@n))

- for x = (z1,%2,...,z,) € R™ and p = (py,p2y..-,Pn) € N". Writing, for j =
1,2,..,n,

sm Yt
3,Y (xg / ¢J (xg Z dt,
t;

it follows that (13) can be written as

exp(e!®)| [0 W,y (21)08* Uy y (z2) - - U,y (zn)
— 07 ¢1(21)05 $a(z2) - - raﬁ"¢n($")]l
= eﬁp(eklml)l[afl‘I’LY(wl)ag"I’z,Y(xz) s OB, v (Th)
—~ 07 ¢1(21)05* Way (22) - - - O W, y (21,)
+ 07 ¢1(21)05* Wy (x2) - - - OR" U, v (T)
— 0] ¢1(21)05 P2(x2) - - - OB W v (20)
+ 05 61 (21)85* $a(2) - - - "Wy (wn)

+ 07 1 (21)057 P2(x2) - - - O b1 (Tn-1)05" Wi v ()
- 65’1 ¢1 ($1)6§2¢2($2) e apn—l ¢n-—1(mn—1)6p d’n(mn)]l

< leap(; eI N0 (T (31) - b1 (21))ean( e )08 05,y ()
- exp(-eRIE)oEn T, v ()
+ eop(SeRI)0p 6y (21 )eap(- eI =)0 (T v (23) - ha(23))
- exp(Z eI on By (22)
oot feap( e IO 61 (22)eap( eI =) 08 gy (2)]

- lewp(S e g,y (@ oy)eap(=eFrn)
X O (Un,y (Tn) — ¢n(zn))|
By (10) and taking a = 7’“: < 0, it follows that

(14) mat eap(—e 1|0 (W5 (27) — d3(2))| =0,
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asY — +oo,for1 < j<mn. Also,for 1 <j<mn,

1 k le .
Py JC7 Pi (. .
maxezp(—e )05 (¥5,v (25)]
< max eap(~e =)0 (W4 (5) - ¢5(2))
~ z;€R n J AT NI
1 = J;] .
+g}g§zewp(567" DAL CHED]
Since ¢; € D(R™), there exists a Q; > 0 such that
1 Zeizsly 595
max exp(~e ¥[8 (43(w)| < Q-
Taking into account (14), there exists a P; > 0,1 < j < n, such that
1 ] oo
max ezp(L e |0 (v (z;)| < P,

for any Y > 0, and so,

Gk p (V1Y (Z1) P2,y (Z2) - - - Up v (Tn) — d1(z1)P2(22) - - - Pn(zn)

< irllg.}czezp(%eé‘:lzll)laf"(‘l’l,Y(fcl) —¢1(z1))|- Pr--- Py

+ Q1 max eap(2 e 1) |282 (W y (22) — da(ea))| - Pa- - Py
+--Q1- - Qn_1- %ezp(%e'j:lznl)lagn (\I’n,Y(xn) - ¢n($n))|

By using (14), we obtains the result. O

Theorem 38.3. Let f € Kig,k,k € Z,k < 0, and set by F(y) = (Ff)(y),y €
R". Then for any ¢1,¢2,....¢n € D(R),t = (t1,ta,...,tn) € R", and @(t) =
&1(t1)P2(t2) - - - Pn(tn), one has

1
t),g(t) > = _li n
< f(t),9(t) > yyﬂ_loo < (2m) c(o;Y

Here we mean by C(0;Y) the n-tube [-Y,Y] x [-Y,Y] x - -- x [-Y,Y].

F(y)e *vdy, ¢(t) > .
)

Proof. If we only replace (1 + |a:|2)k by exp(e¥!®l) in the proof of Lemma 2.2 in
[2], we obtained that if ¢ € K, and f € Kexrk € Z,k <0, for any Y > 0,

/ < f(2), EVo(y)dy =< f (), / by > .
C(0;Y) 0

?



Then, by applying Fubini’s theorem and Lemma 3.2,

1

—ity
(27{‘)" C(O;Y) F(y)e dy’ ¢(t) >

- < (@), e > ey, $(t) >
(2m) Cc(0;Y)
1 : )
= — < f(x),e¥ >dy | $(t)e " Wdt
(2m) C(O Y) ( | R"
=< f(x), —= evdy [ ¢(t)e Wdt >

(2”" " c(0;Y) Rn

=< f(x),w / $1(t1) - - - Dn(tn)dt /C =y >

(0;Y)

e f(:c), / H¢J( ’ sthgdt

J

—< f(z)v ¢(.’1¢) >
asY — +oo. O
Let f,g € K, .,k € Z,k < 0 and F(y) = G(y), for any y € R™, where F(y) =
(Ff)(y), and G(y) = (Fg)(y). Then, using the Theorem 3.3, we have

< f(@), $1(21)ba(x2) - - - Pu(@n) > = < g(@), P1(21)B2(%2) - - - $n(@n) >,

for all ¢1,¢2,- - -¢n € D(R). Let ¢ € D(R™), by [4, Proposition 1, p.369],
there exists a sequence whose terms are products of the form ¢;, ¢;, - - - ¢;,,, being
¢i, € D(R), for j = 1,2,...,n and 4; € N, which converges to ¢ € D(R"). Since
convergence in D implies convergence in K, , it follows that < f,¢ >=<g,¢ >
for any ¢ € D(R™). Since D is dense in K., it follows that f = g in K[ .. Also,
for all y € R™,

(F(f ©9)@) = < (f ®9)(@), e > = < f(t), < g(a), V=) >>

= < f(t), e >< g(x),e'™ > = F(y)-G(y)-
Hence it follows that for f,g,h € Kle wk€Z,k<0,

f®g=g®f
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and

fegeh)=(feg)eh
in K, ;. Furthermore the Dirac delta belongs to K, ; and

f®dé=6@®f=Ff.

This shows that K, ;,k € Z,k < 0 is a commutative convolution algebra with
unit element with respect to ® defined in (1).
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