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Representation of Ammann-Beenker
tilings by an automaton
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ABSTRACT. The Ammann-Beenker tilings are quasiperiodic tilings of the
plane, which is constructed by using the Ammann’s matching rules. We
show that the Ammann-Beenker tilings can be composed by an automaton
with 4 states, and note some results concerning composition sequences from
the viewpoint of symbolic dynamics.

1. Introduction

In 1984 quasi-crystals with icosahedral symmetry were discovered by
Shechtman et a1.([9]). Before that, it had been believed that the structure of a
crystal was periodic, like a walpaper pattem. Periodicty is another name for
translational symmetry. Icosahedral symmetry is incompatible with trans-
lational symmetry and therefore quasi-crystals are not periodic. The most
famous 2-dimensional mathematical model for a quasi-crystal would be Pen-
rose tilings of the plane ([6],[7]). The tiles of the Penrose’s tilings are two
types of rhombs with double and single arrows on the edges, as shown in
Figure 1.

In the Penrose maching rules, the common edges of two adjacent tiles
must have the same type (single or double) and the same direction of the
arrows. The up-down generation introduced by J. Conway is one of the meth-
ods to construct such tilings or quasiperiodic tilings. In [3], de Bruijn actually
uses the up-down generation to construct Penrose tilings, and represents the
method by an automaton.

In this note we interested in Ammann-Beenker tilings (see $[1],[2],[5]$ for ex-
ample). Decorated Ammann-Beenker tiles are two rhombs with acute angles
$45^{o}$ and a square, and lengths of their edges are the same. Ammann-Beenker
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Figure 1: Penrose tiles with double and single arrows

tilings must have the property that the patterns match along the edges, which
means that the quarter-disks should be combined to make half-disks, and the
other pattems should be combined to give big arrows (see the figure 2).

$\int$ $\int$

–

Figure 2: decorated Ammann-Beenker tiles and matching patterns

Ammann-Beenker tilings are obtained by the cut-and-project method
corresponding to non-crystalographic $I_{2}(8)$-type folding of $B_{4}$-type Coxeter
group. So they are also called $B_{4}$-type quasi-periodic tilings.

One of the purposes of this paper is to represent by an automaton a
method to generate Ammann-Beenker tilings:

THEOREM. Ammann-Beenker tilings can be represented by an automaton
utth 4 states and 24 transition maps (Figure 10).

This note is arranged as folows. In sections 2 we prove the theorem. In
section 3 we give some remarks on infinite paths in the automaton from the
viewpoint of symbolic dynamics.
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2. Proof of Theorem

We divide the square in Figure 2 into two triangles as Figure 3, and
consider tilings composed of four kinds of decorated tiles in Figure 3. These
tiles are sequentially named (A), (B), (C) and (D) from the left. Note that
the original Ammann-Beenker tilings are restorable from tilings that use four
kinds of decorated tiles in Figure 3.

(C) (D)

Figure 3: four kinds of decorated tiles

To use the up-down generation method, we utilize subdivided rhomb and
triangle with similar and small subtiles such as in Figure 4.

Figure 4: similar patches
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We must decorate the subtiles. By checking all the cases, we have just
four kinds of decorated patches as in Figure 5 (see [10] for details). These
patches is sequentially named (a), (b), (c) and (d) from the left.

(b) $(C)$ (d)

Figure 5: decorated similar patches

Next, we need to determine a correspondence between the decorated
patches and the decorated tiles. By checking al the cases again, the only
possibility of correspondence in Figure 6 is left. Correspondences other than
Figure 6 have no consistency with decorations (see [10] for details).

We wil show that the correspondence in Figure 6 does not contradict.
To obtain this fact, it suffices to show that the subdivision can be repeated
without contradiction. The subdivision is defined as follows; the subtiles in
the patches (a), (b), (c) or (d) are replaced by patches by using the corre-
spondence in Figure 6. These have an arrow pattem and a semicircle pattem
without contradiction. Note that the correspondence in Figure 6 is obtained
such that those have no contradiction. Then, new local configurations in
Figure 7 appear in the subdivision of patches (a), (b), (c) or (d).

These local configurations in Figure 7 can be subdivided further. Then,
we can also check that those have no contaradiction, that is, those have
correct arrow pattems and semicircle pattems. In addition, new local con-
figurations of Figure 8 appear.

The local configurations of Figure 8 are subdivided once more, but we
have again correct arrow pattems and semicircle pattems. This subdivision
process finishes at this point, because new local configurations do not come
out. Therefore, it folows that the correspondence in Figure 6 is wel-defined.
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Figure 6: a correspondence between four patches and four tiles with decora-
tion

Figure 7: new local configurations
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Figure 8: new local configurations of addition

An automaton wil be drawn by using the similarity of patches. First,
patches (a), (b), (c) or (d) in Figure 5 are identified with tiles (A), $(B)$

}

(C) or (D) in Figure 6 respectively. Next, if some tile, say (A), is in some
pach, say (a), then we can consider an operation to costruct the pach (a)
by adding some other tiles to the tile (A). By the identification of the tiles
and the paches $((a)=(A))$ , such an operation is considered to be a transition
from (A) to (A), so we have a translation $\alpha_{a}$ from (A) to (A) as in Figure 9.

$\int$
$\rightarrow\alpha_{O}$

(A) $(a)=(A)$

Figure 9: the transition map $\alpha_{a}$

For all combinations of patches and tiles, we get the 24 transition map
in the same way. Hence, we obtain the automaton of the following Figure
10 which consists of 4 states $\{A, B, C, D\}$ and 24 transition maps, and the
proof of Theorem is completed.

REMARK. Ammann-Beenker tilings admit only restricted $de\infty rated$ lo-
cal configurations. Al decorated local configurations for Ammann-Beenker
tilings appear in Figure 5, 7 and 8.
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Figure 10: representation of Ammann-Beenker tilings by an automaton
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3. $Some$ remarks on inflnite paths in the automaton

We identify an infinite path on the automaton of Figure 10 with an infinite
sequence $(p_{0}p_{1}p_{2}\ldots)$ of the symbols of 24 transition maps, and it is called
a composition sequence. Let $\mathcal{P}$ be the space of all composition sequences
with the product topology and the shift map $\sigma((p_{0}p_{1}p_{2}\ldots))=(p_{1}p_{2}p_{3}\ldots)$ .
Then, $\mathcal{P}$ is called a one-sided symbolic system. By up-down generation, every
composition sequence is associated to a Ammann-Beenker tiling. Let $\mathcal{A}$ be
the set of all Ammann-Beenker tilings obtained by the up-down generation.
$\mathcal{A}$ is the topological space with the tiling metric (see for example [8]). We
define $F$ : $\mathcal{P}\rightarrow \mathcal{A}$ by $F(p)=T_{p}$ if a composition sequenoe $p=(Mp_{1}p_{2}\ldots)$

corresponds to a tiling $T_{p}$ , and define the composition map $C:\mathcal{A}\rightarrow \mathcal{A}$ by
$C(T_{p})=T_{\sigma(p)}$ for a composition sequence $p=(hp_{1}p_{2}\ldots)$ . Since subdivision
of a decorated patch is unique, we obtain that two composition sequences
agree after a finite number of terms if and only if they corresponds to the
same tiling. Hence, the definition of the composition map is wel-defined.
The linear map associated to the composition map is represented by the
following matrix:

$\left\{\begin{array}{llll}1 & 2 & 2 & 2\\2 & 1 & 2 & 2\\0 & 2 & 2 & 1\\2 & 0 & 1 & 2\end{array}\right\}$ .

Eigenvalues are-l, 1, $3-2\sqrt{2}$ and $3+2\sqrt{2}$ , and the left eigenvector belonging
to the eigenvalue $3+2\sqrt{2}$ is $(\sqrt{2}, \sqrt{2},2,2)$ . Then the ratio of frequencies of
tiles $A,$ $B,$ $C,$ $D$ is the ratio $\sqrt{2}$ : $\sqrt{2}$ : 2 : 2 of components of the eigenvector
$(\sqrt{2}, \sqrt{2},2,2)$ . So, we see that the Ammann-Beenker tilings are not periodic.

By the definition of the composition map, $F$ is a factor map, that is
surjective continuous map such that $ C\circ F=F\circ\sigma$ .
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