
Nihonkai Math. J.
Vol.15(2004), 23-32

Existence Results for Cone Saddle Points
by Using Vector Variational-like

Inequalities
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Abstract

This paper is concerned with existence theorems for cone saddle.points of
vector-valued functions. By means of vector variational-like inequalities,
we first characterize a vector-valued saddlepoint problem, and then ob-
tain the existence result for cone invex and R&het differentiable vector-
valued functions. In Section 1, we introduce historical background on
this field and our motivation for this study briefly. In Section2, we in-
troduce formulations of vector-valued saddle-point problem and vector
variational-like inequality problem. Next, we introduce some elementary
concepts related to our results. In Section3, we show a relationship be-
tween a vector-valued saddle-point problem and a vector variational-like
inequality problem, and we prove an existence result of a vector-valued
saddle-point problem.

1 Introduction
Studies on vector-valued minimax theorems or vector-valued saddle.point problems
have been extended widely; see [12] and references cited therein. Existence results
for cone saddle-points are based on some fixed point theorems or scalar minimax
theorems; see $[10, 11]$ . Recently, this kind of problems has been solved by a different
approach in [7], in which the equivalence to a vector variational inequality problem
has been established, and then an existence theorem for weak saddlepoints of a
vector-valued function is shown by using this property. However, the setting of their
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papers is limited to finite dimensional Euclidean spaces and the objective vector-
valued functions with two arguments are convex with respect to the first variable in
the sense of vector-ordering with the non-negative cone. In this paper, we consider
its generalization to vector problems involving the concept of cone invexity under
the general setting on normed spaces, and then we show an existence theorem with
weaker condition than in $[7, 8]$ .

2 Preliminary and terminology
Let $K$ be a nonempty subset of a normed space $X,$ $E$ a nonempty subset of a normed
space $Y$ and $Z$ a normed space. We denote the topological interior and closure of a
set $S$ by int $S$ and cl $S$ , respectively, and the complementary set of $S$ by $S^{c}$ . Let $C$

be a solid pointed convex cone subset of $Z$ , i.e.,

(i) int $ C\neq\emptyset$ ,

(ii) $C\cap(-C)=\{0_{Z}\}$ ,

(iii) $tz_{1}+sz_{2}\in C$ for al $z_{1},z_{2}\in C$ and $t,s\geq 0$ ,

where $0_{Z}$ stands for the origin of $Z$ . Given a vector-valued function $F$ : $X\times Y\rightarrow Z$ ,
the vector-valued saddle-point problem, denoted by (P), is to find a pair $x_{0}\in K$ and
$y_{0}\in E$ such that

(P) $\left\{\begin{array}{l}F(x_{0},y_{0})-F(x,y_{0})\not\in intCx\in K\\F(x_{0},y)-F(x_{0},y_{0})\not\in intCy\in E\end{array}\right.$

Definition 2.1. A point $(x_{0},y_{0})\in K\times E$ is said to be a weak C-saddle-point of
function $F$ on $K\times E$ , if it is a solution of problem (P).

Now, in order to consider a vector variational-like inequality problem with a close
relation to problem (P), we define the folowin$g$ multifunction $T:K\rightarrow 2^{E}$ ,

$T(x):=$ {$y\in E:F(x,v)-F(x,y)\not\in intC$ for all $v\in E$}. (1)

Lemma 2.2. Let $K$ be a nonempty closed set in $X,$ $E$ a nonempty dosed set in $Y$ and
$T$ a multifunction defined by (1). Assume that the function $F$ in (1) is continuous
on $K\times E$ and we take two sequences $\{x_{n}\},$ $\{y_{\mathfrak{n}}\}$ such that $x_{\mathfrak{n}}\in K$ and $y_{\mathfrak{n}}\in T(x_{\mathfrak{n}})$

for each $n\in N$ . If $x_{n}\rightarrow x$ and $y_{n}\rightarrow y$ , then $y\in T(x)$ .
Proof. Let $\{x_{n}\}\subset K$ with $x_{\mathfrak{n}}\rightarrow x,$ $y_{\mathfrak{n}}\in T(x_{\mathfrak{n}})$ with $y_{\mathfrak{n}}\rightarrow y$ and $v\in E$ . Since $F$ is
continuous on $K\times E,$ $(F(x_{n},v)-F(x_{\mathfrak{n}},y_{n}))\rightarrow(F(x,v)-F(x,y))$ . Since $($int

$C)^{c}\square $

is closed, $(F(x,v)-F(x,y))\in(intC)^{c}$ .
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We see that C’ $:=(intC)\cup\{0_{Z}\}$ is correct, i.e.,

(cl $C^{\prime}$ ) $+C^{\prime}\backslash \{C^{\prime}\cap(-C^{\prime})\}\subset C^{\prime}$ .

Now, if $E$ is compact and $v\mapsto F(x, v)$ is continuous on $E$ for each $x\in K$ , then for
any $x\in K,$ $\bigcup_{x\in E}F(x, v)$ is nonempty compact, so we have $ T(x)\neq\emptyset$ for all $x\in K$ ;
see Theorem2.6 in [9].

We denote the space of continuously linear operators from $X$ to $Z$ by $\mathcal{L}(X, Z)$ .
Let $F^{\prime}(x, y)$ stand for the Fr\’echet derivative of $F$ , refer to Definition 2.3, with respect
to the first variable at $(x, y)\in X\times Y$ , i.e.,

$F^{\prime}(x, y)$ : $X\rightarrow \mathcal{L}(X, Z)$ .

With respect to problem (P), we introduce the following vector variational-like in-
equality problem with respect to $\eta$ : $K\times K\rightarrow X$ , denoted by (Q): find a pair $x_{0}\in K$

and $y_{0}\in T(x_{0})$ such that

(Q) $ F^{\prime}(x_{0}, y_{0})(\eta(x, x_{0}))\not\in$ -int $C$ for all $x\in K$.

Under certain condition, problem (Q) has a close relation to (P). We wil consider
the condition and relationship in the next section.

Definition 2.3. Let $D$ be an open set in $X$ and $f$ a vector-valued function $homD$

to $Z$ . If for given $x\in D$ , there exists $f^{\prime}(x)\in \mathcal{L}(X, Z)$ , which is said to be R\’echet
derivative of $f$ at $x$ , such that for any $\epsilon>0$ we can choose $\delta>0$ satisfying the
following condition:

$\Vert f(x+h)-f(x)-f^{\prime}(x)h\Vert\leq\epsilon\Vert h\Vert$ for every $h\in\{x\in X : \Vert x\Vert<\delta\}$ ,

then $f$ is said to be R\’echet differentiable at $x$ , where $\Vert x\Vert$ stands for the nom of $x$ .
If for given $S\subset D,$ $f$ is Fr\’echet differentiable at each $x\in S$ , then $f$ is said to be
Fr\’echet differentiable on $S$ .

Deflnition 2.4. Let $K$ be a convex set in $X,$ $C$ a pointed convex cone in $Z$ and $f$

a vector-valued function $homX$ to $Z$ . A function $f$ is said to be C-convex on $K$ if

$\lambda f(x_{1})+(1-\lambda)f(x_{2})-f(\lambda x_{1}+(1-\lambda)x_{2})\in C$ for al $x_{1},x_{2}\in K$ and $\lambda\in[0,1]$ .

Remark 1. Let $K$ be a convex set in $X,$ $C$ a pointed closed convex cone in $Z$ ,
and assume that a vector-valued function $f$ : $X\rightarrow Z$ is Ft\’echet differentiable on $K$ .
Then $f$ is C-convex on $K$ if and only if

$f(x_{2})-f(x_{1})-f^{\prime}(x_{1})(x_{2}-x_{1})\in C$ for al $x_{1},$ $x_{2}\in K$,

where $f^{\prime}(x_{1})$ stands for Fr&het derivative of $f$ at $x_{1}\in K$ .
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Definition 2.5. ([4].) Let $K$ be a convex set in $X$ and $C$ a pointed convex cone in
$Z$ . Let $f$ : $X\rightarrow Z$ be Ft\’echet differentiable on $K$ and $\eta$ a function from $K\times K$ to
X. If $f$ satisfies

$f(x_{2})-f(x_{1})-f^{\prime}(x_{1})(\eta(x_{2},x_{1}))\in C$ for all $x_{1},x_{2}\in K$,

where $f^{\prime}(x_{1})$ stands for Fr&het derivative of $f$ at $x_{1}\in K$ , then $f$ is said to be C-invex
on $K$ with respect to $\eta$ .

If $C$ is a pointed closed convex cone in $Z$ , then each $R6chet$ differentiable C-
convex function is C-invex, by with $\eta(x_{2},x_{1})=x_{2}-x_{1}$ .

Deflnition 2.6. ([12].) Let $K$ be a convex set in $X$ and $C$ a pointed convex cone
in $Z$ . A function $f$ : $K\rightarrow Z$ is said to be C-quasiconvex if it satisfies one of the
following two equivalent conditions:

(i) for each $x,y\in K$ and $\lambda\in[0,1]$ ,

$f(\lambda x+(1-\lambda)y)\in z-C$, for al $z\in C(f(x),f(y))$ ,

where $C(f(x),f(y))$ is the set of upper bounds of $f(x)$ and $f(y)$ , i.e.,

$C(f(x), f(y)):=$ {$z\in Z|z\in f(x)+C$ and $z\in f(y)+C$};

(ii) for each $z\in Z$ ,
$A(z)$ $:=\{x\in K|f(x)\in z-C\}$

is convex or empty.

3 Existence result of cone saddle-points
Theorem 3.1. Let $K$ be a convex set in $X,$ $E$ a subset in $Y$ and $C$ a sohd pointed
convex cone in Z. Let $F$ : $X\times Y\rightarrow Z$ be fk\’echet differentiable with $oe8pect$ to
the first variable on K. If the map $x\mapsto F(x,y)\dot{u}$ C-invex on $K$ with respect to
$\eta:K\times K\rightarrow X$ for each $y\in E$, then each solution of pmblem $(Q)$ is also a solution
of $(P)$ .
Proof. Let $(x_{0},m)\in K\times E$ be a solution of problem (Q). This means that

$ P(x_{0},m)(\eta(x,x_{0}))\not\in$ -int $C$ for all $x\in K$, (2)

and $y_{0}\in T(x_{0})$ . The C-invexity of $F$ means that

$F(x,y_{0})-F(x_{0},y_{0})-P(x_{0},y_{0})(\eta(x,x_{0}))\in C$ for al $x\in K.$ (3)
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Conditions (2) and (3) imply that

$F(x_{0},y_{0})-F(x, y_{0})\not\in intC$ for all $x\in K$,

and $y_{0}\in T(x_{0})$ means that

$F(x_{0},y)-F(x_{0},y_{0})\not\in intC$ for all $y\in E$ .

$\square $

Remark 2. If $C$ is closed and $x\mapsto F(x,y)$ is Fr&het differentiable C-convex on
$K$ for each $y\in E$ , then Theorem3.1 is reduced to Theorem2.1 in [8]. Moreover, if
$X,$ $Y$ and $Z$ are restricted to finite-dimensional Euclidean spaces, respectively, and
if the ordering cone $C$ is the non-negative cone, then Theorem2.1 in [8] is reduced
to Theorem2.2 in [7].

The following classical Fan-KKM lemma is a powerful tool for vector variational
and variational-like problems and so on.

Lemma 3.2. ([5].)Let $V$ be a nonempty subset in a topological vector space $\mathcal{X}$ and
$G:V\rightarrow 2^{\mathcal{X}}$ a given multifunction. Assume that $G(x)$ is a nonempty dosed set in
$\mathcal{X}$ for each $x\in V$ . If $G$ is a KKM map, $i.e.$ , the convex hull of every finite subset
$\{x_{1}, \ldots,x_{n}\}$ of $V$ is contain$ed$ in the corresponding union $\bigcup_{i=1}^{n}G(x_{i})$ , and $G(x_{0})$ is
compact for some $x_{0}\in V,$ then $\bigcap_{x\in V}G(x)\neq\emptyset$ .
Theorem 3.3. Let $K$ be a nonempty closed convex set in $X,$ $E$ a nonempty compact
subset in $Y$ and $C$ a solid pointed convex cone in Z. Let $F:X\times Y\rightarrow Z$ be jointly
continuous on $K\times E$ and $F\vdash\acute{e}chet$ differentiable with respect to the first variable on $K$ .
Assume that the map $x\mapsto F(x,y)$ is C-invex on $K$ urith respect to $\eta:K\times K\rightarrow X$

for each $y\in E$, and that $F^{j}$ and $\eta$ satish the following three conditions:

(i) $u\mapsto F^{\prime}(x,y)\eta(u,x)i8$ C-quasiconvex on $K$ for each $x\in K,$ $y\in E$ ,

(ii) $(x,y)\mapsto F^{\prime}(x,y)\eta(u,x)$ is joinuy continuous on $K\times E$ for each $u\in K$, and

(iii) $\eta(x,x)=0_{X}$ for each $x\in K$ , where $0_{X}$ stands for the origin of $X$ .
Moreover, assume that the following two conditions:

(iv) For each $u\in K$, the set $F^{\prime}(x,T(x))(\eta(u,x))\dot{u}$ included in $either-intC$ or
$($-int $C)^{c}$ , where $T(x)$ is defined in (1).

(v) There exis $t$ a nonempty compact subset $BofX$ and $\hat{x}\in(B\cap K)$ such that for
any pair $x\in(K\cap B^{c})$ and $y\in T(x)$ ,

$ F^{\prime}(x,y)(\eta(\hat{x},x))\in$ -int $C$.

–27–



Then problem $(P)$ has at least one solution.

Proof. By the assumptions, $ T(x)\neq\emptyset$ for any $x\in K$ . Define a multifunction
$G:K\rightarrow 2^{X}$ by

$G(u)$ $:=$ {$x\in K$ : $ F^{\prime}(x,y)(\eta(u,x))\not\in$ -int $C,$ $y\in T(x)$ }, $u\in K$ . (4)

In order to prove the theorem, by Theorem 3.1, it is sufficient to show that problem
(Q) has at least one solution pair $x_{0}\in K$ and $y_{0}\in T(x_{0})$ , and so we only have to
show the following three conditions, by Lemma 3.2,

(a) $G$ is a KKM-map,

(b) $G(x)$ is nonempty closed for each $x\in K$ , and

(c) there exists $\hat{x}\in K$ such that $G(\hat{x})$ is compact.

First, we prove condition (a). Suppose to the contrary to our claim that there exist
$x_{1},$ $\ldots,x_{m}\in K$ and $\alpha_{1},$ $\ldots$ , $\alpha_{m}\geq 0$ such that

$\overline{x}$ $:=\sum_{1=1}^{m}\alpha_{i}x_{i}\not\in\bigcup_{i=1}^{m}G(x_{i}),$ $\sum_{1=1}^{m}\alpha_{i}=1$ .

Then, $\overline{x}\in K$ and $\overline{x}\not\in G(x_{i})$ for all $i=1,$ $\ldots,$
$m$ and hence for $y\in T(\overline{x})$ ,

$ F^{j}(\overline{x},y)(\eta(x_{i},\overline{x}))\in$ -int $C$ for al $i=1,$ $\ldots,$
$m$ .

Then, by assumptions (i) and (iii), we have,

$ F^{\prime}(\overline{x},y)(\eta(\sum_{=1}^{m}\alpha_{i}x_{i},\overline{x}))\in$ -int $C$,

and so
$ 0_{Z}\in$ -int $C$.

This is a contradiction. Thus, we deduce that $G$ is a KKM-map.
Next, we show that condition (b) holds. Let $u\in K$ . Since $ T(u)\neq\emptyset$ and

$\eta(u,u)=0_{X}$ , we have $ G(u)\neq\emptyset$ . Let $\{x_{n}\}\subset G(u)$ such that $x_{\mathfrak{n}}\rightarrow x\in K$ . Since
$x_{n}\in G(u)$ for al $n\in N$,

$F^{j}(x_{n},y_{n})(\eta(u,x_{n}))\in($-int $C)^{c}$ for some $y_{\mathfrak{n}}\in T(x_{n})$ .

As $\{y_{\mathfrak{n}}\}$ in compact set $E$ , without loss of generality, we can assume that there exists
$y\in E$ such that $y_{n}\rightarrow y$ . Since $F$ is continuous on both variables, by Lemma 2.2,
$y\in T(x)$ . Since assumption (ii) and the closedness of $($-int $C)^{c}$ , we have

$F^{\prime}(x_{n},y_{n})(\eta(u,x_{n}))\rightarrow F(x, y)(\eta(u,x))\in($-int $C)^{c}$ .
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Hence $x\in G(u)$ , i.e., $G(u)$ is a closed set.
Finally in order to prove condition (c), we show that $G(\hat{x})$ is a compact set for

$\hat{x}\in B$ in assumption (v). Since $G(\hat{x})$ is closed and $B$ is compact, it is sufficient
to show $G(\hat{x})\subset B$ . Suppose to the contrary that there exists $\overline{x}\in G(\hat{x})$ such that
$\overline{x}\not\in B$ . Since $\overline{x}\in G(\hat{x})$ ,

$ F^{\prime}(\overline{x},\overline{y})(\eta(\hat{x},\overline{x}))\not\in$ -int $C$ for some $\overline{y}\in T(\overline{x})$ .

However, this is a contradiction to assumption (v).
Consequently, it follows that $\bigcap_{x\in K}G(x)\neq\emptyset$ . Thus, there exists $x_{0}\in\bigcap_{x\in K}G(x)$

and then, by condition (iv), for any $x\in K$ and $y\in T(x_{0})$ in (1),

$ F^{\prime}(x_{0}, y)(\eta(x, x_{0}))\not\in$ -int $C$.

Therefore there exists $x_{0}\in K$ and $y_{0}\in T(x_{0})$ such that

$ F^{\prime}(x_{0}, y_{0})(\eta(x, x_{0}))\not\in$ -int $C$, (5)

for all $x\in K$ . Therefore, there exists at least one solution of problem (Q). $\square $

Remark 3. The assumption (iv) in Theorem3.3, or something like that similar con-
dition, is crucial but it has not been assumed in Theorem2.3 in [7] and Theorem2.3
in [8]. Without the assumption (iv) the vector $y_{0}\in T(x_{0})$ satisfying condition (5)
in the proof of Theorem3.3 might depend upon $x\in K$ , and hence there does not
necessarily exist $(x_{0},y_{0})$ with $y_{0}\in T(x_{0})$ guaranteeing condition (5) for all vector
$x\in K$ .

Example 1. Let $X=R,$ $Y=R$ and $Z=R^{2}$ , and let $K$ $:=[0,1],$ $E;=$

$[0,1],$ $C$ $:=\{0_{Z}\}\cup\{(z_{1}, z_{2}) : z_{1}+z_{2}>0\},$ $\eta(u, x);=u-x$ and $f(x,y);=$

$((1-y)(2x-1)+\frac{1}{4}y(1-y)((1-2x)^{2}-1), \frac{1}{4}y(1-y)((2x-1)^{2}-1)+y(1-2x))^{t}$ .
In this setting, it is easily seen that al assumptions in Theorem3.3 except (iv)

are satisfied and that $f$ has no C-saddlepoint on $K\times E$ .

Remark 4. If $C$ is closed and the map $x\mapsto F(x, y)$ is Fr\’echet differentiable C-convex
on $K$ for each $y\in E$ , then Theorem3.3 is reduced to Theorem2.3 in [8]. Moreover,
if $X,$ $Y$ and $Z$ are restricted to finitedimensional Euclidean spaces, respectively, and
if the ordering cone $C$ is the non-negative cone, then Theorem2.3 in [8] is reduced
to Theorem2.3 in [7].

Corollary 3.4. Assume that $K$ is a nonempty compact convex set in $X$ , and that
the other conditions are the same as Theorem 3.3 except removing assumption (v).
Then prvblem $(P)$ has at least one solution.
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Example 2. Let $K$ $:=[1,2]\times[1,2],$ $E$ $:=[0,2]\times[0,2]$ and $Z$ $:=R^{2}$ with the ordering
cone $C;=\{(z_{1}, z_{2})\in R^{2} : z_{1}, z_{2}\geq 0\}$ . Let $F(x,y);=(2x_{1}^{3}(y_{1}-1)^{2}, -3x_{2}^{3}y_{2}^{2})^{t}$ and
$\eta(u,x);=\frac{1}{3}(^{\underline{u}_{\llcorner}^{3}}\neq,\#)^{t}$ Then all conditions of Corollary3.4 are satisfied, and
then problem (P) has at least one solution. However, $F$ is not C-convex on $K$ with
respect to the first variable; this example shows that Theorem 3.3 is a generalization
of the result in [8].

Corollary 3.5. If $T(x)$ is single-valued in Theorem 3.3, and the other conditions are
the same except removing assumption (iv), then pmblem $(P)$ has at least one solution.

Corollary 3.6. We can replace the condition (i) of Theorem 3.3 by the follounng
condition

(i) $\eta(\cdot,x)\dot{u}$ affine on $K$ for each $x\in K,$ $i.e.,$ $\eta(tu_{1}+(1-t)u_{2},x)=t\eta(u_{1},x)+$

$(1-t)\eta(u_{2},x)$ for any $u_{1},u_{2}\in K$ and $t\in R$ .
Proof. By Theorem3.3, it is sufficient to show that $F^{\prime}(x,y)\eta(\cdot,x)$ is affine for each
$x\in K$ and $y\in E$ , because any afline function is also C-quasiconvex. Since $F^{\prime}(x,y)$

is a linear operator for each $x\in K$ and $y\in E$ , we see that $F^{\prime}(x,y)\eta(\cdot,x)$ is affine. $\square $

Remark 5. By the folowing Proposition, we see that if the ordering cone $C$ is closed,
then Corolary3.6 above and Theorem2.3 in [8] are equivalent with each other.

Proposition 3.7. Let $K$ be a nonempty convex set in $X,$ $C$ a pointed convex cone
in $Z$ and $f$ a vector-valued function ffom $X$ to Z. Assume that $f\dot{u}$ Fk\’echet dif-
ferentiable and C-invex on $K$ utth $oes_{\vee}pect$ to some $\eta$ satisfying the following two
conditions:

(i) $\eta(\cdot,x)$ is affine on $K$ for each $x\in K$ ,

(ii) $\eta(x,x)=0_{X}$ for each $x\in K$ .
Then $f$ is aZso C-convex on $K$.
Proof. Since $f$ is C-invex with respect to $\eta$ and $C$ is a convex cone, we have for
any $x,y\in K$ and $\lambda\in[0,1]$

$\lambda f(x)+(1-\lambda)f(y)-f(u)-(\lambda f^{\prime}(u)(\eta(x,u))+(1-\lambda)f(u)(\eta(y,u)))\in C$,

where $u:=\lambda x+(1-\lambda)y$ . Then, by condition (i), we have
$\lambda f(x)+(1-\lambda)f(y)-f(u)-f^{\prime}(u)(\eta(u,u))\in C$.

Hence, by condition (i1), we have
$\lambda f(x)+(1-\lambda)f(y)-f(\lambda x+(1-\lambda)y)\in C$.

$\square $

Remark 6. In this paper, we can replace a normed spaoe $Y$ by a topological vector
space.
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