
Nihonkai Math. J.
Vol.15(2004), 15-22

Two classes of Lorentzian stationary surfaces
in semi-Riemannian space forms

Makoto SAKAKI

Abstract. We give certain two classes of 2-dimensional Lorentzian metrics
which can be realized as induced metrics of Lorentzian stationary surfaces in
semi-Riemannian space forms.

1. Introduction

Let $N_{\nu}^{n}(c)$ denote the $n- d\dot{m}e$nsional simply connected semi-Riemannian
space fom of constant curvature $c$ and index $v$ . A surface in $N_{\nu}^{n}(c)$ is called
Lorentzian if its induced metric is Lorentzian. We say that a Lorentzian
surface in $N_{\nu}^{n}(c)$ is stationary if its mean curvature vector vanishes identically.
We are interested in the following question: Which 2-dimensional Lorentzian
metrics can be realized as induced metrics of Lorentzian stationary surfaces
in $N_{\nu}^{n}(c)$ ?

There are several related results for m\"iimal surfaces in Riemannian space
forms (cf. [4], [5], [2], [3]). In the previous paper [7], refering to [3], we gave
two classes of 2-dimensional Riemannian metrics which can be realized as
spacelike stationary surfaces in $N_{\nu}^{n}(c)$ . In this paper, we will give two classes
of 2-dimensional Lorentzian metrics which can be reaJized as Lorentzian sta-
tionary surfaces in $N_{\nu}^{n}(c)$ .

Let $M$ be a 2-dimensional Lorentzian manifold with Gaussian curvature
$K$ and Laplacian $\Delta$ . For each real number $c$, set

$F_{1}^{c}=2(K-c)$ , $F_{p+1}^{c}=F_{p}^{c}+2(p+1)K-\sum_{q=1}^{p}\Delta\log(F_{q}^{c})$ if $F_{p}^{c}>0$ .

Our results are stated as follows.

Theorem 1. Let $M$ be a 2-dimensionat simply connected Lorentzian man-
ifold. Suppose that $F_{p}^{c}>0$ for $p<m$ , and $F_{m}^{c}=0$ identically. Then there
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exists an isometric stationary immersion of $M$ into $N_{m}^{2m}(c)$ .

Theorem 2. Let $M$ be a $2\rightarrow dimensional$ simply connected Lorentzian man-
ifold with metric $ds^{2}$ . Suppose that $F_{p}^{c}>0$ for $p\leq m$ , and the metric
$d\hat{s}^{2}=(\prod_{p=1}^{m}F_{p}^{c})^{1/(m+1)}ds^{2}$ is flat. Then there exists $a$ one-parameter family
of isometric stationary immersions of $M$ into $N_{m}^{2m+1}(c)$ .

Remark. The conditions of the theorems may be seen as generalized Ricci
conditions (cf. [4], [3], [7]).

Using Theorems 1 and 2, we may obtain Lorentzian stationary surfaces
with constant curvature in pseudQhyperbolic spaces.

Corollary 1. For every positive integer $m$ , there exists an isometric sta-
tionary immersion of $N_{1}^{2}(-2/m(m+1))$ into $N_{m}^{2m}(-1)$ .

Corollary 2. For every positive integer $m$ , there enists $a$ one-parameter
famdy of $\dot{u}$ometric stationary immersions of the Minkowski plane $R_{1}^{2}$ into
$N_{m}^{2m+1}(-1)$ .

Remarks. (i) See [1] for minimal surfaces with constant curvature in
Riemannian space forms.

(ii) The author does not know the explicit representations of the surfaces
in the $corollarie8$ .

In Section 5, we show the existence of 2-dimensional Lorentzian metrics
with nonconstant curvature which satisfy the conditions of the theorems.

2. Preliminaries

Unless otherwise stated, we use the following conventions on the ranges
of indices:

$1\leq i,j,$ $\cdots\leq 2$ , $3\leq\alpha,\beta,$ $\cdots\leq n$ , $1\leq A,B,$ $\cdots\leq n$ .
Let $\{e_{A}\}$ be a local orthonormal hame field in $N_{\nu}^{n}(c)$ , and $\{\omega^{A}\}$ be the dual
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coframe. Here the metric of $N_{\nu}^{n}(c)$ is given by

$n-\nu+1$ $n$

$ds^{2}=(\omega^{1})^{2}-(\omega^{2})^{2}+$ $\sum$ $(\omega^{A})^{2}-$ $\sum$ $(\omega^{A})^{2}$ .
$A=3$ $A=n-\nu+2$

Set $I_{1}=\{1,3,4, -- , n-\nu+1\}$ and $I_{2}=\{2, n-v+2, n-v+3, \cdots, n\}$ . We
can define the connection forms $\{\omega_{B}^{A}\}$ by

$de_{B}=\sum_{A}\omega_{B}^{A}e_{A}$ .

Then $\omega_{B}^{A}+\omega_{A}^{B}=0$ if $A,$ $B\in I_{1}$ , or $A,B\in I_{2}$ . And $\omega_{B}^{A}=\omega_{A}^{B}$ if $A\in I_{1},$ $B\in I_{2}$ .
The structure equations are given by

$d\omega^{A}=-\sum_{B}\omega_{B}^{A}\wedge\omega^{B}$ ,

$d\omega_{B}^{A}=-\sum_{c}\omega_{C}^{A}\wedge\omega_{B}^{C}+\frac{1}{2}\sum_{C,D}R_{BCD}^{A}\omega^{C}\wedge\omega^{D}$ ,

$R_{BCD}^{A}=c\epsilon_{B}(\delta_{C}^{A}\delta_{BD}-\delta_{D}^{A}\delta_{BC})$ ,

where $\epsilon_{B}=1$ for $B\in I_{1}$ , and $\epsilon_{B}=-1$ for $B\in I_{2}$ .
Let $M$ be a Lorentzian surface in $N_{\nu}^{n}(c)$ . We choos $e$ the frame $\{e_{A}\}$ so

that $\{e_{i}\}$ are tangent to $M$ . Then $\omega^{\alpha}=0$ on $M$ . In the following, our
argument will be restricted to $M$ . Then we have

$0=\&)^{\alpha}=-\sum_{i}\omega_{i}^{\alpha}\wedge\omega^{i}$ .

So there is a symmetric tensor $h_{ij}^{\alpha}$ such that

$\omega_{i}^{\alpha}=\sum_{j}h_{ij}^{\alpha}\omega^{j}$
,

where $h_{ij}^{\alpha}$ are the components of the second fundamental form $h$ of $M$ . The
Gaussian curvature $K$ of $M$ is given by

$\&)^{1}2=-K\omega^{1}\wedge\omega^{2}$ .
The mean curvature vector $H$ of $M$ is given by

$H=\frac{1}{2}\sum_{\alpha}(h_{11}^{\alpha}-h_{22}^{a})e_{\alpha}$ .
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We say that $M$ is stationary if $H=0$ on $M$ .

3. Proof of Theorem 1

Proof of Theorem 1. We choose an orthonormal frame field $\{e_{1}, e_{2}\}$ on
$M$ with dual coframe $\{\omega^{1},\omega^{2}\}$ . Here the metric on $M$ is given by

$ds^{2}=(\omega^{1})^{2}-(\omega^{2})^{2}$ .
Let $\omega_{2}^{1}=\omega_{1}^{2}$ be the connection form satisfying

$dv^{1}=-\omega_{2}^{1}\wedge\omega^{2}$ , $4v^{2}=-\omega_{1}^{2}\wedge\omega^{1}$ .
Unless otherwise stated, we use the following conventions on the ranges of
indices:

$1\leq i,j,$ $\cdots\leq 2$ , $3\leq\alpha,\beta,$ $\cdots\leq 2m$ , $1\leq A,B,$ $\cdots\leq 2m$ .

Let $E$ be a vector bundle of rank $2m-2$ over $M$ with orthonormal sections
$\{e_{\alpha}\}$ such that $\langle e_{\alpha}, e_{\beta}\rangle=\tilde{\epsilon}_{a}\delta_{a\beta}$ , where $\tilde{\epsilon}_{\alpha}=1$ if a is odd, and $\tilde{\epsilon}_{\alpha}=-1$ if a
is even. $\cdot$ Leth beasymmetric section of Hom$(TMxTM,E)$ such that

$(h_{ij}^{3})=(\sqrt{F_{1}^{c}}/20\sqrt{F_{1}^{c}}/20)$ , $(h_{ij}^{4})=(0\sqrt{F_{1}^{c}}/20)$

$(h_{ij}^{6})=\cdots=(h_{j}^{2m})=(0)$ .

For $1\leq p\leq m-1$ , set

$\omega_{2p+1}^{2p-1}=-\omega_{2p-1}^{2p+1}=-(\sqrt{F_{p}^{c}}/2)\omega^{2}$ , $\omega_{2p+1}^{2p}=\omega_{2p}^{2p+1}=(\sqrt{F_{p}^{c}}/2)\omega^{1}$ ,

$\omega_{2p+2}^{2p-1}=\omega_{2p-1}^{2p+2}=(\sqrt{F_{p}^{c}}/2)\omega^{1}$ , $\omega_{2p+2}^{2p}=-\omega_{2p}^{2p+2}=-(\sqrt{F_{p}^{c}}/2)\omega^{2}$ ,

$\omega_{2p+2}^{2p+1}=\omega_{2p+1}^{2p+2}=(p+1)\omega_{2}^{1}+\frac{1}{2}\sum_{q=1}^{p}*d\log(F_{q}^{c})$ ,

and
$\omega_{B}^{A}=0$ otherwise,
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$where*is$ the Hodge star operator given $by*\omega^{1}=\omega^{2}and*\omega^{2}=\omega^{1}$ . We
note that

$d*df=(\Delta f)\omega^{1}\wedge\omega^{2}$

for a smooth function $f$ on $M$ . We define a compatible connection $\nabla$ of $E$

so that
$\perp\nabla e_{\beta}=\sum_{\alpha}\omega_{\beta}^{\alpha}e_{\alpha}$ .

By a computation using the condition of Theorem 1, we can show that
$\{\omega_{B}^{A}\}$ satisfy the structure equations:

$h_{2}^{1}=-\sum_{a}\omega_{a}^{1}\wedge\omega_{2}^{\alpha}-\omega^{1}\wedge\omega^{2}$ ,

$4v_{a}^{1}=-\omega_{2}^{I}$ A $\omega_{a}^{2}-\sum_{\beta}\omega_{\beta}^{1}\wedge\omega_{a}^{\beta}$
, $h_{\alpha}^{2}=-\omega_{1}^{2}$ A $\omega_{\alpha}^{1}-\sum_{\beta}\omega_{\beta}^{2}-$ A $\omega_{a}^{\beta}$ ,

$dv_{\beta}^{a}=-\sum_{i}\omega_{i}^{\alpha}\wedge\omega_{\beta}^{i}-\sum_{\gamma}\omega_{\gamma}^{a}\wedge\omega_{\beta}^{\gamma}$
,

which are the integrability conditions. Therefore, by the fundamental the-
orem, there exists an isometric immersion of $M$ into $N_{m}^{2m}(c)$ , with second
fundamental form $h$ and normal connection $\nabla$ . So it is stationary, and we
get the conclusion.

${\rm Re} mark$ . To show the structure equations above, it is convenient to sep-
arate the cases for

$\&)^{1}2$

’
$dv_{2p+2}^{2p+1}(1\leq p\leq m-2)$ , $dv_{2m}^{2m-1}$ ,

$4v_{2p+1}^{2p-1},$ $dv_{2p+2}^{2p-1},$ $dv_{2p+3}^{2p-1},4v_{2p+4}^{2p-1},$ $h_{2p+1}^{2p},4v_{2p+2}^{2p},$ $Av_{2p+3}^{2p},$ $dv_{2p+4}^{2p}$

$(1 \leq p\leq m-1)$ , and other trivial ones.

Proof of Corollary 1. For $N_{1}^{2}(-2/m(m+1))$ , we have

$F_{p}^{-1}=2-\frac{2p(p+1)}{m(m+1)}$

for $1\leq p\leq m$ . Hence by Theorem 1, there exists an isometric stationary .

immersion of $N_{1}^{2}(-2/m(m+1))$ into $N_{m}^{2m}(-1)$ .
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Through the natural anti-isometries (cf. [6, p.110]), Corollary 1 is equiv-
alent to the following:

Corollary 3. For every positive integer $m$, there exists an $\dot{u}$ometric sta-
tionary immersion of $N_{1}^{2}(2/m(m+1))$ into $N_{m}^{2m}(1)$ .

$\sim$ 4. Proof of Theorem 2

Proof of Theorem 2. We choose an orthonormal coframe field $\{\omega^{1},\omega^{2}\}$

on $M$ , with connection form $\omega_{2}^{1}=\omega_{1}^{2}$ . Here the metric on $M$ is given by
$ds^{2}=(\omega^{1})^{2}-(\omega^{2})^{2}$ .

Unless otherwise stated, we use the following conventions on the ranges of
indices:

$1\leq i,j,$ $\cdots\leq 2$ , $3\leq\alpha,\beta,$ $\cdots\leq 2m+1$ , $1\leq A,$ $B,$ $\cdots\leq 2m+1$ .
Let $E$ be a vector bundle of rank $2m-1$ over $M$ with orthonormal sections

$\{e_{\alpha}\}$ such that $\langle e_{\alpha}, e_{\beta}\rangle=\tilde{\epsilon}_{a}\delta_{\alpha\beta}$ , where $\tilde{\epsilon}_{a}=1$ if $\alpha$ is odd, and $\tilde{\epsilon}_{\alpha}=-1$ if $\alpha$

is even. Let $h$ be a symmetric section of $Hom(TM\times TM, E)$ such that

$(h_{ij}^{3})=(\sqrt{F_{1}^{c}}/20\sqrt{F_{1}^{c}}/20)$ $(h_{ij}^{4})=(\sqrt{F_{1}^{c}}/20\sqrt{F_{1}^{c}}/20)$ ,

$(h_{ij}^{5})=\cdots=(h_{1j}^{2m+1})=(0)$ .
Let $\{\omega_{B}^{A}\}(1\leq A, B\leq 2m)$ be defined as in the proof of Theorem 1.

The flatness of the metric $d\hat{s}^{2}$ is equivalent to

$\sum_{p=1}^{m}\Delta\log(F_{p}^{c})=2(m+1)K$ .

So the equation

$dt=-(m+1)\omega_{2}^{1}-\frac{1}{2}\sum_{p=1}^{m}*d\log(F_{p}^{c})$

is integrable. Let $t$ be a solution of this equation. For each real number $\theta$ ,
set

$\omega_{2m+1}^{2m-1}=-\omega_{2m-1}^{2m+1}=\sqrt{F_{m}^{c}/2}\{\sinh(t+\theta)\omega^{1}-\cosh(t+\theta)\omega^{2}\}$ ,
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$\omega_{2m+1}^{2m}=\omega_{2m}^{2m+1}=\sqrt{F_{m}^{c}/2}\{\cosh(t+\theta)\omega^{1}-\sinh(t+\theta)\omega^{2}\}$ ,

$\omega_{2m+1}^{A}=\omega_{A}^{2m+1}=0$ for $1\leq A\leq 2m-2$ .

We define a compatible connection $\nabla$ of $E$ so that

$\perp\nabla e_{\beta}=\sum_{\alpha}\omega_{\beta}^{\alpha}e_{\alpha}$ .

By a computation, we can show that $\{\omega_{B}^{A}\}$ satisfy the structure equa-
tions. Hence, there exists a one-parameter family of isometric stationary
immersions of $M$ into $N_{m}^{2m+1}(c)$ .

Remark. To show the structure equations above, we should consider the
cases for $d\omega_{2m}^{2m-1}$ and $4v_{2m+1}^{4}$ . Other cases are the same as in the proof of
Theorem 1.

Proof of Corollary 2. It is immediate from Theorem 2.

5. A remark

Here we show the existence of 2-dimensional Lorentzian metrics w\’ith
nonconstant curvature which satisfy the conditions of the theorems. Let

$ds^{2}=e^{2u}(dx^{2}-dy^{2})$

be a 2-dimensional Lorentzian metric, where $u=u(x)$ is a smooth function
depending only on $x$ . Then we have

$\triangle=e^{-2u}$
$(\frac{\partial^{2}}{\partial x^{2}}-\frac{\partial^{2}}{\partial y^{2}}I,$ $K=-e^{-2u}u^{\prime/}$ , $K^{\prime}=2e^{-2u}u^{\prime}u^{\prime/}-e^{-2u}u^{\prime\prime\prime}$ ,

and $F_{p}^{c}$ is represented by $u^{(k)}(0\leq k\leq 2p)$ .
The condition $F_{m}^{c}=0$ of Theorem 1 becomes an ordinary differential

equation for $u$ of $2m$-th order. For $m\geq 2$ , choosing asuitable initial condition
at $x=0$ so that $F_{p}^{c}(0)>0(1\leq p\leq m-1)$ and $K‘(0)\neq 0$ , we can show the
existence of a solution $u$ of $F_{m}^{c}=0$ . This $u$ gives a 2-dimensional Lorentzian
metric with nonconstant curvature satisfying the condition of Theorem 1.
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The condition of Theorem 2 becomes an ordinary differential equation for
$u$ of $(2m+2)$-th order. For $m\geq 1$ , choosing a suitable initial condition as
above, we can show the existence of 2-dimensional Lorentzian metrics with
nonconstant curvature satisfying the condition of Theorem 2.
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