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SCHOLZ ADMISSIBLE MODULI OF FINITE GALOIS
EXTENSIONS OF ALGEBRAIC NUMBER FIELDS

Teruo TAKEUCHI

ABSTRACT. Let K be a finite Galois extension over an algebraic number field
k with Galois group G. We call a modulus 9t of K Scholz admissible when
the Schur multiplier of G is isomorphic to the number knot of K/k modulo
M. This paper develops a systematic treatment for Scholz admissibility. We
first reduce the problem to the local case, in particular, to the strongly rami-
fied case, and study this case in detail. A main object of local Scholz admissi-

bility is H~ (G, U}(')) in the strongly ramified case. In the case where K/k is
totally strongly ramified of prime power degree p™, we prove that the natural
homomorphism : H~}(G, Ué(”")) - H“‘(G,U,(;)) is trivial for s > 1, where r
denotes the last ramification number. This result describes a basic situation for
vanishing of H~1(G, U,(;’). Using this result for a Galois tower K’ D L D k with
a totally strongly ramified cyclic extension L/k we prove a relationship between
Scholz admissible moduli of K/L and K/k. This gives a way to estimate for Scholz
conductor of K/k from the ramification in K/k. As an application of this result
we give an alternative proof of a result of Frohlich.

1. INTRODUCTION

Let k be an algebraic number field of finite degree. Let K be a finite Galois
extension over k with Galois group G = Gal(K/k). Let 9t be a Galois modulus of
K/k, i.e., a finite product of primes of K which satisfies 9° = 9 for any 0 € G. It
is known that the number knot of K/k modulo 9t is an epimorphic image of Schur
multiplier H73(G, Z), i.e., there exists a natural epimorphism

(L.1) H™(G,Z) = kN Nijp(Jkm) /N /e (Kom)

(cf. Proposition 2.7). A. Scholz [9] developed the knot theory in relation to the
Hasse norm principle, and established fundamental properties of this type without
using cohomology. About forty years after, W. Jehne [6] gave a reformation and a
generalization of Scholz’s knot theory with new proofs using cohomology. Following
Jehne, P. Heider [4] studied the knot theory modulo 9. In his paper [4], Heider
called 9t a Scholz conductor when (1.1) is an isomorphism and studied some prop-
erties of Scholz conductors. In particular, he proved that a sufficiently large 9 is a
Scholz conductor of K/k. Before Heider’s work, Shirai [8] determined such moduli
of K/k in the case where K/k is tamely ramified. In the general case, however, it is
not easy to determine such moduli explicitly.

In this paper we call 99t Scholz admissible when (1.1) is an isomorphism with
slightly modified terminology. The purpose of this paper is to develop a systematic
treatment of Scholz admissibility.
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Although Scholz admissibility is defined in the global case as above, the essential
part is in the local case. So we first define Scholz admissibility in the local case in
section 2.1. Next, in section 2.2, we give a reformulated definition in the global case
and discuss the relationship between the local case and the global case. In particular
we show that 9 is global strong Scholz admissible if and only if P-part of 9 is
local Scholz admissible at P for every prime P of K (Proposition 2.9).

In section 3 we study the local case in detail. A main object of local Scholz
admissibility is H™}(G,U (f)), in particular, in the case where K/k is strongly ram-
ified. When K/k is totally strongly ramified of prime power degree p", we prove
the natural homomorphism : H~}(G, U,(‘T"J’s)) — H7Y(G, U}f)) is trivial for s > 1,
where r,, denotes the last ramification number (Theorem 3.5). This result describes
a basic situation for vanishing of H~1(G,U }(3)) Using this result for a finite Galois
tower K O L D k with a totally strongly ramified cyclic extension L/k, we prove
a relationship between Scholz admissible moduli of K/L and K/k (Theorem 3.12).
This theorem gives a way of getting an estimate for Scholz conductor of K/k from
the ramification in K/k. As an application of this result we give an alternative proof
of [2, Theorem 3].

2. DEFINITIONS AND PRELIMINARIES

Throughout this paper an algebraic number field means a finite extension of the
rational number field Q.

In this section we give several definitions related to Scholz admissibility, and
establish their fundamental properties.

2.1. Local fields. Let p be a prime of an algebraic number field. Let k£ denote the
completion of the field with respect to p. In this paper we assume that p is finite
since the results are rather trivial in the case where p is infinite. In fact in the case
where p is infinite, although the notion of Scholz admissibility is defined similarly
to the finite case, the Scholz admissibility coincides with Galois admissibility (cf.
Proposition 2.2). Let K/k be a Galois extension of finite degree, and let B be the
prime of K over p. For non negative integers i and j we define functions vg/x and
uk/k using the Hasse’s function ¢x/x = ¢ of P with respect to K /k by

(2.1) vse(d) = v(i) = $(6 — 1) + 1,

(2:2) ukk(j) = u(j) = min{i € Z | j < ¢(i)},

respectively. For the properties of the Hasse’s function ¢/, we refer to Iyanaga [5]
or Neukirch {7]. From the definitions we see

(2.3) o(u(j) — 1) <J < é(u(y)),

(2.4) v(u(y)) < J <v(u(g) +1),
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and

(2.5) u(v(i)) = u($(s)) = i.
Moreover by the definition we obtain transitivity of u and v easily as follows.

Lemma 2.1. Let L be a Galois subextension of K/k. Then
(1) vk/k = vK/L O ULk
(2) ug/k = uLsk © UK/L-

Let m = p* be a modulus of k , i.e., a finite product of p. Then we define the
lifting modulus v/x(m) of m from k to K by

(26) bx/k(m) = b(m) = PO,

Conversely, for a modulus M = P’ of K we define the restricted modulus ug/(9M)
of 9 from K to k by

(2.7) ug/e(I) = w(M) = p 0.

Since v and u are transitive, the liftings and the restrictions are also transitive.
For an integer i > —1, let V/k(7) denote the i-th ramification group with respect
to K/k, i.e., _

(2.8) - Vki(i) = {ad € Gal(K/k) | 0(a) = (mod P*!) for all & € Ok},

where D denotes the valuation ring of K. Let Uy = U,Eo) denote the group of units
in k, and for a positive integer i, put

(2.9) U ={zecU|z=1 (modp)}.
For a non negative integer 7, Ug) is also defined similarly with respect to B.

Let L be a Galois subextension of K/k, and put H = Gal(K/L). Then the
Herbrand’s theorem states

(2.10) , Vie(ug/e(3)) = Vi (G)H/H.
Moreover since u(j) is transitive, we know from class field theory
(2.11) Ng(UD) c Uy,

where u(j) = uk/k(j) (e.g. Iyanaga [5, p.340] ).

Using the ramification groups we define the Galois admissibility of a modulus of
K /k as follows.

Definition 2.2. Let MM = P be a modulus of K/k. If Vi (j) = {1}, then we say
that M is Galois admissible over k. _
Moreover a modulus m of k is said to be Galois admissible with respect to K/k if
br/k(m) is Galois admissible.
The Galois conductor fx/ of K/k is defined to be the least Galois admissible
modulus of k with respect to K/k.
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The definition of Galois conductor is due to Shirai [8].

In the case where K/k is an abelian extension, by the conductor theorem
(e.g. Iyanaga [5, p.348]) we know that the ordinary conductor fx/; of K/k is
of form p™*! where r is the integer such that ¢(r)(= v(r + 1) — 1) is the last
ramification number of K/k. Therefore in this case the Galois conductor of K/k
coincides with the ordinary conductor of K/k.

Moreover from the definition of Galois conductors we immediately see the
following.
(2.12) K[k is unramified if and only if fx/x = 1. -
(2.13) K/k is tamely ramified if and only if fx/x = p.

For the relationship between the Galois conductor and the norm group of U }g‘),
we obtain the following.

Lemma 2.3. Let P? be a modulus of K, and assume P’ is Galois admissible over
k. Then

Nw(UR) = ULP,
where u(j) denotes uk/k(j)-

Proof. If K/k is abelian, then the assertion is well-known (e.g. Iyanaga [5, p. 340]).
Let L/k be a Galois subextension of K/k. Then 9’ is clearly Galois admissible

over L. Moreover we know from Herbrand’s theorem (2.7) that P'*'Y) is also Galois
admissible over k, where P’ denotes the prime of L and v'(j) = uk/(j). Hence the
assertion follows from the transitivity of uk/x since K/k is a solvable extension. O

The above lemma generalizes Shirai [8, Lemma 10], which asserts the result in
the case where j = v k(7).

Let G = Gal(K/k). The main object in this paper is the Tate cohomology group
HY(G, Ug)). Using this the (local) Scholz admissibility is defined as follows.

Definition 2.4. Let M = P’ be a Galois admissible modulus of K/k. If the natural
homomorphism
1* . HY(G,UP) - H(G, K*)

is trivial, then we say that M is (local) Scholz admissible over k. Moreover a modulus
m of k is said to be (local) Scholz admissible with respect to K[k if ox/(m) is (local)
Scholz admissible. ‘

The (local) Scholz conductor of K/k is defined to be the least (local) Scholz ad-
missible modulus of k with respect to K/k.

If K/k is a cyclic extension, then H™!(G,K *) = 1 by Hilbert’s theorem 90.

Moreover, if K/k is unramified, then H™!(G, U}g)) =1 for j > 0 (c.f. Lemma 3.2
below). Thus by the definition of Scholz admissibility we have the following.

(2.14) If K/k is cyclic, then a Galois admissible modulus is Scholz admissible.
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(2.15) If K/k is unramified, then 7 is Scholz admissible for j > 0.
In particular we have the following.

Proposition 2.5. In the following cases (1) and (2) the Scholz conductor of K/k
coincides with the Galois conductor of K/k.

(1) K/k is a cyclic extension.
(2) K/k is an unramified extension.

2.2. Global fields. In this subsection we deal with global fields. Let K be a finite
Galois extension over an algebraic number field k.

Let M = []q PP) be a Galois modulus of K/k, i.e., a finite product of primes
B of K which satisfies 97 = M for any o € Gal(K/k). Let My = P*) denote
the B-component of 9. For a prime P of K and p =P Nk, let Ky and k, denote
the completion of K by ‘P and the completion of k£ by p, respectively. Let ugp(9ty)
denote the restricted modulus of My from Ky to ky defined locally in (2.6). Then
the global restricted modulus of 9% from K to k is defined by

u /(M) = u(N) = [T up(MMy),
Fim

where the product is taken over non conjugate prime divisors ‘P of 9.

Similarly, let m = [T, p*® be a modulus of k, and let m, = p¥) denote the
p-component of m. Let 3 be a prime divisor of p in K and let vg(m,) denoted the
lifting modulus of m, from k, to Ky -defined locally in (2.5). Then the global lifting
modulus of m from k& to K is defined by

bk/e(m) = o(m) = [ ] om(my),
Blm
where the product is taken over all of prime divisors ‘P of m.
The Galois admissibility in Global fields is defined by using local Galois
admissibility given in the previous subsection.

Definition 2.6. Let 9 be a Galois modulus of K/k. If for every prime P of K the
B-component of IM is Galois admissible in Kyg/k,, then we say that M is Galois
admissible over k. Moreover a modulus m of k is said to be Galois admissible with
respect to K/k if vy /k(m) is Galois admissible.

The Galois conductor fxu of K/k is defined to be the least Galois admissible
modulus of k with respect to K/k.

Let Jx denote the idele group of K. For a Galois modulus 9 = [Ty, PP of K,

we put
Txcon = H U}}"f))- H; K,
e(P)>0 e(B)=0
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where ] denotes the restricted product. Let K(sm) denote the ray number group of
K modulo 9R, i.e.,

Koy ={z€ K'|z=1 (mod M)}.

Let Cx = Jx/K* denote the idele class group. Since Jx C K*Jksn, we have the
following commutative diagram with exact rows:

l—ﬁK(m;)—L-)JKm—Z——)CK—'-—)l

! ! |

1 —s K+ —i Jk —1—->CK————>_1.
Then taking Tate cohomology groups we have

s HYG, Jxkm) L5 HY(G,Cx) 25 HYG, Kan)) 2> HYG, Jxom) —

! | | !

— HYG,J) D HG,c) D HGKY) B H(G, I —
where G = Gal(K/k). Using this sequence we obtain an epimorphism from

H-3(G,Z) = H '(G,Ck) to the number knot modulo 9t. Indeed we have the
following,.

This result is essentially contained in [4] and proved by a standard manner using
cohomology, so we omit the proof.

Proposition 2.7. Let K/k be a Galois extension. Let 9 be a Galois modulus of
K/k. Then we have the following.

(kN Nisk(Jxom)) /Niye(Kom) = H™Y(G, Ck)/i*(H™Y(G, Jkm))
Now global Scholz admissibility is defined as follows.

Definition 2.8. Let 9 be a Galois admissible modulus of K/k. If the natural
homomorphism '

j# : H_I(G, JKth) — H—I(G,CK)

is trivial, then we say that M is (global) Scholz admissible over k.
Moreover, a global Galois admissible modulus I is called (global) strong Scholz
admissible over k if the natural homomorphism

H™YG, Jkm) = HY(G, Jk)
is trivial.

Clearly strong Scholz admissibility implies Scholz admissibility. Moreover if 90 is
Scholz admissible over k, then the above proposition implies

(2.16) (k 0 Ni/i(Jxm))/Nise(Kem) = HY(G, Ck) = H™(G, Z).
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P. Heider [4] called 90t a Scholz conductor when (2.16) is valid. We adopt the above
definition for consistency with the local case with slightly modified terminology.

For the relationship between the global case and the local case we have the fol-
lowing.

Proposition 2.9. Let K/k be a Galois extension. Let 9 = [I PP be a Galois
modulus of K/k. Let Mg be the P-component of M. For a prime P not dividing
M we set My =P = 1.

Then M is global strong Scholz admissible if and only if My is local Scholz ad-
missible in Ky /ky, for ever prime P of K.

Proof. Let ‘B be a prime of K and p = k NP. Let G(P) denote the decomposition
group of P in K/k. Since a local Scholz admissible modulus is divided by the local
Galois conductor, the assumption of our proposition implies that the global Galois
conductor g/ divides 9. Therefore if P does not divide 90, then P is unramified
in Kg/kp, and H™'(G(B), K3) = 1. Hence using semilocal theory we have

H™Y(G, Jkm) = Y H™(G(B), UL,
Bl

where the sum is taken over non conjugate primes P of K over k with 3|9. Now let
‘B be a prime of K with P|9N. Then we obtain the following commutative diagram:

HG(®), UEP) 5 H-(G(P), Ky)

! !

H_l(G,KZm)) — H—l(G, JKgm) — H_I(G, J[() — H—l(G,CK)

Since My = PP is Scholz admissible by assumption, it follows

H(HH(GB), U")) = 1.
Hence HY(G, Jxam) — H™ (G, Jk) is trivial. Thus 9 is strong Scholz admissible.

Conversely assume 90t is strong Scholz admissible. Since 9t contains the all ram-
ified primes in K/k, we know by semilocal theory '

H—l(G, JKgm) ~ Z H—l(G(m),UggB)))’
B

H™Y(G,Jk) = Y_ H ' (G(B), K3),
Bl
where the sum is taken over non conjugate primes P of K over k£ with P|9t. There-
fore from the triviality H (G, Jxom) — H~Y(G, Jx) we obtain for any prime PB|9

and

H=Y(G(B), Uc?") — H™'(G(B), K3)
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is trivial. Moreover since in the case where B does not divide 9 it holds
H~Y(G(B), Ky) = 1. This completes the proof. O

From this proposition we know that to obtain a Scholz admissible modulus it
suffices to obtain local Scholz admissible moduli.

3. LocAL REsuULTS

In this section we deal with local case. Let p be a finite prime of an algebraic
number field, and let k£ denote the completion of the field with respect to p. Let K/k
be a Galois extension of finite degree, and let L/k be a Galois subextension of K.
Let ‘B and P’ denote the primes of K and L over p, respectively. Let G = Gal(K/k)
and H = Gal(K/L).

We first state a lemma which is a fundamental tool in this section.

Lemma 3.1. Let G = Gal(K/k) and H = Gal(K/L). Let P’ be a modulus of K.
Assume P is Galois admissible over k. Then

HY(H,U) &5 516G, U) 4 H-Y(G/H,UM) 5 1,
is eract, where u(j) = ug,L(j) defined by (2.2).

Proof. Since P’ is Galois admissible in K /k, so is in K/L. Hence by lemma 2.3 we

have Nk, L(U}g)) = U,E“(j)). Then the assertion follows from [3, Proposition 6] or a
direct computation of the above sequence. ]

3.1. Tamely ramified case. If K/k is at most tamely ramified, i.e., Vi k(1) = {1},
then H (G, Ufg)) is easily determined as follows.

Lemma 3.2. (1) If K/k is unramified, then H™(G, U}(j)) =1, forj > 0.
(2) If K/k is at most tamely ramified, then H™(G, U}g’)) =1, forj>1.

Proof. (1) is well known, so we omit the proof (e.g. see [7, III(1.4)]).

(2) This result is deduced from [1, lemma 5]. But here we give a simple proof
using lemma 3.1.

By definition 2.1 B’ is Galois admissible in K/k for j > 1. Let K denote the
inertia field of K/k and let H = Gal(K/K7). Then the above lemma gives the

following exact sequence.

HY(H,UQ) — H'(G,UJ)) — H™G/H,UG) -1
Since Kr/k is unramified, it follows H~'(G/H, U}é‘T(j))) = {1} by (1), so it remains
to prove H™'(H, Ug)) = {1}. Since K/k is at most tamely ramified, K/ K is a cyclic
extension; therefore we can use the Herbrand quotient. Since we know Q(Ug)) =1
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by class field theory, it suffices to prove HO(H,UY)) = K7 n U,(g)/NK/KTUg) = {1}.
Now by lemma 2.2 we know NK/KTUI(? = UI(QLT(j)), where u(j) = ug/k,(j). Moreover
in this case the Hasse’s function ¢g/k, is given by ¢(i) = ni for i > 0, where
n = [K : Kr). Hence for a € Kr it holds that a = 1 mod P’ if and only if a = 1
mod P'“¢), where P = PN K. This proves KrNUY /Ny UL = UL juled) =
{1}. O

From Lemma 3.1 and 3.2 we have the following, which reduces the problem to the
strongly ramified case.

Proposition 3.3. Let K/k be a Galois extension. Let M = P’ be a modulus of
K/k. Then we have the following.

(1) Let K7 denote the inertia field of K/k. Assume 90 is Scholz admissible over
K1. Then 9 is Scholz admissible over k.

(2) Let Ky denote the ramification field of K/k, and assume Ky # K. Assume
IN is Scholz admissible over Ky. Then 9N is Scholz admissible over k.

Proof. Since (1) is proved quite similarly to (2), and the statement of (2) is
somewhat more involved than (1), we only give a proof of (2).

(2) Let Hy = Gal(K/Ky). Since Ky # K and 9 = P’ is Galois admissible
over Ky by assumption, we see j > 0. On the other hand, Ky /k is at most tamely

ramified, so that 90t is also Galois admissible over k. Hence by lemma 3.1 we have
the following:

H Y (Hy,UQ) — HYG,UY) —— H Y(G/Hv,UELD) 1
1#1 1#1

H—I(H\/,K*) i) H‘l(G,K*),
where u(j) = ug/k, (j). Since Ky /k is at most tamely ramified and j > 0, we see
H‘I(G’/HV,U%J))) = {1} by lemma 3.2 (2). Hence we have

Cor(1*(H™'(Hy,UR)) = 1#(H™(G.UY)).

Since 9 is Scholz admissible over Ky, it follows 1#(H"‘(HV,UE))) = {1}, so
1#(H-Y(G,UZ)) = {1}. This proves (2). O

In particular we have the following, which essentially gives an alternative proof of
[8, Theorem 31].

Corollary 3.4.

(1) If K/k is tamely ramified, then the Scholz conductor of K/k is p.
(2) If the first ramification group is cyclic, then the Galois conductor is the Scholz
conductor.
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Proof. Let P’ be a Galois admissible modulus of K/k. ‘
(1) If K/k is tamely ramified, then K/Kr is a cyclic extension. Hence 7 is Scholz

admissible over K1 by (2.12). Thus the assertion follows from Proposition 3.3 (1).
(2) is obtained from Proposition 3.3 (2) similarly to (1). g

3.2. Strongly ramified case. In this subsection we deal with strongly ramified
cases.

Let n be a positive integer, and p a prime number. Let K/k be a totally strongly
ramified cyclic extension of degree p* with G =< 0 >= Gal(K/k). Let B and p be
the primes of K and k, respectively. Let II and m be prime elements of K and k,
respectively.

Let 71,73, -+ be the ramification numbers of B with respect to K/k. Then by
the assumptlon we know r; > 0. Smce Vie(r3) Vi (ri + 1) is elementary and G
is cyclic, Vi/k(r;) is generated by o” ', i.e., Vg/i(rj) =< o” ' >, in particular, the
last ramification number is r,,. Thus

G =Viku(r) 2 Vikp(ri+1) =+ = Vgsu(ra)
2. VI\’/k('r2 +1) = = Vg(rs)
2 VK/k(Tn 1+ 1) == Vikpn(rn) 2 Viku(ra+1)={1}.

Here ¢;‘.1/k(r,-) are integers, and, in fact we know ¢,}}k(r,~) = uk/k(ri) by class field
theory. Moreover, since #(G/V (ri41)) = p*, Ti41 are written as the form

(31) r,-+1=r,-+q,-'pi for ’i=1,2,"',ﬂ—1
with some integers ¢;. Further the conductor theorem implies that the conductor of
K/k is pts/e(rn)+l where 1, denotes the last ramification number.

Now we have the following theorem, which describes a basic situation for
vanishing of H=(G,U).

Theorem 3.5. Let the notations and the assumptions be as above. Let K/k be a
totally strongly ramz'ﬁed cyclic extension of prime power degree p™. Then for s > 1
I(G (Tn+8)) S H! (G, (3))
is trivial.
For the proof, let us prepare several lemmas.

Let A be a complete set of representatives of O, /p with 0 € A, and let {IT}}$2,
be a set of elements of Ok with ordgll] = ¢ and ITj = 1. With these notations we
have the following.
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Lemma 3.6. Let a be a non zero element of Ok, and let m be a positive integer.
Then « is written of form :
a = GQH;O(I -+ ailﬂgl)(l -+ ai2H22) cee (1 + aim,Him,)u,

whereueU,(;n) and a; € A witha; #0,0<m' <m, and 0 < < ig < :++ < ipy.

Proof. Since p is totally ramified, it holds Og /P ~ O, /p. So we can write
= aoll;,u; with ag € A,u; € Uf(l).
Next let u; € U }g” and write
uj =1+ q;Il; + v with a; € 4,v € PU*I.

Put .
I S
I+l 1+ ajl'Ig 14 ajH; ’
then ujy; € Ug“) and u; = (1 + a;I1;)u;41, which proves the lemma. O
For non-negative integer i = 0,1,2,--- ,n let 0; = d , and put

II; = H1+”+"2+'"+0""'1.
Then Iy = IT, I, = NIl € k and
(3.2) ordg(IT;) = p'.
Further we have
H‘-’—l = H(‘7+¢72+--'+0Pi)“(1+0+02+...+0Pi'1) = Ha”’"‘—-l —_ HG;—I
l .

Now we define {IT;}32, using the above {II;}?, as follows. For a positive integer
i, let j denote the largest integer such that p’|i, and put ¢t = i/p’. Let

I if i>0 and0<j<n,

(3.3) O;=4 IH/" if i>0 and n < j,

| 1 if i=0.
Since this {II;}$2, satisfies the assumption in Lemma 3.6 from (3.2), we have the
following.

Corollary 3.7. Let a be a non zero element of Ok, and let ' m be a positive integer.
Then a is written of form :

= aolI®(1 + a;, T (1 + a;,T12) - - - (1 + @i, T Ju

1 7

fqr some integer 0 < m' < m, where u € UE{'") and a; s+ 0 € A with 0 < pit;, <
p“t,;l <L e Z p’m'tim,.
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Moreover, if p|t;, then i; = n and, in particular, Hf; € k.

Lemma 3.8. Let t be a positive integer with p ft. Then for i =0,1,2,--- ,n—1
we have the following.

(1) ordg (T — 1) = riy,y. .
(2) If a € Uy, then ordg((1 + allf)?~! — 1) = r;yy + pit.

Moreover, in the case i = n, without the assumption p ft, it holds that Hf("'—l) =
(1+alll)°-t=1.

Proof. (1) Since o; = o generates V(r;;,), we can write

H;’“ =I%"! =1+ BII"+ for B € U.
Therefore we see
D = (1 + BIT#1)E = 1 + ¢BIT7+ + AII2"+ for v € D,

so from p [t we have ord‘p(l'If(”-l) —1) =ri41-
(2) Using (1) the result follows from

1+allr oV -1)
1+allt Cl4allt F

(1+all)) ! =

O

Lemma 3.9. Let ¢, ', s, and s' be positive integers, and assume p [t and p At'.
For a,b € Uy, set a = 1 +allt and B = 1 +bII%,. Ift # t' or s # s, then
ordp(a®~! — 1) # ordg(8°~! — 1).

Proof. (1) Assume t %t and s = s’. Then by Lemma 3.8

ordp(a® ' — 1) = rep1 +P°t 5 T +p 't = ordg(8°~! - 1),
which proves our case.
(2) Next, let s < s’ and assume

- ordg(@ Tt 1) =1 + Pt =To4 +p*t = ordg (87" - 1).
Then by (3.1) we can write

— s+1
Tsig1 =Tl +P 7 U

for some integer u, so
Top1 + Pt =rgq1 + P58 = 1ep1 + " lu+p%t.

Thus we have t = pu + p* ~*t', which contradicts p /t. Hence if s < s' , then
ordg(a’~! — 1) # ordg(8° ! — 1). O
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Lemma 3.10. Let o7}, B°°! ¢ U,((I) and assume ordg(a®! — 1) #
ordg(87! — 1), then

ordgp((aB8)°~! — 1) = min{ordg(a’ ' — 1),ordg (8! — 1)}.

Proof. From
(aﬁ)a-—l —1= (ao-—-l _ 1),30_1 + (Ba—l _ 1)
the result follows. a

We are now ready to prove our theorem.

Proof of Theorem 8.5. Let z € U }; ") be a representative of an element in
HYG,UL*?). Then z satisfies Nk xx = 1. Since H™1(G, K*) = 1, we can write
z = a’"! for some a € K*. ‘

We may assume o € Ok since (ra)°~! = u’~!, where 7 is a prime element of k.-
Now we apply Corollary 3.7 to o with m = r, + s. Then we can write

a= aol'I VU,

v=(1+ a,,lH“)(l +a,T12) - - (1 + @, IL™),
where u € Ug"”) and a; € A C k with 0 < p"t;, < p2t;, < -+ < pim’tim, and
0 < m' < m. In the above expression, if i; = n then (1 + ainfj)"‘l = 1, so we
may assume ¢; < 7, in particular, p /t; for j > 0. Since u°~! € Ug"“), it follows
(Mev)°—t € US"**) Here if ip = n or to = 0 , then (IT2)°~! = 1; and in this case
we have 1 = a1 = vo-1yo1,

Now we claim 49 = n or tp = 0. Indeed, suppose iy < n and to > 0. If p|ty, then.

ip = n. So we have p /to. Then Lemma 3.8 implies ordq;(Ht"(""l)
Moreover since p ft; for i = i; it follows

1) = Tio+1s

Ordgp((]. + ajHZ)"‘l - 1) = Ti;+1 +pi"tj.
Now by Lemma 3.9 we know ordg((1 + a,-l'lfjf)”'l — 1) are different each other
since 0 < p't;, < p*t;, < --- <p'~'t; ,. Thus using Lemma 3.10 we have

ordg(v°™' —1) = min_  {ry4 +p¥t;}.

l]-‘ll, ,z ’

Moreover it holds
(3.4) Tio 7 Ti;41 + DYt
In fact if 7y, = ry;41 + p¥t; for some i; , then ip > i; + 1, so by (3.1) r;, is written
as the form

’I" - 7'1]-*—1 +pt]+1

Hence plt;, which contradicts the assumption.

Thus using (3.4) from Lemma 3.10 we see
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ordg((M2v)°~' = 1) = min_ {ri41 +p"¢j, i} < vy < T,

=01, by

which contradicts (IT2v)°~! € U {72 +5)_ This proves ip = norty =0,and z = a®~! =
vcr—-lua'—-l.

Hence we have v°~! € U ,((r"”). On the other hand the above argument shows
ordg(v°~! — 1) = min{r, 4, + p%t;}. Thus min{r; 4, +p*t;} > r, + s. Here we note
Ti;+1 < Tn, S0 we have pYit; > s. This shows v € U,(g’), so vu € U}(’). Set w = vu,
then z = (w)° ! withw =vu e U ,‘;’. This means z = (w)°~! represents the trivial

class in H~Y(G,U f(’ ) ), which proves the theorem. O

Using the argument used in the proof of the above we have the following, which
states counter results in the strongly ramified case to Lemma 3.2. For simplicity we
deal with the case where K/k is cyclic of degree p.

Proposition 3.11. Let K/k be a strongly ramified cyclic extension of degree p. Let
r denote the last ramification number of K/k. Let s be a positive integer such that

s>rands=r modp. Then HY(G,UY) # {1}.

Proof. In the proof we use the above notation with the case n = 1.

Put t = s — r. Then p /t by the assumption. Let « = 1+ IT* and 8 = a°!.
Then Ngx(B) = 1 and ordg(8 — 1) = r +t = s by Lemma 3.8, so B represents
an element 3 € H™'(G, U}(’)). Suppose B represents 1 in H™}(G, Uf(")). Then we
can write 8 = y°~! for some element vy € Ug’), where ordg(y — 1) = s since
ordg(y°~! — 1) = s. Here with the notation of Corollary 3.7 +y is written of the form

ao(1+a I )u for u € U};’H) and p''t; = s. Hence if p|s, then "' =y~ € U}g’“’.

On the other hand if p /s, then by Lemma 3.8 (1+a,I13}) € Uf(”'). So in both cases

we have 8 =1 ¢ Uf(’“), which contradicts ordg(8 — 1) = s. Thus 3 represents

non-trivial element of H=1(G,U)).
O

We now ready to prove our main theorem, which gives a relationship between:
Scholz admissible moduli of K/L and K/k. This theorem gives a way to get an
estimate for Scholz conductor of K/k from the ramification in K/k, in particular,
this result implies the existence of Scholz conductor in general.

Theorem 3.12. Let K O L D k be a finite Galois tower. Assume L/k is a totally
strongly ramified cyclic extension of prime power degree p™. Let B, P’, and p be
the primes of K, L, and k, respectively. Let B'° be a Scholz admissible modulus of
L with respect to K/L, and let r, be the last ramification number of B’ in L/k. Let
i be the integer satisfying ip"™! < s < (i + 1)p"~!. Putt = upp(rn +ip" ') + 1.
Then pt is a Scholz admissible modulus with respect to K/k.
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Proof. Let H = Gal(K/L). Since V7 i(rn+1) = {1}, we see by the Herbrand’s theo-
rem (2.10) that Vgsu(vk/r(rn + 1))H/H = VL/k(rn + 1) = {1}, ie,

Vi /k(Vk/L(tn + 1)) C H. Moreover by assumption P’* is Scholz admissible w1th
respect to K/L, in particular, Galois admissible with respect to K/L, this means
Vi (Vk/L(s)) = {1}. Hence we have {1} = VK/L(UK/L(S)) = Vk/(vkyo(s)) N H.
On the other hand, since r, > p"!, it follows r, + ip"™ ' > s, so vgu(t) =
St — 1) + 1 = ¢rpur(ra + ™)) + 1 > dg/lrn +ip" ') +1 =
UK/L(Tn+ipn_1+1) > max(vK/L(s), U[(/L(T,l+1)), we have V'K/k('UK/k(t)) C l’K/k(vK/L(s))ﬂ
H = {1}. This proves that p’ is a Galois admissible modulus with respect to K/k.

Let v, v/, and v" denote vk k, Vk/L, and vp i, respectively. Here we note ug,r(v(t)) =
v"(t) = vpe(up/p(ra+ip™ ) +1) = dr/p(ur/k(rn+ip™ 1)) +1 > rp+ip" 1 +1. Then
using Lemma 3.1 we have the following commutative diagram with exact rows.

Npgo " .
H-'(H, U}ff(‘))) - H-Y(G, U}é’(t))) il H-Y(G/H, UI(,v O

1#1
1#1 , : I#J, H_I(G/H, U£Tn+ipn—l+1))

.l#

, , . 1
H™'(H, U}g (8))) — H (G, U;:.’ (‘9))) BN H-Y(G/H,U (5)) 51

1#1 1# 1#

- +

H—I(H’ U}('é;'(ipn-l+1))) - H- I(G U( l(wn—l_’_l))) Nk H“l(G/H, ngn—l'*'l))

1#1 1# 1#

w 4

Cor

H-'(H,K*) — H YG,K*) — HY(G/H,L*)
Now we must prove

1# - -I(G U(U(t))) — H-—-l(G K*)

is trivial. Let A be an element of H™!(G, U("(m) and represent A by an
element o € UY™ with Ng/(a) = 1. Put 8 = Ng/i(), then g e U™ and
Ni/k(B) = 1. So B represents an element B of H™'(G/H, gl 1. Therefore
by Theorem 3.5 we see B = 1in H-Y(G/H,U*"" 1+1)), i.e., B is written of the form

B = ¥o- 1 for an element 0% of U(zpn 1t+1)
group G/H.
Now by Corollary (3.7), <y is written of the form y = uu’, where

, where o denotes a generator of a cyclic

u= (14 a, T (1 +apI18) - (1 + a;, T17) -+ (1 + a;, TL™),
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;pn—1 T — . n—
and v’ € UT*"7*D  Gince w' € U7+ it follows u—! € U+ Here
we may assume p Aft; since if p|t;, then (1 + a; Hg)"‘1 = 1. Then using a similar
argument in the proof Theorem 3.5 we have

ordg(u”~! — 1) = min{r; 41 + pt;} > +ip" L+ 1.
Hence

Tn + ipn—l +1< Tij+1 +piftj.
Here if i; + 1 = n, then r;,4; =, and ip" ! +1 < p't;, so i + 1 < ¢;. Thus in this
case we have

s < (i+1)p"t < plit;.
Next, if i; + 1 < n, then , since r, = r,_; + gp™~!, we have

s<E+ )P <rpy — i+ @ +Hip™ T + 1 < Pt

Thus we have u € U, and v = wu’ € UL,

Now by the assumption we know *B'* is Galois admissible with respect to K/L.
Therefore N, K/LUS'(’)) =U, ,(f) by Lemma 2.3, thus we can choose an element § of
U ,(}"(’)) such that Ng/.6 = . Let o’ denote an extension of o to an element of G.
Then NK/,C(a/é"'"I) = Np(B/7°~') = 1, therefore a/6° ~! represents an element of
H~Y(G,UY®), which is actually equal to 1#(A) as an element of H @G, UM,

Moreover since NK/L(a/cS""‘) = B/y°"! = 1, we see a/6° ~! also represents an

element of H-1(H,UY' ™)), hence 1#(4) € H!(G, UY' @) is represented by an
element of H-1(H,U };f ). Now by assumption we know

1#: H-YH,UYY - H-'(H, K*)
is trivial. Thus we see 1#(4) = 1 in H™!(G, K*), which proves the assertion. O

Corollary 3.13. Let the assumptions and the notations be the same as above. As-
sume s < p*~1. Then the conductor of L/k is also the Scholz conductor of K/k.

Proof. Let 1, denote the last ramification number of L/k. Then by the conductor
theorem we know that the conductor of L/k is p¥c/+(r)+1  But the assumption
implies ¢ = 0 with the above notation, hence by our theorem p* is Scholz conductor
of K/k fort=uL/k(r,,')+1. O

We conclude this paper by giving an example of this corollary.
Let p be an odd prime, and put K = Q,(¢), where { = (,» denotes a primitive
p"-th root of unity. Then

(3.5) the Scholz conductor of K/Q, is p",

since K/Q, is cyclic extension.
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Next, we consider the case K = Q3(¢). where ( = (3n+2 denotes a primitive
2"*+2_th root of unity. Put L = Qy(¢+¢~!). Then L/Q, is a cyclic extension of degree
2™. Moreover K/L is a quadratic extension with Gal(K /L) =< T >, where 7 denotes
the complex conjugate map. Let B and P’ denote the prime of K and the prime of
L, respectively. Then, since ordg(¢™ — ¢) = ordg (¢~ — ¢) = ordg(¢1(1 — ¢?)) = 2,
we have the last ramification number of K/L is 1 and the conductor of K/L is P'?,
that is s = 2 with the above notation. In particular, if n > 2, then it holds s < 2771,
Thus we have the following.

Corollary 3.14. If n > 2, the Scholz conductor of Qq((an+2)/Qy is 27+2.

Corollary 3.14 and (3.5) give essentially an alternative proof of Theorem 3 of [2].
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