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Abstract

We discuss the stability of discrete Hopfield neural networks (Shortly,
DHNNS) in synchronous mode. To do this, we introduce an equivalent re-
lation in the set M, ,(RR) of all m by n matrices over the real field R and then
obtain a classification of matrices. Thanks to this classification we establish a
classification of all discrete Hopfield neural networks with n neurons in such
a way that two DHNNs belong to the same class if and only if they have the
same dynamic property. Lastly, a characterization of the stability of a DHNN
with two neurons in synchronous mode is obtained.

1. Introduction

Discrete Hopfield neural networks(DHNNSs) were proposed mainly as an associa-
tive memory model by Hopfield in {1]. A discrete Hopfield neural network(DHNN)
can be viewed as a single layer consisting of n neurons which are connected each
other. Each neuron in the networks is in one of two possible states, either 1 or —1.
The state of neuron 7 at time ¢ is denoted by v;(t). The state of the network at time
t is denoted by the vector v(t) = (v,(t), v2(t),. .., va(t)).

In recent years, for the purpose of associative memory and combinatorial op-
timization, several schemes have been established in light of generalized Hopfield
neural networks [2-4]. A network can operate in different modes. If the compu-
tation is performed at all neurons at the same time, we say that the network is
operating in synchronous mode. If the computation is performed only at a single
neuron at each time, we say that the network is operating in asynchronous mode.
The general form of a DHNN with n neurons in synchronous mode can be described
as follows.

'U.'(t + 1) = sgn‘ (iw;jvj(t) - 0,) (2 = 1, 2, e ,n) (11)

where
(v1(2),v2(t), - - -, un(t)) € {-1,1}" = V7,
[w.-,-] € Mn(R), (01, 6,..., 0,.) € R",
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and

. 1 ifs>0,
sgn s:{ ~1 ifs<0.
The vector v(t) = (vi(t),v2(2),-..,va(t)) is called the state at ¢ of the neurons,
W = [w;j] and © = (6,,0,,...,0,) are called the weight-matrix and the threshold
of the system (1.1), respectively.
Put

w(©) =W 67T],v(t) = (ni(t),va(t),...,va(t), —1), (1.2)
sgn*(Z1, Tz, ..., Tn)T = (sgn*z),sgn°Zs,...,sgn*z,)7, (1.3)

then the system (1.1) can be rewritten as
v(t + 1)T = sgn*W(O)v(t)7, (1.4)
which is denoted simply by (W, 9).

Definition 1.1. A network (W, ©) is called to be stable if for every initial state
v(0) € V™", there exists a integer t; > 0 such that v(t + 1) = v(t) for all integer
t > to. If (W, 6) is not stable, then we call it to be unstable.

Remark 1.1. From Definition 1.1, we know that a network (W, ©) is stable if
and only if there is an integer ¢, > 0, such that v(¢ +1) = v(¢t) for all integers t > ¢
since V" is finite.

The stability of a DHNN is a very important property and has been developed in
the literatures [5-8]. In fact, these scheme for the purpose of associative memory and
combinatorial optimization are all based on the stability of the network. In recent
years, many authors had studied the stability of the network by introducing a special
energy function [1,2,5-8]. But the results obtained are only sufficient conditions. In
present paper, we introduce an equivalent relation in the set M, »,(R) of all m by n
matrices over the real field R and then obtain a classification of matrices. With this
classification we establish a classification of all discrete Hopfield neural networks
with n neurons in such a way that two DHNNs belong to the same class if and only
if they have the same dynamic property. Lastly, a sufficient and necessary condition
about the stability of DHNN with two neurons in synchronous mode is obtained.

2. Equi-Activity of Matrices

In the sequel, we use M, ,(R) to denote the set of all m by n matrices over R
and identify M, ,(R) with R".

— 100 —



Definition 2.1. Two matrices A = [a;j] and B = [b;;] in My, 4(R) are called
equi-active and written A =~ B if

sgn*(AvT) = sgn*(BvT), Vv e V™ (2.1)

It is easy to check that the relation = is an equivalent relation in M, ,(R). That
is, the following statements hold:

(i) A = A;

(ii) A= B= B= A;

(iii) A Band B C = A= C;
for all A, B,C in My, ,(R).

Thus, with the relation we obtain a classification My n(R)/ = of My, »(R). For
A € M, »(R), denote by E(A) the equivalent class of A, that is,

E(A) = {B € Mux(R)|B ~ A}.
We also use the following symbol.

E(Mm,n(R)) = {E(A) : A€ Mm,n(R)}'

Remark 2.1. For matrices [W;,0;] and [W2,0,] in My, ,+1(R), if [W1,0,] =
[W2, ©2], then the DHNNs (W, ©,) and (W3, ©2) completely have the same dynamic
property. and therefore have the same stabilities.

From [5] we know that if W € M,(R) is positive definite, then for each © € R",
the network (W, ©) is stable. By Remark 2.1 we can get the following result.

Corollary 2.1. If W € M,(R) is equi-active to a positive definite matrix, then
the system (W, 0) is stable in synchronous mode.

For example, let

9 8 8 1 1 1 2 1 2
A= 8 9 8 , B= 1 1 1 , C= 1 2 2 .
8 8 9 1 1 1 2 2 1

It is easy to check that A, B and C are equi-active and that A is positive definite, B
is positive semidefinite and C is indefinite. From Corollary 2.1 we know that they
are all stable.

Lemma 2.1. Let w,v be in R® with sgn*w = sgn*v, then

sgn*(w + v) = sgn*w. (2.2)
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Proposition 2.1. For each A in M, ,(R), E(A) is a cone.

Proof. Let X,Y € E(A) and s > 0, then for each v = (v, vs,...,v;) € V", we
have, from Lemma 2.1, that

sgn*((sX)vT) = sgn*(XvT) = sgn*(A4v7),
sgn*((X + Y)vT) = sgn*(XvT + YvT) = sgn*(Xv7T) = sgn*(Av7).
Thus sX and X +Y are in E(A). This completes the proof.

Let (z,y) denote the inner product of vectors z and y in R®. For a vector
z = (z1,T3,...,Z,) € R®, define ’

i(z) = min{(D_zw:)?| (v1,v2,...,va) € V"}, (2.3)
=1
lell = (32 9
and

zllo = max{|z,|, |22, .., |Zal}- (2.5)
For a matrix A = [a;j] € My a(R), set ’
Ai = (a,-l,a,-z,...,a,-,,)(i = 1,2,...,m) (2.6)

and

1Al = (33 ad)b. 27

=1l j=1
In the case where A; # 0 for i = 1,2,...,m, we define

o(A) = min{mu/h), . mz(ftm)}. (2.8)

Proposition 2.2. Let A, B € M,, ,(R) such that a(A) > 0, then
(a) If || B||2 < a(A), then B + A € E(A);

(b) If || B — Al|2 < a(A), then B € E(A);

(c) E(A) is an open set in (Mpya(R), || - ]l2)-

Proof. (a) For every v in V", we have
sgn*(B + A)vT = (sgn*(B; + A,)vT,sgn*(B; + A2)v7,...,sgn*(Bp + Am)v7T),

sgn*AvT = (sgn*A;vT,sgn*Av7, ..., sgn* A 7).
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Let || B||2 < a(A). Then
_L
n||Aill2
It follows from the Cauchy-Schwarz inequality that
(B.' + Ag)’UT . A,"UT = ((A,','U))2 + (Bi, ’U) . <A,', 'U)
2 I(A:) — nl|Bill2||Asll2
> 0.

IBill2 < |Bll2 < a(A4) < (Ai).

This shows that sgn*(B;+A4;)vT = sgn*A4;v7(i = 1,2,...,m) and so sgn*(B+A)vT =
sgn* AvT for all v in V™. This shows that B + A € E(A).

(b) Let || B — Al|z < a(A), then by (a) B = (B — A) + A € E(A).

(c) This is proved from (b). This completes the proof.

Proposition 2.3. Let A, B € M,, ,(R), then
A= Bin My o(R) <= A; = B; in M ,(R)=R" (:=1,2,...,m).

3. Equi-Activity of Vectors

From Proposition 2.3, we can see that equi-activity of matrices is equivalent to
that of vectors. Therefore, it suffices to discuss equi-activity of vectors in R*. To
do this, some notations will be needed.

Let {e1,e3,...,€e,} be the canonical basis for Hilbert space R". For each vector
z = (z1,Z3,...,Zn) € R", define Pi(z) =z; (:=1,2,...,n) and

Viz)={veV":(z,v) >0}, (3.1)
P,j(z) = Pj(z)e; + Pi(z)ej + ) Pu(z)ex, (3.2)
ki,j
M;(z) = —Pi(z)e; + Z Py (x)ex. (3.3)

k#i

Then we obtain an element V'(x) of the power set P(V") of V", which is the set of
all subsets of V™. It is easy to show that all P; ; and M; are Hermitian matrices on
R and have the following properties:

(i) (Pi3)? = (Mk)* = I, Byj = Py

(ii) P jM = My P;j(k #1,5), PijM; = M;P; , P, jM; = M;P, j;

(iii) Pij(V") = Mg(V™) =V", forall 4,5,k € I, = {1,2,...,n}.

Let G,(R) denote the multiplicative group generated by

{IYU{P,j:i,j € L} U{M;: ke l,}.
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Then, from the properties (i), (ii) and (iii) above, it can be seen that the general
element of G,(R) has the form of

(HM,-) ( II IJ.-J) A C Iy J C I x I,

i€l (5.5)eJ

and that G,(R) is a subgroup of the unitary group U(M,(R)) of matrix algebra
M, (R).

Theorem 3.1. Let z,y be two vectors in R* and T € M, (R) be a matrix with
T*(V™) C V™, then

(a) z~ y <= V7 (z) = V}(v)-

(b) z~y=T(z) ~ T(y).

(c) T(E(z)) C E(T(z)).
If, in addition, T*T = I and T'(V™) C V™, then

d) z =y <= T(z) = T(y).

(e) T(E(z)) = E(T(x)).

Proof. (a) It is clear from the definition.
(b) For each v in V*, we have

(Tz,v) = (z,T*v), (Ty,v) = (y,T*v).

Thus,
v € V}Tz) <= T"v € V(x),
ve V}(Ty) < T*'v e V] (y).
Let z ~ y, then by (a) we obtain V*(z) = V*(y) and so V}(T'z) = V*(Tz), that is,
T(z) = T(y).
(c) Let y € E(x), then z =~ y and thus from (b) T(x) = T(y). Hence T'(y) €
E(T(x)). This shows that T(E(z)) C E(T(z)).
(d) Under the additional condition, by (b) we get

zxy=>T(z)=T(y) = c=T"T(z) = T*T(y) = y.
(e) It is given by (d). This completes the proof.

Corollary 3.1. Let z,y be two vectors in R"®, then for every 1, j, k € I,,, we have
(a) z =y <= P, j(z) = P, ()

(b) z = y <= Mi(z) = Mi(y).

(c) Py(B(z)) = B(Pis(x)).

(d) Mx(E(z)) = E(Mi(z)).
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Corollary 3.2. For every T € G,(R), we have
)z~ y<=T(z) =~ T(y).
(b) T(E(x)) = E(T(=)).

We recall that a matrix A = [a;;] is called to be strictly diagonal dominant if
@i > 3 lail(i=1,2,...,m).

Theorem 3.2. A matrix A = [a,;] in M,(R) is equi-active to the unit matrix I
if and only if it is strictly diagonal dominant.

Proof. Sufficiency. Let A = [a;;] be strictly diagonal dominant, then

a;; > Zlai,-l, 1=12,...,n.

J#é
Thus, for every v = (v, v2,...,n) € V", we have
(ei, v)(Ai,v) = ay + Za,-,-v,-v,- > ai — Z lasj| > 0.
i #i

This proves that e; = A; for all i € I,,. Therefore, I ~ A.

Necessity. Let I ~ A. Then e; = A; for all i € I,. For each fixed i € I,
define v; = —1, v; = sgn®a;; if j # i and a;; # 0, v; = 1 if a;; = 0. Then
v = (v1,v2,...,Y,) € V" such that (e;,v) = —1 < 0 and thus

0> (A,','U) = —ai + Z |a.-,~|.
J#i

This shows that A = [a,;] is strictly diagonal dominant. This completes the proof.

4. The Stability of DHNNs with Two Neurons

This section is devoted to a sufficient and necessary condition for a DHNN with
two neurons to be stable in synchronous mode. To do this, we will accurately
describe the classification of 2-dimension vectors as follows.

Proposition 4.1. E((0,...,0)) = {(0,...,0)}.

Proof. Let v; = —sgn*z; and v = (vy,vs,...,V,), then TvT = —(|zy| + |z2] +
..+ |zn]) = 0 since z =~ 0. Thus z = 0. This completes the proof.

Proposition 4.2. If (a,b) € R?, then
(A1) E((1,0)) = {(a,b)| a > [b]};
(A2) E((0,1)) = {(a, b)| b > |a]};
(A3) E((-1,0)) = {(a,5)| —a > [b]};
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(A4) E((0,-1)) = {(a,0)| —b> |a[};
Proof. If (a,b) € E((1,0)),v; = (-1,1),v, = (-1, —1), then
sgn*(a, b)vT = sgn*(a, b)vl = —1.

This implies that —a + b < 0; —a — b < 0. Therefore, a > |b|. Conversely, if a > |b],
then for Vv = (v;,v;) € V2, we have sgn*(1,0)vT = sgn*v, = sgn*(a,b)v’. Thus
(a,b) € E((1,0)). This shows that (A1) holds. The others can be given by (A1) and
Corollary 3.2. This completes the proof.

Proposition 4.3. If (a,b) € R?, then
(B1) E((1,1)) = {(a,b)| a = b> 0}
(B2) E((~1,-1)) = {(a,b) a = b < O};
(B3) E((1,-1)) = {(a,b)| a = —b > 0};
(B4) E((-1,1)) = {(a,b)| —a=0b>0}.

Proof. Let (a,b) € E((1,1)),v; = (1, -1),v2 = (—1,1),v3 = (1,1), then
sgn*(a, b)vT = sgn*(a,b)v; = sgn*(a,b)v] = 1.

This shows that a —b > 0,b —a > 0 and a + b > 0. By Proposition 4.1, a = b > 0.
Conversely, if a = b > 0, then it is obvious that (a,b) € E((1,1)). This shows that
(B1) holds. The others can be given by (B1) and Corollary 3.2. This completes the
proof.

Propositions 4.2 and 4.3 can be rewritten shortly as follows.
Proposition 4.2'. If (a,b) € R?, then

E(T(1,0)) = {T(a,b)| a > |b]}, VT € G2(R).

Proposition 4.3'. If (a,b) € R?, then
E(T(1,1)) = {T(a,b)| a=b > 0}, VT € Gs(R).
For a matrix A € M,(R), we define an operator A : V* — V™ by Az =
(sgn*(AzT))T for every z € V™.

Definition 4.1. For a matrix W € M, (R), if the DHNN (W, 0) is stable (resp.
unstable), then we say that the matrix W is stable (resp. unstable).

Form Theorem 3.2 we deduce that if W € M,(R) is strictly diagonal dominant,
then W is stable.
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From Remark 1.1 we can deduce the following result.

Proposition 4.4. Let matrix W € M,(R). Then W is stable if and only if
there exists an integer ko > 0 such that W* = W* for all integers k > ko.

It is easy to check that
R? = Ureg,®) E(T(1,0)) Ureg,®) E(T'(1,1)) U {0}, (4.1)

and so we know from Proposition 4.1, 4.2 and 4.3 that there are only nine equi-active
classes of 2-dimensional vectors, which are as follows

E((1,0)), E((0,0)), E((1,1)), E((1, —1)), E((0, 1)),
E((0,-1)), E((-1,1)), E((-1, -1)), E((-1,0)).
Now, we write in turn
(1, 0)1 (0, O)a (11 1)7 (1’ —1)a (O’ 1)’ (0, _1), (_1’ 1)’ (_17 —1)’ (-1’ 0)

as a;,Qs,...,09 and
(Oa 1)1 (0’ O)v (11 1)1 (_1’ 1)’ (lv 0)1 (—1’ 0)’ (1’ _l)v (_1: _1)’ (0’ _1)

as 51,02, ---,P9- Set o = (a1, 42) and B = (B, Bi2)-

N 7 S _J 1 O;; is stable; . -
Put O;; = » %5 =1 0, O, is unstable, and define A = [a;;] which is

B;
called the distribution matrix of convergence of DHNNs with two neurons and zero

threshold.

Theorem 4.1. The distribution matrix A has the following form.

(1 1 1 1 1 1 0 0 0)
1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 0 0
A=] 1 1 1 1 0 0 0 0 o
1 1 1 1 0 0 0 0 0
0 1 1 1 0 0 0 0 0
© 0 0 0 0 0 0 0 0
\0 0 0 0 0 0 0 0 0

Proof. We will complete the proof by the following steps.
Step 1. The matrix A = (ai;) is symmetric.
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Since B; = P04, a; = Pyof3;, we have PuO,J = O,,Pm Thus, P;,0% P2 = O
for all positive integers k. By use of Proposition 4.4, we see that O;; is stable if and
only if Oj; is stable. This shows that A is symmetric.

Step 2. For each j € {1,2,...,9}, the matrices O,;, O3; and O,; have the same
stabilities.

We know from the definition of «; that
=(0,0), a3 =(1,1), ag = (1 -1).
Put _
n=(1,1), v =(1,-1), v3 =(-1,1), vg = (-1,-1). (4.2)

Then we have
sgn'azv,-T =1 (z =1,2,3, 4)’

sgn*ogvl =1 (i =1,2,3), sgn*agv] = —1;
sgn®oqv] =1 (i =1,2,4), sgn*aq] = —1.
Thus, we obtain for each j € {1,2,...,9}that

O_gj'Um € {’Ul, ’Uz}, (m = 1, 2, 3, 4) (43)

O3jUm € {v1,v2},(m = 1,2,3) and Osjv, € {v3,v4} (4.9)

O4jVm € {v1,v2}, (m = 1,2,4) and O4jvs € {vs, vy} (4.5)

If O,; is stable, then there exists an integer k; > 0 such that O O2° for all

integers k > ko. We note that Oq;v; = Os;v; for i = 1,2,3. If 03,v4 = vs, then for
all k > ko + 1, we have that O%; Vi = O"°+1v, fori =1,2,3 and 03]'04 03] 03,'04
O 03J vz = 03J 03,v4 03°+1v4 Then Oj; is stable. If Osjvq = vy, then we
clearly have that Of; 03] and Oj; is also stable. Conversely, Os; is stable, then
we easily have Oy; is sta.ble The proof for Oy, is similar.

Step 3. Og; and Oy, are unstable for each j =1,2,...,9.

We know that

Qg = (—1’ —1)) Qg = (_1»0)

and so we have

T T _ T _ T _
sgn*agu; = sgn'ogu; = —1, sgn*ayv; =sgn'agu; = 1.

Thus, Og,vl,Og,vg € {vs,vq} and 091’03,09]‘04 € {vl,vg} Therefore, we easily have
that Oy is unstable. Also, we have

sgn*agv] = —1, sgn*agvi = sgn'agu; = 1.
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This shows vy, v3, v4 are not fixed point of Ogj for each j = 1,2,...,9. Now, we
suppose Og; is stable for some j € {1,2,...,9}.Then v; must be a fixed point of
Os;. So, we have Bv] = ;1 — Bj2 < 0. Thus, j € {1,4,6}. But

sgn*(0g;1vT) = vT, sgn*(0g1vT) = of;

sgn*(Osqv] ) = U;{ ) sgn“(Osw{ )= UT;

sgn*(Ossv] ) = vy , sgn*(Ogevy) = vi .
It follows from Proposition 4.4 that Os; is unstable, a contradiction.
Step 4. O,; is stable for each j =1,2,...,7.
" First we know from the definition of B; and a; that Bj2 > 0 when j < 6 and that
sgn*agul = 1(i = 1,2,3,4). Suppose that O,; is unstable for some j € {1,2,...,6}.
Then we have that '

~ sgn*(OgvT) = sgg‘(Ogjvf ), sgn*(Ozjvy) = sgn*(Oqv7).

Hence
Bi1 + Bj2 <0, Bj1 — Bjz 2 0.

Then Bj1 = Bj2 = 0, a contradiction. So O,; is stable for each j = 1,2,...,6. For
O27, by a direct calculus, we have the following.

Oz7v; = v, 02702 = vy, O27v3 = v2 and Oz7v4 = v;.

Hence, we have O%, = O3, for all integers k£ > 3. This shows that Os7 is stable.
Step 5. 0,5 (j =1,2,...,6) are stable and O,7 is unstable.
From Step 1, 2 and 3, it suffices to prove that O;;,05,0)¢ are stable. By
Propositions 2.3 and 4.2, we have

10 10 6 2 1 0 6 —2
Ouz[o 1]’O‘5=[1 0]“[2 1]’01°=[-1 0]“‘[—2 1]'

5 9] 132 [ 7]

are positive definite. It follows from Corollary 2.1 that Oy; (j = 1,2,...,6) are
stable. Since O,7vs = vy, O17v4 = vs, it follows from Proposition 4.4 that Oz is
unstable.

Step 6. O;; is unstable for ¢ € {5,6,7},j € {5,6,7}.

From Step 1, we need only to prove that Oss, Ogs, O77,Os6,Os7 and Qg7 are
unstable. It is easy to see that

sgn*(Os5vT) = vl, sgn*(Ossv}) = v¥; sgn*(Oesv?) = v7,5gn*(Ogev; ) = V1 ;
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sgn*(Os7v3) = vz, sgn*(Os7v3) = v3 ; sgn*(Onv3) = vz, sgn*(Orv]) = v3;

sgn*(Osevi ) = v;, sgn*(Osevs ) = vj , sgn*(Osevl) = v7, sgn*(Osevd) = vT;

sgn*(Og7v] ) = v3, sgn*(Oe7v3) = v;, sgn*(Ogrv]) = vy

It follows from Proposition 4.4 that Oss, Ogs, O77, Ose, Os7 and Og; are unstable.
This completes the proof.

Now, we can get the following theorem by using Propositions 4.1, 4.2 and 4.3 as
well as Theorem 4.1.

Theorem 4.2. If W = (w;;) € M;3(R), then the DHNN (W, 0) is stable if and
only if one of the following conditions holds.

(1) wi > |wiz| and wag > 0;

(2) wzz > |wyy| and wyy > 0;

(3) w1 = |lwia| and —wqp = woy; > 0;

(4) Wop = l'UJm' and —w;; = w2 > 0.

Proof. Suppose that one of the four conditions holds.
Case 1. Let (1) hold. From Propositions 4.1, 4.2 and 4.3 we see that

w) = (w11, w12) € E((1,0)) U E((0,0)) U E((1,1)) U E((1, -1));

w2 = ('w2l:'w22) ¢ E((l’ —1)) U (E((—]-’ _1)) U E((01 -1)))‘

Thus, W = O;; for some i € {1,2,3,4} and j € {1,2,3,4,5,6}. Therefore, we get
from the matrix A of Theorem 4.1 that (W, 0) is stable.

Case 2. Let (2) hold. Then by a method similar to Case 1, we obtain that
W = O;; for some i € {1,2,3,4,5,6} and j € {1,2,3,4}. Therefore, we get from
the matrix A of Theorem 4.1 that (W, 0) is stable.

Case 3. Let (3) hold. Then from Proposition 4.1, 4.2 and 4.3, we have

w, € E((0,0)) U E((1,1)) U E((1, -1)), w2 € E((1,-1)).

Thus, W = O;; for some i € {2,3,4}. Therefore, we get from the matrix A that
(W, 0) is stable.

Case 4. Let (4) hold. Then W = Oy; for some j € {2,3,4}. Therefore, we get
from the matrix A of Theorem 4.1 that (W, 0) is stable.

Conversely, suppose that (W,0) is stable and that W ~ O;; for some i,j €
{1,2,...,9}. From Theorem 4.1, we can see that one of the following conditions is
satisfied.

(1)1 <i<4and1<j<6;

(2)1<i<6and1<j<¢{;

(3)2<i<4andj=T,;
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4)i=Tand 2< j < 4.
This shows that one of the four conditions in the theorem is satisfied. This
completes the proof.

Corollary 4.1. If W = (w;;) € M;2(R) is positive semidefinite, then W is
stable.

Proof. If W is positive semidefinite, then we have w;; > 0,wy; > 0 and
w1 Wa2 > Wiawe = wy. Hence, wy; > |wyz| or wog > |wyy|. It follows from Theorem
4.2 that (W, 0) is stable. This completes the proof.

Remark 4.1. It is easy to check that if W € M, ,(R) is positive definite, then
W = O,; for some j € {1,3,4,5,6}, or W = O;, for some i € {1,3,4,5,6}.

5. Conclusion

We have introduced a new method to study the stability of DHNNs. By the
method, a sufficient and necessary condition for a DHNN with two neurons in syn-
chronous mode to be stable is given. As we know, it may be a unique character-
ization of stability of DHNNs. Then the stability of DHNNs with two neurons in
synchronous mode has been completely solved when © = 0. Although, our main
result(Theorem 4.2) is only about the DHNNs with two neurons, many information
about the DHNNs with more than 2 neurons have been also revealed. For example,
we can see from Remark 4.1 that the positive definite matrices account for a small
part of the stable matrix in the distribution matrix A of DHNNs with two neurons
and zero threshold.
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