Einstein H-umbilical submanifolds with parallel mean curvatures in complex space forms

Setsuo Nagai

Abstract

In this paper we determine H -umbilical Einstein submanifolds with parallel mean curvatures in complex space forms with non-negative holomorphic sectional curvatures.

1 Introduction

In Riemannian Geometry, Einstein manifolds are very important subject. When we focus our attention to submanifolds in complex space forms, there are many interesting results (cf. [1]). There are two important classes of submanifolds of a complex space form. One is the class of holomorphic submanifolds and another is the class of totally real submanifolds. A submanifold in a complex space form is said to be totally real if the complex structure of the ambient space carries each tangent vector to a normal vector. A totally real submanifold is called a Lagrangian submanifold if its real dimension is equal to the complex dimension of the ambient space. The classification of Lagrangian Einstein submanifolds of a complex space form is still open. We know the fact that a non-flat complex space form of complex dimension ≥ 2 admits no totally umbilical Lagrangian submanifolds except the totally geodesic ones. So, B. Y. Chen [3] introduced the notion of H-umbilical submanifolds which are the simplest Lagrangian submanifolds next to the totally geodesic ones in a complex space form (for the definition see $\S 2$).

In this paper we investigate H -umbilical Einstein submanifolds of complex space forms with non-negative holomorphic sectional curvatures and give the following theorem:

[^0]Theorem 1.1 Let M^{n} be a complete $n(\geq 3)$ dimensional Einstein H-umbilical submanifold with parallel mean curvature in an n-dimensional complex space form $\widetilde{M}_{n}(\tilde{c})$ with constant holomorphic sectional curvature $\tilde{c} \geq 0$. Then M^{n} is congruent to a totally geodesic Lagrangian submanifold of $\widetilde{M}_{n}(\tilde{c})$ or $S^{1}\left(\frac{1}{\sqrt{\lambda}}\right) \times \mathbb{R}^{n-1}$ in \mathbb{C}^{n}, where we denote the radius of sphere in the parentheses (for the definition of λ see §2).

The author would like to express his sincere gratitude to Professor Yoshio Matsuyama for his valuable suggestions and comments.

2 Preliminaries

In this section we explain preliminary results concerning Riemannian submanifolds and give some definitions.

Let $\widetilde{M}_{n}(\tilde{c})$ be an n-dimensional complex space form with constant holomorphic sectional curvature \tilde{c}. Let $\langle\cdot, \cdot\rangle$ and J be its Riemannian metric and complex structure, respectively. Then, the curvature tensor \bar{R} of $\widetilde{M}_{n}(\tilde{c})$ is obtained by

$$
\begin{align*}
\bar{R}(X, Y) Z= & \frac{\tilde{c}}{4}\{\langle Y, Z\rangle X-\langle X, Z\rangle Y+\langle J Y, Z\rangle J X-\langle J X, Z\rangle J Y \\
& -2\langle J X, Y\rangle J Z\}, X, Y, Z \in T \widetilde{M} \tag{2.1}
\end{align*}
$$

where $T \widetilde{M}$ denotes the tangent bundle of \widetilde{M}.
Let M^{n} be a connected n-dimensional real submanifold of $\widetilde{M}_{n}(\tilde{c})$. Then, M^{n} is said to be a Lagrangian submanifold if the complex structure J of $\widetilde{M}_{n}(\tilde{c})$ carries each tangent space of M^{n} into its corresponding normal space.

For a Lagrangian submanifold M^{n} of $\widetilde{M}_{n}(\tilde{c})$, the Gauss and Ricci equations become

$$
\begin{align*}
&\langle R(X, Y) Z, W\rangle= \frac{\tilde{c}}{4}(\langle Y, Z\rangle\langle X, W\rangle-\langle X, Z\rangle\langle Y, W\rangle) \\
&+\langle\sigma(Y, Z), \sigma(X, W)\rangle-\langle\sigma(X, Z), \sigma(Y, W)\rangle \tag{2.2}\\
& X, Y, Z, W \in T M
\end{aligned}, ~ \begin{aligned}
\left\langle R^{\perp}(X, Y) J Z, J W\right\rangle= & \left\langle\left[A_{J Z}, A_{J W}\right] X, Y\right\rangle+\frac{\tilde{c}}{4}(\langle Y, Z\rangle\langle X, W\rangle \\
& -\langle X, Z\rangle\langle Y, W\rangle) \\
& X, Y, Z, W \in T M
\end{align*}
$$

where σ and A_{ν} denote the second fundamental form of M^{n} and the shape operator in the direction ν, respectively, and R^{\perp} is the curvature tensor of the normal bundle $T^{\perp} M^{n}$ of M^{n}.

The Gauss and Weingarten formulas are the following:

$$
\begin{gathered}
\bar{\nabla}_{X} Y=\nabla_{X} Y+\sigma(X, Y), X, Y \in T M^{n} \\
\bar{\nabla}_{X} \nu=-A_{\nu} X+\nabla_{X}^{\perp} \nu, X \in T M^{n}, \nu \in T^{\perp} M^{n}
\end{gathered}
$$

where $\bar{\nabla}, \nabla$ and ∇^{\perp} denote the Levi Civita connection of $\widetilde{M}_{n}(\tilde{c})$, that of M^{n} and the normal connection of $T^{\perp} M^{n}$.

Lagrangian submanifold M^{n} of $\widetilde{M}_{n}(\tilde{c})$ is called H-umbilical if the second fundamental form σ of M^{n} takes the following form for some functions λ and μ with respect to some local orthnormal frame field e_{1}, \ldots, e_{n} on M^{n} :

$$
\begin{align*}
& \sigma\left(e_{1}, e_{1}\right)=\lambda J e_{1}, \sigma\left(e_{2}, e_{2}\right)=\cdots=\sigma\left(e_{n}, e_{n}\right)=\mu J e_{1} \tag{2.4}\\
& \sigma\left(e_{1}, e_{j}\right)=\mu J e_{j}, \sigma\left(e_{j}, e_{k}\right)=0, j \frac{1}{\tau} k, j, k=2, \ldots, n .
\end{align*}
$$

The mean curvature vector \mathfrak{H} of M^{n} is defined by

$$
\begin{equation*}
\mathfrak{H}=\sum_{i=1}^{n} \sigma\left(e_{i}, e_{i}\right), \tag{2.5}
\end{equation*}
$$

where e_{1}, \ldots, e_{n} is a orthonormal frame field of M^{n}.
M^{n} is said to be of parallel mean curvature if $\nabla^{\perp} \mathfrak{H}=0$ is satisfied. And M^{n} is said to be of constant mean curvature if $\langle\mathfrak{H}, \mathfrak{H}\rangle$ is constant on M^{n}. If M^{n} has the parallel mean curvature, then $\langle\mathfrak{H}, \mathfrak{H}\rangle$ is always constant.

According to (2.2), the Ricci tensor S of M^{n} is given by

$$
\begin{align*}
S(X, Y)= & \frac{\tilde{\tilde{c}}}{4}(n-1)\langle X, Y\rangle+\langle\sigma(X, Y), \mathfrak{H}\rangle \tag{2.6}\\
& -\sum_{i=1}^{n}\left\langle\sigma\left(X, e_{i}\right), \sigma\left(Y, e_{i}\right)\right\rangle, X, Y \in T M^{n}
\end{align*}
$$

For the scalar curvature ρ of M^{n}, using (2.5) and (2.6), we obtain

$$
\begin{equation*}
\rho=\frac{\tilde{c}}{4} n(n-1)+\langle\mathfrak{H}, \mathfrak{H}\rangle-\|\sigma\|^{2} \tag{2.7}
\end{equation*}
$$

where $\|\sigma\|^{2}$ denotes the square of the length of σ.

3 Lemmas

In this section we present two lemmas to prove our main theorem.
We explain the equation of the Laplacian $\Delta\|\sigma\|^{2}$ of the function $\|\sigma\|^{2}$ given by J. Simons [8]. Let E_{1}, \ldots, E_{n} be a local orthonormal frame field of M^{n} around a point $p \in M^{n}$ which satisfy $E_{i}(p)=e_{i}$ and $\nabla E_{i}(p)=0(i=$ $1, \ldots, n)$. Then, we have

Lemma 3.1 ([8], [4]) Let $\iota: M^{n} \rightarrow \bar{M}^{n+k}$ be an isometric immersion of an n-dimensional Riemannian manifold into an $(n+k)$-dimensional Riemannian manifold \bar{M}^{n+k}. Then, the following equation holds:

$$
\begin{align*}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \left\|\nabla^{\prime} \sigma\right\|^{2}+\sum_{i, j, k}\left\langle\bar{\nabla}_{e_{j}}\left(\left(\nabla_{E_{k}}^{\prime} \sigma\right)\left(E_{i}, E_{i}\right)\right), \sigma\left(e_{j}, e_{k}\right)\right\rangle \\
& +\sum_{i, j, k}\left\langle\bar{\nabla}_{e_{i}}\left(\bar{R}\left(E_{j}, E_{k}\right) E_{i}\right) N, \sigma\left(e_{j}, e_{k}\right)\right\rangle \\
& +\sum_{i, j, k}\left\langle R^{\perp}\left(e_{i}, e_{j}\right) \sigma\left(e_{i}, e_{k}\right), \sigma\left(e_{j}, e_{k}\right)\right\rangle \tag{3.1}\\
& -\sum_{i, j, k}\left\langle\sigma\left(R\left(e_{i}, e_{j}\right) e_{i}, e_{k}\right), \sigma\left(e_{j}, e_{k}\right)\right\rangle \\
& -\sum_{i, j, k}\left\langle\sigma\left(e_{i}, R\left(e_{i}, e_{j}\right) e_{k}\right), \sigma\left(e_{j}, e_{k}\right)\right\rangle \\
& \left.+\sum_{i, j, k}\left\langle\bar{\nabla}_{e_{i}}\left(\bar{R}\left(E_{i}, E_{j}\right) E_{k}\right), \sigma\left(e_{j} \cdot e_{k}\right)\right\rangle\right\rangle
\end{align*}
$$

where $\langle\cdot, \cdot\rangle, R$ and \bar{R} denote the metric tensor of \bar{M}, the Riemannian curvature tensor of M and the Riemannan curvature tensor of \bar{M}, respectively, and ($)^{N}$ denotes the normal component of a vector.

Using Lemma 3.1, (2.1), (2.2) and (2.3), we get the following:
Lemma 3.2 Let M^{n} be a Lagrangian submanifold in a complex space form $\widetilde{M}_{n}(\tilde{c})$. Then, we have the following equation:

$$
\begin{align*}
\frac{1}{2} \Delta\|\sigma\|^{2}= & \left\|\nabla^{\prime} \sigma\right\|^{2}+\frac{\tilde{c}}{4}(n+1)\|\sigma\|^{2}-\frac{\tilde{c}}{2}\langle\mathfrak{H}, \mathfrak{H}\rangle \\
& +\sum_{i, j, k}\left\langle\bar{\nabla}_{e_{j}}\left(\left(\nabla_{E_{k}}^{\prime} \sigma\right)\left(E_{i}, E_{i}\right)\right), \sigma\left(e_{j} . e_{k}\right)\right\rangle \tag{3.2}\\
& +\sum_{\alpha, \beta=1}^{n} \operatorname{Tr}\left(A_{\alpha} A_{\beta}-A_{\beta} A_{\alpha}\right)^{2}-\sum_{\alpha, \beta=1}^{n}\left(\operatorname{Tr} A_{\alpha} A_{\beta}\right)^{2} \\
& +\sum_{j, k}\left\langle A_{\mathfrak{H}} e_{j}, A_{\sigma\left(e_{j}, e_{k}\right)} e_{k}\right\rangle
\end{align*}
$$

where A_{α} is the shape operator of M^{n} in the direction $J e_{\alpha}$.

4 Proof of Theorem 1.1

Let e_{1}, \ldots, e_{n} be an orthonormal basis of $T_{p} M$ which satisfies (2.4). Using (2.4) and (2.6), we have the following for the Ricci tensor S of M :

$$
\begin{align*}
& S\left(e_{1}, e_{1}\right)=\frac{n-1}{4} \tilde{c}+(n-1) \mu(\lambda-\mu) \\
& S\left(e_{j}, e_{j}\right)=\frac{n-1}{4} \tilde{c}+\mu(\lambda+(n-3) \mu) \quad(j \geq 2) \tag{4.1}\\
& S\left(e_{i}, e_{k}\right)=0 \quad(i \neq k)
\end{align*}
$$

Since M^{n} is Einstein and $n \geq 3$, using (4.1), we are led to

$$
\begin{equation*}
\mu(\lambda-2 \mu)=0 \tag{4.2}
\end{equation*}
$$

Because of the Ricci curvature of Einstein manifold is constant, we have $\mu(\lambda-\mu)=$ constant. Using this fact and (4.2), we deduce that $\mu=$ constant. So, either $\mu \equiv 0$ or $\lambda=2 \mu=$ constant $\frac{1}{\tau} 0$ is satisfied on M.

We discuss dividing into the following two cases:
Case $1 \mu \equiv 0$; Case $2 \lambda=2 \mu \neq 0$.
Case 1 Using (2.4) and $\mu \equiv 0$, we have $\mathfrak{H}=\lambda J e_{1}$. Since \mathfrak{H} is parallel, λ is constant. Because of the scalar curvature ρ of Einstein manifold is constant, we conclude that $\|\sigma\|^{2}$ is constant from (2.7). According to (2.4) and (3.2) we obtain the following:

$$
\begin{equation*}
0=\frac{1}{2} \Delta\|\sigma\|^{2}=\frac{\tilde{c}}{4}(n-1) \lambda^{2}+\left\|\nabla^{\prime} \sigma\right\|^{2} . \tag{4.3}
\end{equation*}
$$

When \tilde{c} is positive, we have $\lambda^{2}=0$ and $\left\|\nabla^{\prime} \sigma\right\|^{2}=0$ from (4.3). So M^{n} is totally geodesic. When $\tilde{c}=0$, we deduce that M^{n} is a parallel submanifold in \mathbb{C}^{n} from (4.3). According to the classification in [5], we conclude that either M^{n} is congruent to $S^{1}\left(\frac{1}{\sqrt{\lambda}}\right) \times \mathbb{R}^{n-1}$ or a totally geodesic submanifold.

Case 2 In the following we shall show that this case cannot occur.
In this case, using the fact that $\lambda=2 \mu=$ constant and (2.4), we can deduce that both $\langle\mathfrak{H}, \mathfrak{H}\rangle$ and $\|\sigma\|^{2}$ are constant on M. According to (3.2), we get the following equation:

$$
\begin{aligned}
0=\frac{1}{2} \Delta\|\sigma\|^{2}= & \left(n^{2}-1\right) \mu^{2}\left(\frac{\tilde{c}}{4}+\mu^{2}\right)+\left\|\nabla^{\prime} \sigma\right\|^{2} \\
& +\sum_{i, j, k}\left\langle\bar{\nabla}_{e_{j}}\left(\left(\nabla_{E_{k}}^{\prime} \sigma\right)\left(E_{i}, E_{i}\right)\right), \sigma\left(e_{j}, e_{k}\right)\right\rangle .
\end{aligned}
$$

From this equation, we have $\sum_{i}\left(\nabla_{E_{k}}^{\prime} \sigma\right)\left(E_{i}, E_{i}\right) \neq 0$. This contradicts our assumption $\nabla^{\perp} \mathfrak{H}=0$. So this case cannot occur. We have thus proved the theorem.

References

[1] B. Y. Chen and K. Ogiue, Two theorems on Kaehler manifolds, Michigan Math. J. 21(1974), 225-229.
[2] B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tôhoku Math. J. 49(1997), 277-297.
[3] B. Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99(1997), 69-108
[4] S. S. Chern, M. Do Carmo and S. Kobayashi, Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length, Functional Analysis and Related Fields (1970), 59-75.
[5] D. Ferus, Symmetric Submanifolds of Euclidean Space, Math. Ann. 247(1980), 81-93.
[6] K. Ogiue, Some recent topics in the theory of submanifolds, Sugaku Exposition 4(1991), 21-41.
[7] N. Sato, On Lagrangian surfaces in $\boldsymbol{C P}^{2}(\tilde{c})$, Hokkaido Math. J. 31(2002), 441-451.
[8] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 89(1968), 62-105.

Department of Mathematics, Faculty of Education, Toyama University, 3190 Gofuku, Toyamashi 930-8555, Japan

Received April 15, 2003

[^0]: 2000 Mathematics subject classification: 53C40.
 Keywords and phrases: Einstein manifold, complex space form, Lagrangian submanifold, H-umbilical submanifold.

