Einstein H-umbilical submanifolds with parallel mean curvatures in complex space forms

Setsuo Nagai

Abstract

In this paper we determine H-umbilical Einstein submanifolds with parallel mean curvatures in complex space forms with non-negative holomorphic sectional curvatures.

1 Introduction

In Riemannian Geometry, Einstein manifolds are very important subject. When we focus our attention to submanifolds in complex space forms, there are many interesting results (cf. [1]). There are two important classes of submanifolds of a complex space form. One is the class of holomorphic submanifolds and another is the class of totally real submanifolds. A submanifold in a complex space form is said to be totally real if the complex structure of the ambient space carries each tangent vector to a normal vector. A totally real submanifold is called a Lagrangian submanifold if its real dimension is equal to the complex dimension of the ambient space. The classification of Lagrangian Einstein submanifolds of a complex space form is still open. We know the fact that a non-flat complex space form of complex dimension ≥ 2 admits no totally umbilical Lagrangian submanifolds except the totally geodesic ones. So, B. Y. Chen [3] introduced the notion of H-umbilical submanifolds which are the simplest Lagrangian submanifolds next to the totally geodesic ones in a complex space form (for the definition see §2).

In this paper we investigate H-umbilical Einstein submanifolds of complex space forms with non-negative holomorphic sectional curvatures and give the following theorem:

²⁰⁰⁰ Mathematics subject classification: 53C40.

Keywords and phrases: Einstein manifold, complex space form, Lagrangian submanifold, H-umbilical submanifold.

Theorem 1.1 Let M^n be a complete $n (\geq 3)$ dimensional Einstein H-umbilical submanifold with parallel mean curvature in an n-dimensional complex space form $\widetilde{M}_n(\tilde{c})$ with constant holomorphic sectional curvature $\tilde{c} \geq 0$. Then M^n is congruent to a totally geodesic Lagrangian submanifold of $\widetilde{M}_n(\tilde{c})$ or $S^1(\frac{1}{\sqrt{\lambda}}) \times \mathbb{R}^{n-1}$ in \mathbb{C}^n , where we denote the radius of sphere in the parentheses (for the definition of λ see §2).

The author would like to express his sincere gratitude to Professor Yoshio Matsuyama for his valuable suggestions and comments.

2 Preliminaries

In this section we explain preliminary results concerning Riemannian submanifolds and give some definitions.

Let $M_n(\tilde{c})$ be an *n*-dimensional complex space form with constant holomorphic sectional curvature \tilde{c} . Let $\langle \cdot, \cdot \rangle$ and J be its Riemannian metric and complex structure, respectively. Then, the curvature tensor \overline{R} of $\widetilde{M}_n(\tilde{c})$ is obtained by

$$(2.1) \quad \overline{R}(X,Y)Z = \frac{\tilde{\epsilon}}{4} \left\{ \langle Y, Z \rangle X - \langle X, Z \rangle Y + \langle JY, Z \rangle JX - \langle JX, Z \rangle JY - 2\langle JX, Y \rangle JZ \right\}, \ X, \ Y, \ Z \in T\widetilde{M},$$

where $T\widetilde{M}$ denotes the tangent bundle of \widetilde{M} .

Let M^n be a connected *n*-dimensional real submanifold of $\widetilde{M}_n(\tilde{c})$. Then, M^n is said to be a Lagrangian submanifold if the complex structure J of $\widetilde{M}_n(\tilde{c})$ carries each tangent space of M^n into its corresponding normal space.

For a Lagrangian submanifold M^n of $\widetilde{M}_n(\tilde{c})$, the Gauss and Ricci equations become

(2.2)
$$\langle R(X,Y)Z, W \rangle = \frac{\tilde{\epsilon}}{4} (\langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle) \\ + \langle \sigma(Y, Z), \sigma(X, W) \rangle - \langle \sigma(X, Z), \sigma(Y, W) \rangle, \\ X, Y, Z, W \in TM,$$

(2.3)
$$\langle R^{\perp}(X,Y)JZ, JW \rangle = \langle [A_{JZ}, A_{JW}]X, Y \rangle + \frac{\tilde{\epsilon}}{4} (\langle Y, Z \rangle \langle X, W \rangle - \langle X, Z \rangle \langle Y, W \rangle), \\ X, Y, Z, W \in TM,$$

where σ and A_{ν} denote the second fundamental form of M^n and the shape operator in the direction ν , respectively, and R^{\perp} is the curvature tensor of the normal bundle $T^{\perp}M^n$ of M^n .

The Gauss and Weingarten formulas are the following:

$$\overline{\nabla}_X Y = \nabla_X Y + \sigma(X, Y), \ X, Y \in TM^n,$$
$$\overline{\nabla}_X \nu = -A_{\nu} X + \nabla_X^{\perp} \nu, \ X \in TM^n, \ \nu \in T^{\perp} M^n,$$

where $\overline{\nabla}$, ∇ and ∇^{\perp} denote the Levi Civita connection of $\widetilde{M}_n(\tilde{c})$, that of M^n and the normal connection of $T^{\perp}M^n$.

Lagrangian submanifold M^n of $M_n(\tilde{c})$ is called H-umbilical if the second fundamental form σ of M^n takes the following form for some functions λ and μ with respect to some local orthograms field e_1, \ldots, e_n on M^n :

(2.4)
$$\sigma(e_1, e_1) = \lambda J e_1, \ \sigma(e_2, e_2) = \dots = \sigma(e_n, e_n) = \mu J e_1, \\ \sigma(e_1, e_j) = \mu J e_j, \ \sigma(e_j, e_k) = 0, \ j \neq k, \ j, \ k = 2, \dots, n.$$

The mean curvature vector \mathfrak{H} of M^n is defined by

(2.5)
$$\mathfrak{H} = \sum_{i=1}^{n} \sigma(e_i, e_i),$$

where e_1, \ldots, e_n is a orthonormal frame field of M^n .

 M^n is said to be of parallel mean curvature if $\nabla^{\perp}\mathfrak{H}=0$ is satisfied. And M^n is said to be of constant mean curvature if $\langle \mathfrak{H}, \mathfrak{H} \rangle$ is constant on M^n . If M^n has the parallel mean curvature, then $\langle \mathfrak{H}, \mathfrak{H} \rangle$ is always constant.

According to (2.2), the Ricci tensor S of M^n is given by

(2.6)
$$S(X,Y) = \frac{\tilde{c}}{4}(n-1)\langle X,Y\rangle + \langle \sigma(X,Y),\mathfrak{H}\rangle \\ -\sum_{i=1}^{n} \langle \sigma(X,e_i),\sigma(Y,e_i)\rangle, \ X, \ Y \in TM^n.$$

For the scalar curvature ρ of M^n , using (2.5) and (2.6), we obtain

(2.7)
$$\rho = \frac{\tilde{c}}{4}n(n-1) + \langle \mathfrak{H}, \mathfrak{H} \rangle - ||\sigma||^2,$$

where $||\sigma||^2$ denotes the square of the length of σ .

3 Lemmas

In this section we present two lemmas to prove our main theorem.

We explain the equation of the Laplacian $\triangle \|\sigma\|^2$ of the function $\|\sigma\|^2$ given by J. Simons [8]. Let E_1, \ldots, E_n be a local orthonormal frame field of M^n around a point $p \in M^n$ which satisfy $E_i(p) = e_i$ and $\nabla E_i(p) = 0$ $(i = 1, \ldots, n)$. Then, we have

Lemma 3.1 ([8], [4]) Let $\iota: M^n \to \overline{M}^{n+k}$ be an isometric immersion of an n-dimensional Riemannian manifold into an (n+k)-dimensional Riemannian manifold \overline{M}^{n+k} . Then, the following equation holds:

$$(3.1) \begin{array}{ll} \frac{1}{2}\triangle \|\sigma\|^{2} &=& \|\nabla'\sigma\|^{2} + \sum_{i,j,k} \langle \overline{\nabla}_{e_{j}}((\nabla'_{E_{k}}\sigma)(E_{i},E_{i})), \, \sigma(e_{j},e_{k}) \rangle \\ &+ \sum_{i,j,k} \langle \overline{\nabla}_{e_{i}}(\overline{R}(E_{j},E_{k})E_{i})^{N}, \, \sigma(e_{j},e_{k}) \rangle \\ &+ \sum_{i,j,k} \langle R^{\perp}(e_{i},e_{j})\sigma(e_{i},e_{k}), \, \sigma(e_{j},e_{k}) \rangle \\ &- \sum_{i,j,k} \langle \sigma(R(e_{i},e_{j})e_{i},e_{k}), \, \sigma(e_{j},e_{k}) \rangle \\ &- \sum_{i,j,k} \langle \overline{\nabla}_{e_{i}}(\overline{R}(E_{i},e_{j})E_{k}), \, \sigma(e_{j},e_{k}) \rangle \\ &+ \sum_{i,j,k} \langle \overline{\nabla}_{e_{i}}(\overline{R}(E_{i},E_{j})E_{k}), \, \sigma(e_{j},e_{k}), \rangle \end{array}$$

where $\langle \cdot, \cdot \rangle$, R and \overline{R} denote the metric tensor of \overline{M} , the Riemannian curvature tensor of M and the Riemannan curvature tensor of \overline{M} , respectively, and ()^N denotes the normal component of a vector.

Using Lemma 3.1, (2.1), (2.2) and (2.3), we get the following:

Lemma 3.2 Let M^n be a Lagrangian submanifold in a complex space form $\widetilde{M}_n(\tilde{c})$. Then, we have the following equation:

$$(3.2) \frac{\frac{1}{2}\Delta\|\sigma\|^{2} = \|\nabla'\sigma\|^{2} + \frac{\tilde{c}}{4}(n+1)\|\sigma\|^{2} - \frac{\tilde{c}}{2}\langle\mathfrak{H},\mathfrak{H}\rangle}{+\sum_{i,j,k}\langle\overline{\nabla}_{e_{j}}((\nabla'_{E_{k}}\sigma)(E_{i},E_{i})), \sigma(e_{j}.e_{k})\rangle} + \sum_{\alpha,\beta=1}^{n} Tr(A_{\alpha}A_{\beta} - A_{\beta}A_{\alpha})^{2} - \sum_{\alpha,\beta=1}^{n} (TrA_{\alpha}A_{\beta})^{2} + \sum_{j,k}\langle A_{\mathfrak{H}}e_{j}, A_{\sigma(e_{j},e_{k})}e_{k}\rangle,$$

where A_{α} is the shape operator of M^n in the direction Je_{α} .

4 Proof of Theorem 1.1

Let e_1, \ldots, e_n be an orthonormal basis of T_pM which satisfies (2.4). Using (2.4) and (2.6), we have the following for the Ricci tensor S of M:

(4.1)
$$S(e_1, e_1) = \frac{n-1}{4}\tilde{c} + (n-1)\mu(\lambda - \mu), \\ S(e_j, e_j) = \frac{n-1}{4}\tilde{c} + \mu(\lambda + (n-3)\mu) \quad (j \ge 2), \\ S(e_i, e_k) = 0 \quad (i \ne k).$$

Since M^n is Einstein and $n \geq 3$, using (4.1), we are led to

$$\mu(\lambda - 2\mu) = 0.$$

Because of the Ricci curvature of Einstein manifold is constant, we have $\mu(\lambda-\mu)=constant$. Using this fact and (4.2), we deduce that $\mu=constant$. So, either $\mu\equiv 0$ or $\lambda=2\mu=constant\neq 0$ is satisfied on M.

We discuss dividing into the following two cases:

Case 1 $\mu \equiv 0$; Case 2 $\lambda = 2\mu \neq 0$.

Case 1 Using (2.4) and $\mu \equiv 0$, we have $\mathfrak{H} = \lambda Je_1$. Since \mathfrak{H} is parallel, λ is constant. Because of the scalar curvature ρ of Einstein manifold is constant, we conclude that $\|\sigma\|^2$ is constant from (2.7). According to (2.4) and (3.2) we obtain the following:

(4.3)
$$0 = \frac{1}{2} \Delta \|\sigma\|^2 = \frac{\tilde{c}}{4} (n-1)\lambda^2 + \|\nabla'\sigma\|^2.$$

When \tilde{c} is positive, we have $\lambda^2=0$ and $\|\nabla'\sigma\|^2=0$ from (4.3). So M^n is totally geodesic. When $\tilde{c}=0$, we deduce that M^n is a parallel submanifold in \mathbb{C}^n from (4.3). According to the classification in [5], we conclude that either M^n is congruent to $S^1(\frac{1}{\sqrt{\lambda}}) \times \mathbb{R}^{n-1}$ or a totally geodesic submanifold.

Case 2 In the following we shall show that this case cannot occur.

In this case, using the fact that $\lambda = 2\mu = constant$ and (2.4), we can deduce that both $\langle \mathfrak{H}, \mathfrak{H} \rangle$ and $\|\sigma\|^2$ are constant on M. According to (3.2), we get the following equation:

$$0 = \frac{1}{2} \Delta \|\sigma\|^2 = (n^2 - 1) \mu^2 (\frac{\tilde{e}}{4} + \mu^2) + \|\nabla'\sigma\|^2 + \sum_{i,j,k} \langle \overline{\nabla}_{e_j} ((\nabla'_{E_k} \sigma)(E_i, E_i)), \, \sigma(e_j, e_k) \rangle.$$

From this equation, we have $\sum_{i}(\nabla'_{E_k}\sigma)(E_i,E_i) \neq 0$. This contradicts our assumption $\nabla^{\perp}\mathfrak{H}=0$. So this case cannot occur. We have thus proved the theorem.

References

- [1] B. Y. Chen and K. Ogiue, Two theorems on Kaehler manifolds, Michigan Math. J. 21(1974), 225-229.
- [2] B. Y. Chen, Complex extensors and Lagrangian submanifolds in complex Euclidean spaces, Tôhoku Math. J. 49(1997), 277–297.
- [3] B. Y. Chen, Interaction of Legendre curves and Lagrangian submanifolds, Israel J. Math. 99(1997), 69-108
- [4] S. S. Chern, M. Do Carmo and S. Kobayashi, *Minimal Submanifolds of a Sphere with Second Fundamental Form of Constant Length*, Functional Analysis and Related Fields (1970), 59–75.
- [5] D. Ferus, Symmetric Submanifolds of Euclidean Space, Math. Ann. 247(1980), 81-93.

- [6] K. Ogiue, Some recent topics in the theory of submanifolds, Sugaku Exposition 4(1991), 21-41.
- [7] N. Sato, On Lagrangian surfaces in $\mathbb{CP}^2(\tilde{c})$, Hokkaido Math. J. $\mathbf{31}(2002)$, 441-451.
- [8] J. Simons, Minimal varieties in riemannian manifolds, Ann. of Math. 89(1968), 62-105.

Department of Mathematics, Faculty of Education, Toyama University, 3190 Gofuku, Toyamashi 930-8555, Japan

Received April 15, 2003