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Einstein H-umbilical submanifolds with
parallel mean curvatures in complex space
forms

Setsuo Nagai

Abstract

In this paper we determine H-umbilical Einstein submanifolds with
parallel mean curvatures in complex space forms with non-negative
holomorphic sectional curvatures.

1 Introduction

In Riemannian Geometry, Einstein manifolds are very important subject.
When we focus our attention to submanifolds in complex space forms, there
are many interesting results (cf. [1]). There are two important classes of
submanifolds of a complex space form. One is the class of holomorphic sub-
manifolds and another is the class of totally real submanifolds. A submanifold
in a complex space form is said to be totally real if the complex structure of
the ambient space carries each tangent vector to a normal vector. A totally
real submanifold is called a Lagrangian submanifold if its real dimension is
equal to the complex dimension of the ambient space. The classification
of Lagrangian Einstein submanifolds of a complex space form is still open.
We know the fact that a non-flat complex space form of complex dimension
2> 2 admits no totally umbilical Lagrangian submanifolds except the totally
geodesic ones. So, B. Y. Chen (3] introduced the notion of H-umbilical sub-
manifolds which are the simplest Lagrangian submanifolds next to the totally
geodesic ones in a complex space form (for the definition see §2).

In this paper we investigate H-umbilical Einstein submanifolds of complex
space forms with non-negative holomorphic sectional curvatures and give the
following theorem:
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Theorem 1.1 Let M™ be a complete n (> 3) dimensional Einstein H-umbilical
submanifold with parallel mean curvature in an n-dimensional complez space
form M, (¢) with constant holomorphic sectional curvature ¢ > 0. Then
M™ is congruent to a totally geodesic Lagrangian submanifold of ﬁn(é) or
Sl(%) x R*"! 4n C", where we denote the radius of sphere in the parentheses
(for the definition of A see §2).
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2 Preliminaries

In this section we explain preliminary results concerning Riemannian sub-
manifolds and give some definitions.

Let M, (¢) be an n-dimensional complex space form with constant holo-
morphic sectional curvature ¢é. Let (-,-) and J be its Riemannian metric and
complex structure, respectively. Then, the curvature tensor R of M,(é) is
obtained by

RX,Y)Z= ${(Y,2)X —(X,2)Y + (JY,Z)JX — (JX,Z)JY

21) ~2(JX,Y)JZ}, X, Y, ZeTM,

where TM denotes the tangent bundle of M. ~

Let M™ be a connected n-dimensional real submanifold of M,(¢). Then,
M™ is said to be a Lagrangian submanifold if the complex structure J of
M,,(€) carries each tangent space of M™ into its corresponding normal space.

For a Lagrangian submanifold M™ of Mn(é), the Gauss and Ricci equa-
tions become

(R(X,Y)Z, W) = £((Y,Z2)(X, W) — (X, Z\(Y, W))
(2.2) +<U(Y’ Z)a U(X’ W)) - (U(X’ Z)’ U(Ya W»’

XY, Z,WeTM,

(RHX,Y)JIZ, JIW) = ([Asz,Asw]X, Y) + (Y, Z)(X, W)
(2.3) —(X, Z)(Y, W)),
X, Y, Z, WeTM,
where 0 and A, denote the second fundamental form of M™ and the shape

operator in the direction v, respectively, and R' is the curvature tensor of
the normal bundle T+ M™ of M™.
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The Gauss and Weingarten formulas are the following:
VxY =VxY +0(X,Y), X,Y € TM™,

Vxv=-AX+Vxy, X e TM™ veT-M",

where V, V and V+* denote the Levi Civita connection of M, (¢), that of M™
and the normal connection of T+-M".

Lagrangian submanifold M™ of M,(¢) is called H-umbilical if the second
fundamental form o of M™ takes the following form for some functions A and
i with respect to some local orthnormal frame field e, ...,e, on M™:

o(er,e1) = AJer, o(e,€2) =+ = 0(en,en) = pJey,

(24) o(ei,e;) = pJej, o(ej,ex) =0, j#k, j,k=2,...,n.

The mean curvature vector §) of M™ is defined by

(2.5) H=> olee),
=1
where ey, ..., e, is a orthonormal frame field of M™.

M™ is said to be of parallel mean curvature if V1§) = 0 is satisfied. And
M™ is said to be of constant mean curvature if (), ) is constant on M™. If
M™ has the parallel mean curvature, then (), $) is always constant.
According to (2.2), the Ricci tensor S of M™ is given by

S(X,Y)= {(n—-1){(X,Y) + (0(X,Y),$)

(2.6) -7 (o(X,e),0(Y,e)), X, Y € TM™.

For the scalar curvature p of M™, using (2.5) and (2.6), we obtain

(27) p=gn(n=1) +(5,9) - [,

where ||o||? denotes the square of the length of o.

3 Lemmas

In this section we present two lemmas to prove our main theorem.

We explain the equation of the Laplacian Al|o||? of the function ||o]|?
given by J. Simons [8]. Let E\,..., E, be a local orthonormal frame field of
M™ around a point p € M™ which satisfy E;(p) = e; and VE;(p) = 0 (i =
1,...,n). Then, we have
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Lemma 3.1 ([8], [4]) Let¢: M™ — M be an isometric immersion of an
n-dimensional Riemannian manifold into an (n+k)-dimensional Riemannian

manifold M Then, the following equation holds:
30loll? = [[V'ol? + X, ;4 (Ve, (VE,0)(Ei, Ei)), ole;, ex))
+ Zi,j,k(vei (E(Ej’ Ek)Ei)N’ 0'(6_,', ek))
(3.1) + 3 k(R (e, 65)a(ei, ex), o(ej, ex))
— i jxlo(R(ei e)ei, ex), o(ej, ex))
— 2 ijk{o(es, Rlei, €5)ex), o(ej, ex))
+25.ix({Ve(R(E;, Ej)Ey), o(ej.ex),)

where {-,-), R and R denote the metric tensor of M, the Riemannian cur-
vature tensor of M and the Riemannan curvature tensor of M, respectively,
and ( )V denotes the normal component of a vector.

Using Lemma 3.1, (2.1), (2.2) and (2.3), we get the following:

Lemma 3.2 Let M™ be a Lagrangian submanifold in a complex space form
M, (¢). Then, we have the following equation:

Qlel? = Vol + $(n+ 1)lo|? ~ §(5, )
(3.2) + Zi,j,k(vej((vlg‘ka)(Eg‘,Ei)), o(ej.ex))

+ 30 51 Tr(AadAp — AgAa)? — S 5 (T AaAp)?
+ Ej,k (Af)e.h Ad(ej,ek)ek>,

where A, is the shape operator of M™ in the direction Je,.

4 Proof of Theorem 1.1

Let ey,...,e, be an orthonormal basis of T, M which satisfies (2.4). Using
(2.4) and (2.6), we have the following for the Ricci tensor S of M:

S(er,e1) = 22E + (n — 1)p(A — p),
(4.1) S(ej,e5) = 2te+ p(A+ (n—3)p) (5 2>2),
S(ei,ex) =0 (i 7# k).

Since M™ is Einstein and n > 3, using (4.1), we are led to
(4.2) u(A—2p) =0.

Because of the Ricci curvature of Einstein manifold is constant, we have
w(A—p) = constant. Using this fact and (4.2), we deduce that u = constant.
So, either 4 = 0 or A = 2u = constant 5 0 is satisfied on M.
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We discuss dividing into the following two cases:
Case 1 u=0; Case 2 A =2u # 0.
Case 1 Using (2.4) and p = 0, we have $ = AJe;. Since § is parallel, X is
constant. Because of the scalar curvature p of Einstein manifold is constant,
we conclude that ||o]|? is constant from (2.7). According to (2.4) and (3.2)
we obtain the following:

(4.3) 0= %Al]alP = (- DX + Vo]

When ¢ is positive, we have A>=0 and ||V'c||?> = 0 from (4.3). So M™ is
totally geodesic. When é = 0, we deduce that M™ is a parallel submanifold
in C" from (4.3). According to the classification in [5], we conclude that
either M™ is congruent to S 1(71;) x R™! or a totally geodesic submanifold.

Case 2 In the following we shall show that this case cannot occur.

In this case, using the fact that A = 2u = constant and (2.4), we can
deduce that both (), $) and ||o||? are constant on M. According to (3.2),
we get the following equation:

0=3A[0l? = (n®-1)p2(§ +u?) + [ V'ol?
+ Ei,j,k(vej ((V’E,,U) (Ei, E;)), o(ej, ex)).

From this equation, we have ) (V% 0)(E;, E;) # 0. This contradicts our
assumption V+§ = 0. So this case cannot occur. We have thus proved the
theorem. M
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