THE σ -CONVEXITY OF ALL BOUNDED CONVEX SETS IN \mathbb{R}^n AND \mathbb{C}^n

HIDEO TAKEMOTO, ATSUSHI UCHIYAMA AND LASZLO ZSIDO

Introduction. we call a convex subset U in the n-dimensional real Euclidean space \mathbb{R}^n or the n-dimensional complex Euclidean space \mathbb{C}^n as a σ -convex set if $U = \left\{ \sum_{j=1}^{\infty} a_j \lambda^{(j)}; \lambda^{(j)} \in U, a_j \ge 0, \sum_{j=1}^{\infty} a_j = 1 \right\}$. In this papaer, we shall show that any bounded convex subsets in \mathbb{R}^n or \mathbb{C}^n are σ -convex. We have not seen the notation of σ -convexity elsewhere. Takemoto and Uchiyama [1] showed that any bounded convex subsets in \mathbb{C} are σ -convex. This result gave a useful role for the arguments of the numerical ranges of operators on Hilbert spaces.

Main Theorem. We also give in this paper the proof that any bounded convex subsets of \mathbb{R}^n or \mathbb{C}^n are σ -convex.

Definition. Let U be a subset of \mathbb{R}^n or \mathbb{C}^n . We call U as a σ -convex set if U satisfies the following relation: Let $\{\lambda^{(j)}\}_{j=1}^{\infty}$ be a sequence in U and $\{a_j\}_{j=1}^{\infty}$ a sequence with $a_j \ge 0$ and $\sum_{j=1}^{\infty} a_j = 1$, then the element $\sum_{j=1}^{\infty} a_j \lambda^{(j)}$ is an element of U.

Theorem. Let U be a bounded convex subset of \mathbb{R}^n or \mathbb{C}^n , then we have the following relation $U = \left\{ \sum_{j=1}^{\infty} a_j \lambda^{(j)}; \lambda^{(j)} \in U, a_j \ge 0, \sum_{j=1}^{\infty} a_j = 1 \right\}.$

Proof. We can get the conclusion in the case of the complex Euclidean spaces by using a similar argument in the case of the n-dimensional real Euclidean spaces. So, we shall only show the σ -convexity for any bounded convex subsets in \mathbb{R}^n by using the mathematical induction.

Let
$$V = \left\{ \sum_{j=1}^{\infty} a_j \lambda^{(j)}; \lambda^{(j)} \in U, a_j \ge 0, \sum_{j=1}^{\infty} a_j = 1 \right\}$$
, then V is con-

tained in the the closure \overline{U} of U. If λ is an element of V - U, then λ is an element of $\overline{U} - U$. Since U is a convex set and λ is not an element

- 61 ---

of U, there exists a hyperplane $H = \left\{ \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix} \in \mathbb{R}^n; \sum_{k=1}^n b_k x_k = c \right\}$

containing λ that U lies in the half-plane of the hyperplane H where $\{x_1, \dots, x_n\}$ and c are real numbers. Then we have the relation $\begin{bmatrix} \lambda & 1 \end{bmatrix}$

$$\sum_{k=1}^{n} b_k \lambda_k = c \text{ where } \lambda = \begin{bmatrix} \lambda_1 \\ \vdots \\ \vdots \\ \lambda_n \end{bmatrix}. \text{ Without loss of generality, we can assume that } \lambda = \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix} \text{ (this induces } c = 0\text{) and } U \subset \left\{ \begin{bmatrix} x_1 \\ \vdots \\ \vdots \\ x_n \end{bmatrix}; \sum_{k=1}^{n} b_k x_k \le 0 \right\}$$

The case of n = 2: By the assumption, the hyperplane H is a line $L; b_1x + b_2y = 0$ in the xy-plane \mathbb{R}^2 . Furthermore, we can assume that the line L is the y-axis $\left\{ \begin{bmatrix} x \\ y \end{bmatrix}; x = 0 \right\}$ and $U \subset \left\{ \begin{bmatrix} x \\ y \end{bmatrix}; x \le 0 \right\}$. Put $\begin{bmatrix} 0 \\ 0 \end{bmatrix} = \lambda = \sum_{j=1}^{\infty} a_j \lambda^{(j)}$ and $\lambda^{(j)} = \begin{bmatrix} \lambda_1^{(j)} \\ \lambda_2^{(j)} \end{bmatrix}$. Since $\lambda_1^{(j)} \le 0, a_j \ge 0$ $(j = 1, 2, \cdots)$ and $\sum_{j=1}^{\infty} a_j = 1$, we can show the relation $\lambda_1^{(j)} = 0$ $(j = 1, 2, \cdots)$.

1, 2, ...). Thus, each $\lambda^{(j)}$ is on the y-axis. Since all $\lambda^{(j)}$ (j = 1, 2, ...) are element of U, U is a convex set and λ is not an element of U, each $\lambda^{(j)}$ is on the half part of the y-axis with respect to λ . Thus, we have the relation $\lambda_2^{(j)} > 0$ for every j or $\lambda_2^{(j)} < 0$ for every j. Therefore, we have the following relation:

$$0 = y$$
-coefficient of $\lambda = y$ -coefficient of $\sum_{j=1}^{\infty} a_j \lambda^{(j)} = \sum_{j=1}^{\infty} a_j \lambda^{(j)}_2 \neq 0.$

This is a contradiction. Therefore λ is an element of U in the case of n = 2.

The case of $n = 1, 2, \dots, k-1$: If U is a bounded convex subset of \mathbb{R}^n for $n \le k-1$, we assume that $U = \left\{ \sum_{j=1}^{\infty} a_j \lambda^{(j)}; \lambda^{(j)} \in U, a_j \ge 0, \sum_{j=1}^{\infty} a_j = 1 \right\}.$

The case of n = k: We can assume that the hyperplane H is the subspace $\left\{ \begin{bmatrix} 0 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; x_2, \cdots, x_n \in \mathbb{R} \right\}$. Furthermore, we can assume that $\lambda = \begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix}$ and $U \subset \left\{ \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}; x_1 \leq 0 \right\}$ without loss of generality. Put $\begin{bmatrix} 0 \\ \vdots \\ \vdots \\ 0 \end{bmatrix} = \lambda = \sum_{j=1}^{\infty} a_j \lambda^{(j)}, \ \lambda^{(j)} = \begin{bmatrix} \lambda_1^{(j)} \\ \vdots \\ \vdots \\ \lambda_n^{(j)} \end{bmatrix}, \ a_j \geq 0 \text{ and } \sum_{j=1}^{\infty} a_j = 1.$

Since $\lambda_1^{(j)} \leq 0$, $a_j \geq 0$ $(j = 1, 2 \cdots)$ and $\sum_{j=1}^{\infty} a_j = 1$, we can show

the relation $\lambda_1^{(j)} = 0$ $(j = 1, 2, \cdots)$. Thus, let $W = U \cap H$, then W is a bounded convex subset in the subspace H and $\{\lambda^{(j)}\}_{j=1}^{\infty} \subset W$. Since the dimension of H is k-1, by the assumption of mathematical induction, λ is an element of W. Therefore λ is an element of U and so we have the complete proof of theorem.

REFERENCES

[1] H. Takemoto and A. Uchiyama, A remark of the numerical ranges of operators on Hilbert spaces, Nihonkai Mathematical Journal, vol. 13 (2002), 1-7. HIDEO TAKEMOTO DEPARTMENT OF MATHEMATICS MIYAGI UNIVERSITY OF EDUCATION ARAMAKI AOBA, AOBA-KU SENDAI 980-0845 JAPAN

Atsushi Uchiyama Department of Mathematics Sendai National College of Technology Sendai 989-3124 Japan

Laszlo Zsido Department of Mathematics University of Rome Roma 1-00133 Italy

Received January 15, 2003