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THE $\sigma$-CONVEXITY OF ALL BOUNDED CONVEX
SETS IN $\mathbb{R}^{\mathfrak{n}}$ AND $\mathbb{C}^{n}$
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Introduction. we cal a convex subset $U$ in the n-dimensional real
Euclidean space $R^{\mathfrak{n}}$ or the n-dimensional complex Euclidean space $\mathbb{C}^{n}$

as a a-convex set if $U=\{\sum_{j=1}^{\infty}a_{j}\lambda^{(j)};\lambda^{(j)}\in U,$ $a_{j}\geq 0,$ $\sum_{j=1}^{\infty}a_{j}=1\}$ . In

this papaer, we shall show that any bounded convex subsets in $R^{n}$ or $\mathbb{C}^{n}$

are $\sigma$-convex. We have not seen the notation of a-convexity elsewhere.
Takemoto and Uchiyama [1] showed that any bounded convex subsets
in $\mathbb{C}$ are $\sigma$-convex. This result gave a useful role for the arguments of
the numerical ranges of operators on Hilbert spaces.

Main Theorem. We also give in this paper the proof that any
bounded convex subsets of $R^{n}$ or $\mathbb{C}^{n}$ are $\sigma$-convex.

Definition. Let $U$ be a subset of $R^{n}$ or $\mathbb{C}^{n}$ . We call $U$ as a $\sigma$-convex
set if $U$ satisfies the following relation: Let $\{\lambda^{(j)}\}_{j=1}^{\infty}$ be a sequence in

$U$ and $\{a_{j}\}_{j=1}^{\infty}$ a sequence with $a_{j}\geq 0$ and $\sum_{j=1}^{\infty}a_{j}=1$ , then the element

$\sum_{j=1}^{\infty}a_{j}\lambda^{\langle j)}$ is an element of $U$ .

Theorem. Let $U$ be a bounded convex subset of $R^{n}$ or $\mathbb{C}^{n}$ , then we

have the following relation $U=\{\sum_{j=1}^{\infty}a_{j}\lambda^{(j)};\lambda^{(j)}\in U,a_{j}\geq 0,$ $\sum_{j=1}^{\infty}a_{j}=1I$ .

Proof. We can get the conclusion in the case of the complex Eu-
clidean spaces by using a similar argument in the case of the n-dimensional
real Euclidean spaces. So, we shall only show the $\sigma$-convexity for any
bounded convex subsets in $R^{n}$ by using the mathematical induction.

Let $V=\{\sum_{j=1}^{\infty}a_{j}\lambda^{(j)}$ ; $\lambda^{(j)}\in U,$ $a_{j}\geq 0,$ $\sum_{j=1}^{\infty}a_{j}=1\}$ , then $V$ is con-

tained in the the closure $\overline{U}$ of $U$ . If $\lambda$ is an element of $V-U$ , then $\lambda$ is
an element of $\overline{U}-U$ . Since $U$ is a convex set and $\lambda$ is not an element
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of $U$ , there exists a hyperplane $H=\{\left\{\begin{array}{l}x_{1}\\\vdots\\ x_{n}\end{array}\right\}\in R^{n};\sum_{k=1}^{n}b_{k}x_{k}=c\}$

containing $\lambda$ that $U$ lies in the half-plane of the hyperplane $H$ where
$\{x_{1}, \cdots\cdots x_{\mathfrak{n}}\}$ and $c$ are real numbers. Then we have the relation

$\sum_{k=1}^{n}b_{k}\lambda_{k}=c$ where $\lambda=\left\{\begin{array}{l}\lambda_{1}\\\vdots\\\lambda_{\mathfrak{n}}\end{array}\right\}$ . Without loss of generality, we can as-

sume that $\lambda=\left\{\begin{array}{l}0\\\vdots\\ 0\end{array}\right\}$ (this induces $c=0$ ) and $U\subset\{\left\{\begin{array}{l}x_{l}\\\vdots\\ x_{\mathfrak{n}}\end{array}\right\}$ ; $\sum_{k=1}^{n}b_{k}x_{k}\leq 0\}$ .

The case of $n=1$ : The element $\lambda$ and each $\lambda^{(j)}$ are real numbers in
the case of $n=1$ . Since each $\lambda^{(j)}$ is a negative real number, $a_{j}\geq 0(j=$

1, 2, $\cdots$ ) and $\sum_{j=1}^{\infty}a_{j}=1,$ $\sum_{j=1}^{\infty}a_{j}\lambda^{(j)}<0=\lambda$ . This is a contradiction.

Thus $\lambda$ is an element of $U$ .
The case of $n=2$ : By the assumption, the hyperplane $H$ is a line

$L;b_{1}x+by=0$ in the xy-plane $R^{2}$ . Furthermore, we can assume that

the line $L$ is the y-axis $\{$

Put $\left\{\begin{array}{l}0\\0\end{array}\right\}=\lambda=\sum_{j=1}^{\infty}a_{j}\lambda^{(}$

$\left\{\begin{array}{l}x\\y\end{array}\right\}$ ; $x=0\}$ and $U\subset\{$

j) and $\lambda^{(j)}=[\lambda_{2}^{(j)}\lambda_{1}^{(j)}]$ . Sinc

$\left\{\begin{array}{l}x\\y\end{array}\right\}$ ; $x\leq 0\}$ .

$e\lambda_{1}^{(j)}\leq 0,$
$ a_{j}\geq$

$0(j=1,2, \cdots)$ and $\sum_{j=1}^{\infty}a_{j}=1$ , we can show the relation $\lambda_{1}^{(j)}=0(j=$

1, 2, $\cdots$ ). Thus, each $\lambda^{(j)}$ is on the y-axis. Since all $\lambda^{(j)}(j=1,2, \cdots)$

are element of $U,$ $U$ is aconvex set and $\lambda$ is not an element of $U$ , each
$\lambda^{(j)}$ is on the half part of the y-axis with respect to $\lambda$ . Thus, we have
the relation $\lambda_{2}^{(j)}>0$ for every $j$ or $\lambda_{2}^{\langle j)}<0$ for every $j$ . Therefore, we
have the following relation:

$0=y$-coefficient of $\lambda=y$-coefficient of $\sum_{j=1}^{\infty}a_{j}\lambda^{\{j)}=\sum_{j=1}^{\infty}a_{j}\lambda_{2}^{(j)}\neq 0$ .

This is a contradiction. Therefore $\lambda$ is an element of $U$ in the case of
$n=2$ .

The case of $n=1,2,$ $\cdots k-1$ : If $U$ is a bounded convex subset of $R^{n}$

for $n\leq k-1$ , we assume that $U=\{\sum_{j=1}^{\infty}a_{j}\lambda^{\langle j)};\lambda^{\{j)}\in U,$ $a_{j}\geq 0,$ $\sum_{j=1}^{\infty}a_{j}=1\}$ .
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The case of $n=k$ : We can assume that the hyperplane $H$ is the

subspace $\{\left\{\begin{array}{l}0\\x_{2}\\\vdots\\ x_{n}\end{array}\right\}$ ; $x_{2},$ $\cdots$ , $x_{n}\in R\}$ . Furthermore, we can assume

that $\lambda=\left\{\begin{array}{l}0\\\vdots\\ 0\end{array}\right\}$ and $U\subset\{\left\{\begin{array}{l}x_{1}\\x_{2}\\\vdots\\ x_{n}\end{array}\right\}$ ; $ x_{1}\leq 0\dagger$ without loss of generality.

Put $\left\{\begin{array}{l}0\\\vdots\\ 0\end{array}\right\}=\lambda=\sum_{j=1}^{\infty}a_{j}\lambda^{(j)},$

$\lambda^{(j)}=\left\{\begin{array}{l}\lambda_{1}^{(j)}\\\vdots\\\lambda_{n}^{(j)}\end{array}\right\}\infty a_{j}\geq 0$ and $\sum_{j=1}^{\infty}a_{j}=1$ .

Since $\lambda_{1}^{t^{j)}}\leq 0,$ $a_{j}\geq 0(j=1,2\cdots)$ and
$\sum_{j=1}a_{j}=1$

, we can show

the relation $\lambda_{1}^{(j)}=0(j=1,2, \cdots)$ . Thus, let $W=U\cap H$ , then $W$

is a bounded convex subset in the subspace $H$ and $\{\lambda^{tJ)}\}_{j=1}^{\infty}\subset W$ .
Since the dimension of $H$ is $k-1$ , by the assumption of mathematical
induction, $\lambda$ is an element of $W$ . Therefore $\lambda$ is an element of $U$ and
so we have the complete proof of theorem.
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