Nihonkai Math. J.
Vol.14(2003), 43-54

CONVERGENCE THEOREMS TO COMMON FIXED POINTS
FOR INFINITE FAMILIES OF NONEXPANSIVE MAPPINGS IN
STRICTLY CONVEX BANACH SPACES

TOMONARI SUZUKI*

ABSTRACT. In this paper, we prove convergence theorems to common fixed points
for infinite families of nonexpansive mappings in strictly convex Banach spaces.
One of our results is the following: Let C be a compact convex subset of a strictly
convex Banach space E. Let {T,, : n € N} be a sequence of nonexpansive mappings
on C with N2, F(T,) # @. Let {\,} be a sequence of positive numbers such
that 32, A\, < 1. Define a sequence {z,} in C by z; € C and

n n
Tpt1 = (1 - Z/\i) Tn + Z/\iTizn

=1 t=1

for n € N. Then {z,} converges strongly to a common fixed point of {T}, : n € N}.

1. INTRODUCTION

A mapping T on a closed convex subset C of a Banach space E is called a nonex-
pansive mapping if [Tz — Ty|| < ||z — y|| for all 2,y € C. We denote by F(T) the
set of fixed points of T. We know that F(T) is nonempty if E is uniformly convex
and C is bounded; see Browder [1], Gohde [7], and Kirk [11]. In 1953, Mann [14]
considered the following iteration scheme: z, € C and

(1) Tnt1 = @ TTy + (1 — ap)z,

for n € N, where {a,} is a sequence in [0,1]. Later several authors have studied
Mann’s iteration process; see Edelstein and O’brien [5], Groetsch [8], Ishikawa [9],
Opial [15], Outlaw [16], Reich [17] and so on. For example, Reich [17] proved the
following: (1) converges weakly to a fixed point 2 of T if E is uniformly convex and
the norm of E is Fréchet differentiable, C is closed and convex, T is nonexpansive and
has a fixed point, and {a,} satisfies ) > ; an(1—,) = co. Also Ishikawa [9] proved
the following: (1) converges strongly to a fixed point z of T if C is compact and
convex, T' is nonexpansive, and {a,} satisfies Y - @, = 0o and limsup, a, < 1.
Convergence theorems for families of nonexpansive mappings are proved in Crombez
[4], Ishikawa [10], Kitahara and Takahashi [12], Linhart [13], Takahashi and Tamura
[21] and so on. For example, Linhart [13] proved the following:
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Theorem 1 (Linhart [13]). Let C be a nonempty, compact and convez subset of a
strictly convexr Banach space E. Let {T, : n € N} be a sequence of nonezpansive
mappings on C. Suppose that T; o T; = T; oT; for i,j € N. Let {ay, : n € N} be
a sequence in (0,1). Put Uiz = o;Tix + (1 — o)z for i € N and z € C. Let f be
a mapping on N satisfying for k,n € N, there erists m € N such that m > n and
f(m) = k. Define a sequence {z,} in C by z, € C and

Tnt1 = Ufn) © Usn-1) 0 -+ - o Us1) 71
forn € N. Then {z,} converges strongly to a common fized point of {T, : n € N}.

In this paper, motivated by Linhart’s result, we consider another iteration scheme
and prove convergence theorems for infinite families of nonexpansive mappings in
strictly convex Banach spaces.

2. PRELIMINARIES

Throughout of the paper, we denote by N the set of positive integers. A Banach
space E is called strictly convex if ||z+y||/2 < 1 for all z,y € E with ||z|| = |ly|| =1
and z # y. A Banach space F is called uniformly convex if for each € > 0, there
exists 6 > 0 such that ||z + y||/2 < 1 — ¢ for all z,y € E with ||z|]| = ||y|| = 1 and
llx — y|| > €. It is clear that a uniformly convex Banach space is strictly convex.
The norm of E is called Fréchet differentiable if for each z € F with ||z|| = 1,
lim,,o(||z + ty|| — ||z||)/t exists and is attained uniformly in y € E with ||y|| = 1.
A Banach space E satisfies Opial’s condition if for each weakly convergent sequence
{zx} in E with weak limit z, liminf, ||z, — z|| < liminf, ||z, — y|| for all y € E with
y # z. All Hilbert spaces and #?(1 < p < oo) satisfy Opial’s condition, while L?
with 1 < p < oo and p # 2 do not.

The following lemmas are used in the proofs of main results.

Lemma 1 (Browder [2]). Let E be a uniformly convexr Banach space and let C
be a bounded closed convezr subset of E. Let S be a nonezpansive mapping on C.
Let {z,} be a sequence in C such that {z,} converges weakly to some z € C and
{lISzn — za||} converges to 0. Then Sz = z.

The following lemma is essentially proved by Opial [15].

Lemma 2 (Opial [15]). Let E be a Banach space which satisfies Opial’s condition.
Let S be a nonexpansive mapping on a closed convez subset C of E. Let {z,} be a
sequence in C such that {z,} converges weakly to some z € C and {||Sz, — z,||}
converges to 0. Then Sz = z.

Bruck {3] proved the following interesting lemma.

Lemma 3 (Bruck [3]). Let C be a closed convex subset of a strictly convez Ba-
nach space E. Let {T,, : n € N} be a sequence of nonezpansive mappings on C.
Suppose (o, F(T,) is nonempty. Let {a,} be a sequence of positive numbers with
> o san=1. Then a mapping S on C defined by

[o o]
Sz = E anT,z

n=1
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for x € C is well-defined, nonezpansive and F(S) = (oo, F(T,) holds.
The following lemma was proved by Reich [17]; see also [20].

Lemma 4 (Reich [17]). Let C be a nonempty closed convex subset of a uniformly
convezr Banach space E whose norm is Fréchet differentiable and let {U, : n € N}
be a sequence of nonexpansive mappings on C with (.-, F(U,) # &. Letx € C and
Wy = UpUp_y -+ Uy for all n € N. Then the set ((oey co{Wmnz : m > n}) N(MNhe,
F(U,)) consists of at most one point, where c6{W,,z : m > n} is the closure of the
convez hull of {Wpx : m > n}.

3. LEMMAS
To prove our main results, we also need the following lemmas.

Lemma 5. Let {2,} and {w,} be sequences in a Banach space E and let {a,} be a
sequence in [0,1] with limsup, a, < 1. Suppose that 2,1 = apwy, + (1 — ay)2, for
alln € N, ‘

lim sup ||wn, — Wnikl| = |20 — 2n4kl| <O
n—oo

for all k € N, and the limit of {||wn, — 2,||} exists. Then

7}1{1010 |wnsk — znll| = (1 + 0n + - - + Cngi—1) - jl_i_)lgo llwj = 2ll| =0

- hold for all k € N.

Proof. Put d = lim,, ||w, — 2,|| and @ = (1 —limsup, @,)/2, and fix k € N-and € > 0.
Then there exists 7o € N such that d — ¢ < ||lwp, — 2,|| < d+¢,0< a, <1-a and
|lwntj — Wall — ||2n4+j — 2n]| < e forall n > ng and j € {1,2,--- ,k}. Fix n € N with
n > ng. We first show
(k = 3)(k +2)
: €
ak—J

(2) lwnik — zn+j“ > (1 +tapg;+--+ Qnik-1) - d—

for j € {0,1,2,--- ,k — 1}. From
d—e¢
< lwntk — Znsill
< ongk-1||Wntk — Wngk—1|l + (1 — Cnsk—1)|Wntk — Znti—1]l
< tnik-1llZntk — Zask-1ll + € + (1 — Anpk—1)l|Wnik — 2Znik-1ll
=02k 1llwnik-1 — Zngx—1ll + &+ (1 — ante-1)|[Wntk — 21l
< a?u+k—1d +2¢ + (1 — ansk—1) Wtk — Znsr—1ll,

we obtain

(1—ofk-1)d— 3¢

1—apir—1

k+2
> (1 + nppmt)d —

“wn+k - zn—Hc—l“ 2

E.
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So, (2) holds in the case of j = k — 1. If (2) holds for some j € {1,2,---,

then from

k-1 .
(1 + Zan+¢) - -22(_/: +2,

< |wnsk = Zn4sll
< onyj-t1l|wnsk — Wntji1ll + (1 = @npj-1)l|Wntk — 2arjll
< onij1llznsk = Znpj-ill + € + (1 — antjo1) ||l wnik — zntjll

k-1
<ontjc1 D lentivs — znsill +€
i=j—1
+ (1 — antj-1)||lwntk — Znj—1]|
k—1

= Qn4j-1 Z AntillWnti — Znill +€
t=j—1
+ (1 = ontj—1) | wntk — Zntj1ll
k-1
< Onyja Z anti(d+¢) +e+ (1 — anyj-1)||Wnik — 2Zntjall
i=j—1
k-1

< Qpyjoi Z Antid + (k + 1)e + (1 — angj-1) [Wask — Znsjall,

i=j—1

we obtain

”wn+k — Zn+tj- 1"

1 + z;-—] aﬂ+1 aﬂ+] 1 Zz—-_g 1 a'n+‘l

d
1- Qnyj—1
S—%?ﬁ+%k+n
1-aptja
(k—7+1)(k+2)
> (1 + Z a,,+,-) d— ) E.
i=j—1
So, (2) holds for all j € {0,1,2,--- ,k — 1}. Specially, we have
k(k+2
® lnis = zall 2 (1 + 0+ 00+ tngea) - d = ZEL D
On the other hand, we have
k—1
(4) lwnsk = Znll < ||wnik — znaxll + Z lzn+itr — znall
=0
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k-1
= ”wn+k - zn+k” + Z O‘71.~l~i“wn+'i - zn-!-i”
i=0
k—1
<d+e+ ) ani(d+e)
1=0
k-1
<d+ ) anpd+ (k+1)e.
=0
From (3) and (4), we obtain
k(k + 2)
—Z¢.
ak
This completes the proof. : 0O

I”wn+k —zl-(l+an+---+ an+k—1)d| <

By using'Lemma 5, we obtain the following.

Lemma 6. Let {2,} and {w,} be bounded sequences in a Banach space E and let
{an} be a sequence in [0,1]) with 0 < liminf, o, < limsup, o, < 1. Suppose that
Zn+1 = QpWn + (1 — ay)2, for alln € N, :

lim sup ||wy, — Wnyk|l — ||2n — Znsx]] <O
n—oo

for all k € N, and the limit of {||w, — 2,||} ezists. Then lim, ||w, — z,|| = 0.

Proof. We put @ = liminf,a, > 0, M = 2 - sup{||z|| + ||lwn]| : » € N} and
d = lim, ||lw, — 2,||. We assume d > 0 and fix k¥ € N with (1 + ka)d > M. By
Lemma 5, we have

lirgo |“wn+k —Zoll = (T4 an+---+ Ontk-1) * dl =0

n—
and hence :
lim sup ||Wp4k — 25|l > (1 + ka)d > M.
n-—>00
This is a contradiction. Therefore d = 0. O

4. MAIN RESULTS

In this section, we state our main results. We first prove a strong convergence
theorem.

Theorem 2. Let C be a compact conver subset of a strictly convez Banach space E.
Let {T,, : n € N} be a sequence of nonezpansive mappings on C with (oo, F(T}) #
. Let {\.} be a sequence of positive numbers such that Y oo | A, < 1, and let {I,}
be a sequence of subsets of N satisfying I, C Iy, forn € N and \J2, I, = N.
Define a sequence {z,} in C by z; € C and

Tny1 = (1 - Z /\i) Tn + Z AiliTy,

i€ln i€ln
for n € N. Then {z,} converges strongly to a common fized point of {T,, : n € N}.
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Before proving Theorem 2, we prove the following.
Lemma 7. Let C be a closed convex subset of a Banach space E. Let {T,, : n € N},
{An}, {In} and {z,} as in Theorem 2. Then the following hold:

(i) Forw e N2, F(T}) and n € N, ||Za41 — w|| < [lzn — wl|;
(ii)) {zn:n € N} and {Tyz, : k,n € N} are bounded;
(iii)
M_" Er— Ai Txﬂ
Dier, M zz— Ai

Proof. vWe note that {z,} is well defined by Lemma 3. Without loss of generality,
we may assume that I; # &. We have

o=l < (12 58) =l + Mo~ T

= lim = 0.

n—oo

lim
n—oo

zn - xn

i€l, icl,
< (1 - Zf\i) lw = zall + D Millw — ]|
i€ln i€la
= |lw — za||
for w € N2, F(T;) and n € N. So (i) is shown. We fix k,n € Nand w € N2, F(T;),

and put M= lz1 — w|| + ||w||. Then we have
1Tkl < || Thzn — wl| + [[w]| < lzn — w]| + [[w]| < 21 — w|| + [|lw|| = M
Hence (ii) is shown. We note that

:1:n+1=(1—Zz\,~).1:n (Z’\) .e,/\i’x,.

i€l, i€l, 16[7;

for n € N. Since

T 2561"_“ /\1‘Tixn+l
+1 —
" Zi61n+1 A
EiEIn A Tm” Ztel A Txn Zie]n+1 A’ﬂxn
< ||Zn1 — —="— - 3
zzeln 1€Iu E;e[,‘_'_‘ t
+ Zi&ln-H AiTizn Eiel,..H ’\"‘Tlx‘n-i-l
D ielop i D iehy, N
. Tz
< ||#ns1 — ZEI.. z/\t‘ n + Zteln+1\1,. Z/\ Tz,
i€k 7 (Cier, X) - ( i€lnys N ) i€ln
1 1
e, > ATz + s > MlTiwn — Tiznnll
iGIn-I-l T iEI,..H\I,. ‘ieln-}-l 1 iGIn+1
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. NTix 2M S . A
< ||Tog1 — 2ier, M ZZGIHI\I” gt lzn — Tnial|
Eieln Ai Ziel,.+1 Ai
= ||z, — ZiGIn /\Zﬂx" 2M ZiEIn-H\In /\'
" Ziel Ai Zieln+1 Ai
ATz
<z, - ZEI_A o Y
Z‘EI i€lni1\In
for n € N, we have
Ziezm AiliTm _ Z,g X1z,

Tm —

2Mz,\

i€l \In

T
ZtEIm A" " Zieln

for m,n € N with m > n. Hence

i Az, ier. MLT
lim sup ||z, — Lict, ad Ty — Z:’—ell‘—n 2M Z Ai
m—o0 Zie[m Ai Zieln Ai i€EN\I,
for n € N. Therefore '
_ Zuietn MTiZm Liies, ATiTn

< liminf ||z

n—>oo

lim sup ||z,,
m—0o0

Z‘iEIm Ai

{

exists. For each k,n € N, we also have

Eieln-H, AiTixﬂ-f-k Ziel,. ATy

Ziel,. Ai

i.e., the limit of

>icr, MiliTn
zieI,, Ai

xn—

|

Ziel,,+k A - Zieln ¥ ~ ||Tnsr — Zn|
< ZiEIn+k AT T4k _ > icr, MTiTavk
- Eiel,ﬂ.,e Ai Eieln Ai

H Beg e ZZ 2L e — 2l

Dier, A i€l, M
< ‘ Eie!,.H ’\iTixn+k _ Ziel,, ATk
- Eiel,,+,, Ai Eiel,, Ai
Zieln+k\1,. Ai

< D ATkl + =— Y Nl Tiznssl]
(Eielﬂ+k A1) (EiEIn A) i€l Ezeln"'k 1'€In+k\1n

< 2 ZiEIn+k\In A"M
- Zieln-(-k Az




Hence we obtain
Zie]n+k /\iTixn+k B Ziel,. ATz,
Ziel,w, Ai Eiel,, Ai

for kK € N. By Lemma 6, we have

lim sup
n—o0

- ”xn+k - xn“ <0

lim ||z, — et MT@n || _
noo Dier, M
For each n € N, we also have
Zy — ?Zlo;\iTizn
Z.‘=1 Ai
<z, - Zieln ATz, Zie],. ATz, _ 221 ATz,
Zie[n Ai Eie[,. Ai Ei’il Ai
<z, — Eiel,, ATz, Zie]n ATz, _ Ziel,, ATz,
B Ziez.. Ai Ziel,. Ai Zi‘il Ai
_1 ATz,
N Zfil Ai ,-GNZ\:," '
Zie[n AiTizy ZieN\I,. Ai
< llxn — S ier M + e M) - (o, A) §Ail|ﬂz‘n|l

1
+ %N > Xil|Tizal)
=17 JeN\I,
_ >icr, MTiTn zieN\In Ai ‘
< |z, + — > _AM
Zier,. Ai (Ziel.. )‘i) (o2 M) iel,
+ EteoNo\I,, M
Zi:l Ai
= ||z — Diet, MiTiTn 23 e, i M
- n o0
Ziel,, Ai Z.~=1 Ai
Therefore we obtain
lim ||z, — 2 X% _
n—o00 n 2;‘:1 Ai )

Therefore we have shown (iii). This completes the proof.

Proof of Theorem 2. Define a nonexpansive mapping S on C by

Sp = Ez‘f__olo Tz
Zn:l Aﬂ
for z € C. By Lemma 7, we have

lim ||Sz, — z,|| = 0.
n—o00



Since C' is compact, there exists a strongly convergent subsequence {z,, } of {z,}
with strong limit z € C. Since

||SZ - z“ = limsup (”SZ - ank” + ”S"Enk - x"k“ + ||xnk - z”)
k—o0
< limsup (2)|zn, — || + ||Szn, — Tn,l|)
k—o0

=0,

z is a fixed point of S and hence is a common fixed point of {T}, : n € N} by Lemma
3. So using Lemma 7 again, we have ||zp,4+1 — 2|| < ||z, — z|| for n € N. Therefore
{zn} converges strongly to z. _ O

As a direct consequence of Theorem 2, we obtain the following.

Corollary 1. Let C be a compact convez subset of a strictly convex Banach space E.
Let {T,, : n € N} be a sequence of nonezpansive mappings on C with 3, F(T,) #

o0

. Let {\n} be a sequence of positive numbers such that 3 o> A\, < 1. Define a
sequence {z,} in C by z, € C and

n n
Tnt+1 = (1 - Z )\z) Tn+ Z AiTizy,
1=1 =1
forn € N. Then {z,} converges strongly to a common fized point of {T,, : n € N}.

Proof. We put I, = {1,2,--- ,n} for n € N. Then by Theorem 2, we obtain the
desired result. a

We next prove a weak convergence theorem.

Theorem 3. Let E be a Banach space. Suppose either of the following holds:

(i) E is strictly convez and satisfies Opial’s condition; or
(ii) E is uniformly conver and its norm is Fréchet differentiable.

Let C' be a weakly compact convex subset of E and let {T,, : n € N} be a sequence
of nonezpansive mappings on.C with (oo, F(T,) # . Let {\,} be a sequence of
positive numbers such that 3 o> . A, < 1, and let {I,,} be a sequence of subsets of N
satisfying I, C Inyy forn € N and (U, , I, = N. Define a sequence {x,} in C by

1 € C and
Tn+1 = (1 - Z )\i) Tn + Z ATz,

i€l, i€l
forn € N. Then {z,} converges weakly to a common fized point of {T,, : n € N}.

Proof. Define a nonexpansive mapping S on C by
Yoo i AnTh

Sz =
Dot An

for x € C. By Lemma 7, we have

lim ||Sz, — z,| = 0.
n—oo
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Assume that {z,} is not a weak convergent sequence. Then since C is weakly
compact, there exist two distinct weak sequential limits 2; and 2z, of the subsequence
{zn,;} and {z,, } of {z.} respectively. By Lemma 1 and Lemma, 2, 2, is a fixed point
of S and hence 2, is a common fixed point of {7, : n € N} by Lemma 3. So is 25.
In the case of (i), using Lemma 7 again, we obtain

lim llen — 2| = Jim [lan, = 21l < Jim lloa, - 22l = lim [l2n — 2]

= lim {lzn, — 2| < lim ||lzn, — 2| = lim [jz, — 2.

This is a contradiction. In the case of (ii), for each n € N, we define a nonexpansive
mapping U, on C by

Uy = (1~ZA,.) o+ 3 ATz
i€l, i€l,

for x € C. Then {z,} can be written as zp4; = UpUp—; - - - Uz;. By Lemma 3, we
have F(U,) = (er, F(Ti) for n € N and hence

F(S) = () F(To) = () F(Uy).

Since 2z; and 2, are weak subsequential limit and belong to F(S), we have

21,29 € (m co{Wyx:m > n}) n (n F(Un)) y

n=1
where W,, = Up,U,,—; ---U; for n € N. By Lemma 4, we get a contradiction. This
completes the proof. O

As a direct consequence of Theorem 3, we obtain the following.

Corollary 2. Let E be a Banach space. Suppose either of the following holds:

(i) E is strictly convez and satisfies Opial’s condition; or
(ii) E is uniformly convex and its norm is Fréchet differentiable.

Let C be a weakly compact convezr subset of E and let {T,, : n € N} be a sequence
of nonezpansive mappings on C with (oo, F(T,) # @. Let {\,} be a sequence of
positive numbers such that Y .-, A\n < 1. Define a sequence {z,} in C by z, € C

and
n n
st = (1 -y ,\.-) o+ 3 AT
i=1 =1

for n € N. Then {z,} converges weakly to a common fized point of {T,, : n € N}.
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5. APPENDIX
Concerning Lemma 3, we prove the following characterization theorem.

Theorem 4. Let E be a Banach space. Then the following are equivalent:

(i) E is not strictly convez;
(ii) there ezist affine and nonezpansive mappings Ty and T, defined on a compact
convex subset C of E satisfying

F (M) £ F(Ty) N F(Ty).

2
Proof. By Lemma 3, (ii) implies (i). So, we shall show (i) implies (ii). Assume that
E is not strictly convex. Then there exist « and v in E such that ||u|| = ||v|| =

|lu+v]|/2 =1 and u # v. We define a compact convex subset C of E by
| C={au+pv:a>0,>0,a+p<1}
and affine mappings 7 and 75 on C by
Ti(ou+ fv) = (a+ B)u and Tp(au+ Bv) = (a+ B)v.

Then T, and T, are nonexpansive mappings; see [18]. It is clear that

F (Tl—;]é) = {g—(u+v) ro € [0,1]} and

F(T1) N F(T3) = {0}.
This completes the proof. O
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