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JACOBI OPERATORS ON A SEMI-INVARIANT
SUBMANIFOLD OF CODIMENSION 3
IN A COMPLEX PROJECTIVE SPACE

U-HANG K1 AND HYUNJUNG SONG

ABSTRACT. In this paper, we characterize some semi-invariant submanifolds of codi-
mension 3 in a complex projective space CP"t! in terms of the shape operator. A,
the structure tensor field ¢ and the Jacobi operator R, with respect to the structure
vector field &.

0. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold M with
complex structure J if it is endowed with a pair of mutually orthogonal and com-
plementary differentiable distribution (T, T1) such that T is J-invariant, and T+ is
totally real ({1], [19]). In particular, M is said to be a semi-invariant submanifold if
dimT+ = 1, and the unit normal in JT is called a distinguished normal to M (23,
[17]). In this case, M admits an induced almost contact metric structure (¢,¢, g).

A typical example of a semi-invariant submanifold is real hypersurfaces. Tak-
agi([15]) classified homogeneous real hypersurfaces of a complex projective space
by means of six model spaces of type A;, A2, B,C,D and E, further he explicitly
write down their principal curvatures and multiplicities in the table in [16].

Cecil and Ryan [3] extensively investigated a real hypersurface which is realized
a tube of constant radius r over a complex submanifold of CP™ on which £ is
principal curvature vector with principal curvature o = 2 cot 2r(A¢ = af) and the
corresponding focal map ¢, has constant rank, where we denote by A the shape
operator of a real hypersurface in CP™.

On the other hand, Okumura [10] characterized real hypersurfaces of type A;
and Az by the property that the shape operator A and structure tensor field ¢
commute. Namely he proved

Theorem O [10]. Let M be a connected real hypersurface of CP™. If M satisfies
¢A = A¢, then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyperplane CP™~1,
where 0 < r < %),

(A2) a tube of radius r over a totally geodesic CP*(1 < k <n—2),
where 0 <r < Z.
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We denote by V the Levi-Civita connection with respect to g. The curvature
tensor field R on the submanifold M is defined by R(X,Y) = [Vx,Vy] — Vix,y)
where X and Y are vector fields on M. We define the Jacobi operator R¢ = R(-, £)¢
with respect to the structure vector field {. Then Ry is a self-adjoint endomorphism
on the tangent space of a CR submanifold. In the preceding work [4], Cho and
the present author give another characterization of real hypersurfaces of type A;
and Az in a complex projective space CP™ in terms of the shape operator A, the

structure tensor field ¢ and the Jacobi operator R¢. More specifically, they proved
the following:

Theorem CK [4]. Let M be a connected real hypersurface of CP™. If M satisfies
Re¢pA = APR¢, then M is locally congruent to one of the following spaces:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyperplane CP™1,
where 0 <r < %),

(A2) a tube of radius r over a totally geodesic CP*(1 < k <n —2),
where 0 <r < %.

For the real hypersurface of a complex space form many results are known. And
new examples of nontrivial semi-invariant submanifolds in a complex projective
space are constructed in [8], [14]. Therefore we may except to generalize some
results which are valid in a real hypersurface to a semi-invariant submanifold. From
this point of view, a semi-invariant submanifold of codimension 3 in a complex
projective space are investigated in [6], [7], [8], [18] and so on by using properties
of the third fundamental form of the submanifold and those of induced almost

contact metric structure. One of them, Takagi and the present authors [8] assert
the following;:

Theorem KST [8]. Let M be a real (2n — 1)-dimensional (n > 2) semi-invariant
submanifold of codimension 3 in a complex projective space CP™+! such that the
third fundamental tensor n satisfies dn = 20w for a certain scalar (< £), where
w(X,Y) = g(X,8Y) for any vectors X andY on M. Then M has constant eigen-
values corresponding the shape operator A in the direction of distinguished normal
and the structure vector £ is an eigenvector of A if and only if M is locally congruent
to a homogeneous real hypersurface of CP™.

The main purpose of the present paper is to extend Theorem CK under certain
conditions on a semi-invariant submanifold of codimension 3 in a complex projective
space. Namely, we prove

Theorem. Let M be a real (2n — 1)-dimensional semi-invariant (n > 2) sub-
manifold of codimension 8 in a complez projective space CP™! such that the
third fundamental form n satisfies dn = 20w for a certain scalar 6(< £), where
w(X,Y) = g(X,dY) for any vectors X andY on M. If M satisfies RepA = APRg,
then M 1is locally congruent to one of the following spaces in CP™:

(A1) a geodesic hypersphere (that is, a tube of radius r over a hyperplane CP™"1,
where 0 < r < %),

(A2) a tube of radius r over a totally geodesic CP" 1<k<n-2),
where 0 <r < I.



Remark. The above Theorem can be considered by fact that the submanifolds of
type A; and A; satisfy the condition R¢¢A = AR respectively.

All manifolds in this paper are assumed to be connected and of class C*® and
the semi-invariant submanifolds are supposed to be orientable.

1. Preliminaries

Let M be areal 2(n+ 1)-dimensional Kaehlerian manifold equipped with parallel
almost complex structure J and a Riemannian metric tensor G and covered by a,
system of coordinate neighborhoods {V;y*}.

Let M be a real (2n — 1)-dimensional Riemannian manifold covered by a sys-
tem of coordinate neighborhoods {V;z"} and immersed isometrically in M by the
immersion i : M — M.

Throughout this paper the following convention on the range of indices are used,
unless otherwise stated:

A,B,C,---=1,2,3,---,2(n+1); 4,5,k,---=1,2,3,--- ,2n — 1.

The summation convention will be used with respect to those system of indices. In
the sequel we identify i(M) with M itself and represent the immersion by y4 =
y4(z).
We put
BiA = Biy“‘, 0; = 6/617'

and denote by C,D and E three mutually orthogonal unit normals to M. Then
denoting by g the fundamental metric tensor with components g;; on M, we have
9ii = G(Bj, B;) since the immersion is isometric, where we have put B; = (BJ-A).

As is well-known, a submanifold M of a Kaehlerian manifold M is said to be a
CR submanifold ([1}, [19)) if it is endowed with a pair of mutually orthogonal and
complementary differentiable distribution (T, T+) such that for any p € M we have
JTp = Ty, JT,* C T,- M, where T,- M denotes the normal space of M at p. In
particular, M is said to be a semi-invariant submanifold ([2], [17]) provided that
‘dimT" = 1 or to be CR submanifold with CR dimension n — 1 ([13]). In this case
the unit vector field in JT is called a distinguished normal to the semi-invariant
submanifold and denoted this by C. Then we have

(1.1) JB; = $;*B), + &C, JC =-¢*B,, JD=-E,JE=D,

where we have put ¢;; = G(JB;j, B;),& = G(JB;, C),£" being associated com-
ponents of &, (see [8]). A tensor field of type (1,1) with components ¢, will be
denoted by ¢. By the Hermitian property of J, it is seen that ¢;; is skew-symmetric,
and that

"dr = —5P + &ith, ot =0, & =0,
gn¢jr¢i’ =gji — &&, &€ =1,

namely, the aggregate (¢, £, g) defines almost contact metric structure.
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Denoting by V; the operator of van der Waerden-Bortolotti covariant differen-
tiation with respect to the induced Riemannian metric tensor g, the equation of
Gauss for M of M is obtained:

(1.2) V;B; = AjiC + K;;D + L;;E,

where Aj;, K;; and Lj; are components of the second fundamental forms in the

direction of normals C, D, E respectively. Equations of Weingarten are also given
by

V;C = —Athh + ;D + m;E,
(1.3) V;D = —thBh - 1;C +n;E,
VjE = —Lthh - ij - n,-D,

where A = (A*),A) = (K;*) and Ags) = (L;*), which are related by 4;; =
A;"9ir, Kji = K;"gir and Lj; = L, gir respectively, and lj,m; and n; being com-
ponents of the third fundamental forms.

In the sequel, we denote the normal components of V;C by VJ-LC. The distin-
guished normal C is said to parallel in the normal bundle if we have V;C = 0, that
is, l; and m; vanish identically.

Since J is parallel, by differentiating (1.1) covariantly along M and using (1.1),
(1.2) and (1.3), and by comparing the tangential and normal parts, we find (see

(18])

(1.4) Vg = —A;E" + Alg,
Ls) Viti=—Aydy,
(1.6) Kj; = —Ljr¢;" — m;é&i,
(1.7) Lj; = Kjr ;" + 1.

Now we put U; = §"V,§j. Then U is orthogonal to the structure vector é.
Because of (1.5) and properties of the almost contact metric structure, it follows
that

(1.8) ¢err = Ajrgr - af;,

1.9) UVt = A, 26" — aAjt",

where we have put a = A;;£/¢¢.



Remark. In'w'hat follows, to write our formulas in convention forms, we denote
by B8 = Aj,-2£J£', b= ntE‘,T,A(g) =k and v = (Vk)€t.

From (1.8), we get g(U,U) = B — a®. Thus we easily see that A¢ = af if and
only if 8 —a? = 0.

Differentiating (1.8) covariantly along M and making use of (1.4) and (1.5), we
find

(1'10) fj (AkrUr + Vka) + ¢jrkar = frVkAjr - AjrAka¢” + aAkrd’jra
which shows that
(1.11) (Vi Are)ETE® = 244U + Via.

In the rest of this paper we shall suppose that M is a Kaehlerian manifold of
constant holomorphic sectional curvature ¢, which is called a complez space form.
Then equations of Gauss and Codazzi are given by

¢ )
Rijin =Z(9khgji — GinGki + Okndji — Pindri — 20k Pin)

(1.12)
+ AxnAji — AjnAki + KinKjs — KjnKii + LgnLj; — Ljn L,
VkAj,' - VjAk,' - lej.' + leki - kaj,' + mij,-
1.13 c
(113) = Z(€k¢ji —&iPri — 26idrj),
(1.14) VkKj,‘ - Vij.' = leki - lkAji + nij,' — nij.-,
(1.15) ViLji — V;jLg; = mjAg; — mpAj; — ﬁkKji + 1 Ky,

where Ryj;n are covariant components of the Riemann-Christoffel curvature tensor
of M, and those of the Ricci by

(1.16) Vilj — Vil = Aj K" — Age K™ + mjng — many,
(1.17) Vim; — Vijmg = A Ly — Ak,.Ljr + njly — nglj,
(1.18) Vin; — Ving = Kjr L — KipLf" + ljmy — lem; + §¢,,,-.

2. Semi-invariant submanifolds satisfying dn = 26w
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In this section we shall suppose that M is a semi-invariant submanifold of codi-
mension 3 in a complex projective space CP™*! and that the third fundamental
form n satisfies dn = 26w for a certain scalar § on M, namely,

(2.1) Vjin; = Vin; = 20¢j,‘.

Then we see that dn = 26w is independent of the choice of D and E.
There is no loss of generality such that we may assume T;.A(3) = 0 (p.61, [8]).
From (1.6) and (1.7), we have

(2.2) Kj,-fr = —-m;, Lj,-fr = lj,

(2.3) m.f" =k, £ =0.
Further we obtain

(2.4) Girl” =mi + k&, ¢irm” = -1,
From (1.12) we have

—(Re)js =5 (95 — €56) + cAgi — (A3r€")(Aub”)
+ kKj,' - mim; — ljh

(2.6)

because of (2.2) and (2.3), where we denote by (R¢)ji = Rjkin*€".
From (1.18) and (2.1) we have

Kj,-L,-r - K,',-Ljr -+ l_,-m.- - l.-m,- = 2(0 -_— E)(ﬁij,
which together with (2.5) yields
@.7) KjeLi" +lmi = (0 - )b

We notice here that 8 is constant if n > 2 (see [8]).
In the previous paper [8], we proved the following:

Lemma 2.1 [8]. Let M be a semi-invariant submanifold of codimension 3 in
CP™*1 satisfying (2.1). If 0 # §, then we have V;*C = —k&E on M. Further if
A€ = af, then the distinguished normal is parallel in the normal bundle.

In what follows, we assume that M satisfies (2.1) with 8 # £ and n > 2. Then
by Lemma 2.1 and (1.3), we have

(2.8) lj = 0, m; = —kEj
Thus (1.6), (1.7) and (2.7) turn out respectively to

(29) Ljr¢ir = —Kji + k{i&’
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(2.10) Kjr¢;," = Lji,

(2.11) KjrLi" = (6 — )i
From the last two equations, it follows that

c
(2.12) L;?=(0- 7)(95i = &)-

Furthermore, if we make use of (2.8), then the other structure equations (1.13)
~ (1.17) are reduced respectively to

(2.13) ViAji — VijAgi = k(& Lis — §xLji) + j:-(fkdm — &iOki — 26idr;),

(2.14) ViKj; — VjKyi = ngLj; — njLys,

(2.15) ViLji — ViLgi = k(§xAjs — € Aki) — nieKjs + nj Ky,
(2.16) A K — Ak K™ = k(nkés — nyée),

217)  AjeLy — AL = &Yk — &Vik + k(Akrd]” — Asr i),

where we have used (1.5). Because of (2.2) and (2.8), it is clear that
(2.18) Kjr&r = ké]’ Ljr&r = 0-

Multiplying (2.16) and (2.17) with £* and summing for the index k, we have
respectively

(2.19) E'A,,-Kjr = kAj,-Er + k(n.,- - [LE,'),

(2.20) €'Au~L,-" =v§; — Vjk + kU;

by virtue of (1.5) and (2.18).
Transforming (2.19) by ¢,’ and taking account of (2.10), we find

(2.21) §° Ay Ly = k(¢prn” — Us),
which together with (2.20) implies that
(2.22) Vik = vE; — k(gjen” — 2U;).
If we transform (2.17) by ¢,* and make use of (2.9) and (2.22), then we obtain
AerLi" 9" + Ajr K™ =k{(n: — p&i)&; + 26;(Airl™ — ai)
+ 26 A€ — Aji — Aurdi" 9"},
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or, use (2.16)
(2:23) AL 6" = AL,

Since 0 is constant if n > 2, by differentiation (2.12) covariantly gives
(220)  LpVeL + LuVaL] = (0= ) (EAud + Eiuedy"),

from which, taking the skew-symmetric part with respect to indices k and j and
making use of (2.11) and (2.15),

LjpViL;" — L VL™ + k(EeAjrL;" — € Arr L")
¢ r r r r
| = (0 — PAnsdri — nidji + & Arr ™ — EeAjrd” + &i(Arr )™ — Ajr )}

for any indices k, j and i. Thus, interchanging indices k and i, we get

L;wViLy — Ly VL + k(&Ajr Ly — & Air L)
c
= (0 — PDinsdie — nidje + & Ay — EiAjrdy’ + Ex(Aird” — Ajrdi")}-
Hence, if we use (2.11) and (2.15), then we obtain
LJrVkLtr - L«"'VkL]r
c r r AT
= (0 — P{2nedij + §Ardy — GAjrde’ + Ex(Aird” — Ajrdi")}
+ k{&i(ArrL;" + Air L)) — &i(Arr L™ + Ajr L)) + & (Air L™ — Ajr L)},
which together with (2.24) yields
2LerkL"r

=(0- g){znkdu,- + & (At + Arrdi”) + Ei(Akrd;” — Ajedy)

-+ &(Aird” — Ajrdi)}
+ k{&(Axr L;" + Air Ly) — &i(Arr L™ + Aje Ly") + &x(Air L™ — Ajr L")}

Multiplying &/ to the last equation and summing for j, and taking account of
(2.18) and (2.21), we find

6 - -E)(A.-,d;,,' + Agrd) + (K2 +6 — %)(U,,g; + Uite)
+ k{Aer.'r + Air Ly — k(&idrrn” + €xdirn”)} = 0.

(2.25)

3. The Jacobi operator satisfying R.¢A = A¢R;
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We continue now, our arguments under the same hypotheses dn = 26w for a
scalar 6(# £) as in section 2. Furthermore suppose, throughout this paper, that
R¢¢pA = A¢R€ Then from (2.6) we obtain

T A7+ Aird") = (A3r€)(AuU*) — (A€") (47U%)
= k(Aerir + AirLjr)

(3.1)

where we have used (1.5), (1.7) and (2.8). If we multiply &7 to (3.1) and sum for j,
and make use of (1.8) and (2.18), then we obtain

(3.2) k¢ Aur Ly = —adiUT — 2U;,
which together with (2.21) gives,
K2¢jnT = (k2 — E)Uj — ad;U".

Thus, by applying A,”¢* and using (1.8), it is seen that k%n, Ut = 0.

We set @ = {p € M : k(p) # 0}, and suppose that  is nonempty. From now
on, we discuss our arguments on the open subset 2 of M. Then by the discussion
above we have

(3.3) n(U) =

Lemma 3.1. 6 # £ on Q.
proof. Suppose that § = § on Q. Then from (2.12) it follows that

Lji =0,
which together with (2.9) gives
Kji = k&;&i.
In this case (2.15) turns out to be
k(€kAji — & Aki + njéeéi — niéi&) = 0,

which shows
k{ng + Axr€" — (@ + p)és} = 0.

Then the last two equations imply
Aji = § Al + L A€ — o5&
on . Since U is orthogonal to £, it is seen that
AU =0,

which together with (3.1) and Lj; = 0 implies that A¢ = ¢A and hence A¢ = a¢
on ). Therefore by Lemma 2.1 we have k = 0, a contradiction. This completes the
proof.



Applying (3.1) by L,} and using (2.9), (2.12) and (3.2), we find
TH A5 K + AL 6) = k(458" (Lis A,TU®) + (45,U") (@AwrUT + SUi)
c
= K2{(0 — D Ajk + AL/ Ly + (5 — 0)&Air€),
from which, taking the skew-symmetric part and making use of (2.16) and (2.23),
c .. C c r. C
K {((5 = 0)Awr™ + 26 — (5 — 0) A" + 1nj)é}
= K{(4jr€") (L AU = (Aer) (Lt AU} + 5 (U AerU” = Ui AyrU).
Applying U* to this and using (3.3), we have
c
1B —@®)A;;U" — (Ar,UTU*)U;} = k(U* L A,'U*) A€
If we multiply 4,7¢™ and summing for j, we find
BU*L AU = 0.
From the last two equations, it follows that
B{(B — a®)A;xU" — (A, UTU*)U;} = 0.

Since B(8 — a?) = 0 is impossible because of the second assertion of Lemma 2.1
and (2.3), it is seen that

(3:4) A;xUT = \Uj,
where we have defined the function A by
(ﬂ - az)A = Ar.UrU..
Therefore (3.2) is reduced to
k¢*Aur L] = —(aA + )Uj,
which together with (1.8) and (2.12) yields
c
KO = )65 U" = —(@A + D)Ly U".

Then from Lemma 3.1 and the equation above we have

(3.5) LjpUT = 2¢;,U",

where we have defined

(36) (ah + E)z = —k(0 - :‘;-).
Transforming (3.5) by ¢,” and using (2.9), we find

(3.7) K;,-Ur = zU.-.

Because of (2.11), (3.5) and (3.7), it is clear that
(z2 -0 +-§)¢;,U' =0.

As is already seen that 8 — a? # 0 on 2, we have z2 = 6 — ¢. Thus, by Lemma
3.1, we verify that z is nonzero constant if n > 2. Hence (3.6) implies

(3.8) —a\ =kz + ﬁ-
Thus, using (2.21), (2.22), (3.2) and (3.4), we have
(3.9 Vik = v + (k — z)Uj.
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Remark. al # 0 on . In fact, if not, then we have from (3.8), kx + $ = 0. Since
z is nonzero constant, it follows that k is constant. Thus, (3.9) means k = z, that
is @ = £, a contradiction.

Applying (3.1) by U* and making use of (1.8) and (3.4), (3.5) and (3.8), we find
C\ .\ 9.r c , c c
(kz + Z)Aj’ = /\(5 — B+ ar)A;r€" + (kz + Z)(az\ + 5)5:‘-
Hence, it is verified that
(3.10) AjE = Al + (X + 2)6,

where the function ¢ is defined by

(3.11) ae=B—a)\——-;-

by virtue of the fact that a\ # 0 on Q.
Using (3.9), the equation (2.17) turns out to be

Ajr Ly — AgrLi" = (k — 2) (U — Ur&;) + k(Arrd;” — Ajrdy)-

Multiplying U* to this and summing for k, and making use of (1.8), (3.4), (3.5)
and (3.10), we find

{(k—z)(e —a) + Ak +2)}(A4,-£" —a;) = 0.
Thus, by Lemma 2.1, we have
(3.12) (k—z)(e—a)+ Ak +z)=0.

Now, we are going to prove that Q is empty.

Lemma 3.2. f—a?= 2% on Q.

Proof. By (3.9), (2.22) implies
(3.13) ¢jrn” = (1+ %)Uj-
Thus, by the property of almost contact metric structure, it is clear that
(3.14) nj = s — (1 + 2)esU".
Combining (2.25) to (3.1), we have
(3.15) 0(Ajrd" + Aird;” + Uis + Uj&) = MU;9ir U™ + Ui UT),

where we have used (1.8), (3.4), (3.8) and (3.13). Since 8 — a? # 0, by multiplying
this with U* and summing for i, and using (1.8) and (3.10), we have

Ba—€+ ) = A(8 — o?).
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From this and (3.11), we get (6+a))(8—a?) = (2aA+£)8. Since we have 6 = z?+$
and (3.8), it follows that (k — z)(8 — a?) = 2k6, which proves the lemma.

From Lemma 3.2, we have

20z
Vjﬂ - 2ana = ~(—I;_—a:)2ij,
which together with (3.9) implies that
(3.16) urv,ur= 22y, - 9%

z-k ' (k—z)?
because of g(U,U) = B — a?.
Next, we put A = af + pW, where p is a function on M which is not vanish
on  and W is a unit vector field orthogonal to £. Then we have ¢U = pW and

p? = B — a? because of (1.8). Thus W is also orthogonal to U. Further with (3.10)
and (3.11) we get

(3.17) Ajfe W™ =p€i + (e — a)W;.
by virtue of p # 0 on 2. We have from (3.16)
(3.18) WiUTV,;Ur = 0.

Using (1.8), (2.18) and (2.19), we obtain
PKje W™ = pkWj + k{n; — (a + p);},
which together with (1.8) and (3.14) yields
(3.19) Kj,-Wr = —-sz.

Lemma 3.3. Vk = (k- z)U on .
Proof. Differentiation (3.9) covariantly gives

ViVjik = (V)€ + (v + (kK — 2)Uk }U; — I/Ak,-(ﬁjr + (k — )V Uj,
which shows

(3.20) §iViv — & Vv + v(&Uj — §Uk + Ajrdy” — Akrd;")

= (k — z)(V;Ui — ViUj).
On the other hand, differentiating (3.7) covariantly, we find
(3.21) (VeKr)U™ + K, Vi U™ = 2V, U;,

which together with (3.7) implies that (Vi K;;)UIU* = 0. If we take account of
(2.14), (3.3), (3.5) and the last equation, then we get

UrU.(VrKj‘) = 0-
Applying (3.21) by U* and using this, we obtain
) Kjr(U.V.U") = xU‘V.Uj.
From this and (3.19), it follows that
W'IU.V'U,' =0.

Multiplying U’W* to (3.20) and summing for j and k and making use of (3.4),
(3.17), (3.18) and the last equation, we obtain pr(\ + € — a) = 0 and hence v(\ +
€ —a) = 0. From this and (3.12) we verify that vA = 0. So we have v(kz + ) =0

because of (3.8). Thus, it is, using (3.9), seen that v vanishes on §2. This completes
the proof.
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Lemma 3.4. du = 0 on 2, where the 1-form u is defined by u(X) = g(U, X) for
any vector X on M.

Proof. Since v = 0, (3.20) becomes
(k — 2)(V;U; - ViU;) = 0.

If du # 0, then we have k = z and hence k? = § — £. Thus (3.8) implies aA+6 = 0.

From this and (3.12), it follows that § = 0. Thus k*> + ¢ = 0, a contradiction.
Hence we have

V;U; - VU; =0.
This completes the proof of the lemma.
Lemma 3.5. Va = (¢ —3\)U on 9.
Proof. Differentiating (3.4) covariantly, we find
(Ve A;r)UT + Ajr Vi U™ = U; VA + AV U ,

from which, taking the skew-symmetric part and making use of Lemma 3.4,

(ke = ) (& Abrt™ = EnAset™) + AV Uy = Axe VU

=U; VA = UrV;A,

where we have used (1.8), (2.13) and (3.5). Hence, by applying U* and remembering
(3.4) and (3.16) with v = 0, we obtain

(3.22) (B —a®)V;x = (U'VA)U;,

which unable us to obtain £V A = 0. From this and (3.8), we verify that AV, =
0 and hence

(3.23) &Via =0.
If we take the inner product (1.10) with ¢*, and use (3.23), then we get
¢jrfkerk =3\ - a)U; + V;a,

where we have used (1.5), (1.11), (2.13), (2.18) and (3.4), which together with (1.9)
and (3.10) yields V;ja = (¢ — 3A\)U;. Hence Lemma 3.5 is proved.

Lemma 3.6. du(é) =0 and zpu = ME—'—_':—‘;): on Q.
Proof. Using (2.14), (3.5) and Lemma 3.4, the equation (3.21) implies
a:(nkqb,-,.U" - njd’k,-Ur) + Kj,-VkUr - Kk,-VjUr =0.

Since U is orthogonal to the structure vector £, by applying ¢* and using (1.8),
(2.18) and Lemma 3.4, we get

zpu(Ajr€" — alj) — K;"(UV, &) + KUV &, = 0.
On the other hand, we have from (1.8), (2.19) and (3.14)
§ApK;" = —zA;r€" + a(k + z)U;j.
Therefore, if we take account of (1.9) and (3.10), then the last two equations implies
{zu+ (e — a)(k + 2) H(4;r§" — afj) = 0.
From this and (3.12) we see that z(k — z)u — A(k + £)? = 0, which together with

(3.22) and Lemma, 3.3 gives £V u = 0. Therefore, Lemma 3.6 is proved.
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Lemma 3.7. Q is empty set, that is, k vanishes identically on whole space M.

Proof. Differentiating (3.14) covariantly and taking account of (1.4), (1.5), (3.4)
and Lemma 3.3, we find

Vin; =€Viep — pAk,-¢jr + %(k - z)Uk?j,-U"
-1+ %)(,\U,,g,- + 6,y ViUT),

from which, taking the skew-symmetric part and using (2.1),

20045+ 25 (k — 2){UjderU™ - Ud3:U")
(3.24) =&Vien — &V — p(Arrd;” — Ajrdy’)
~-1+ %){,\(ngj — Uj&k) + 65 VU™ — ¢5:V,;U"}.

Applying this by ¢/ and using Lemma 3.3 and Lemma 3.5, we find
Vi = U + (1 + DU + 70 V185),
or, using (1.9), (3.10) and (3.12),
(3.25) Ven = (p+ N1+ %)U,,.
On the other hand, the skew-symmetric part of (1.10) gives

Gkr VU™ — ¢jr Vi U™ = -g-tﬁkj +2Ajr Ak d™ + a(Ajrdy — Akrd’jr)
+ (€ — 22)(Uxé&; — Uj&k),

where we have used (2.13), (2.18), (3.4) and Lemma 3.5.
If we substitute (3.25) and this into (3.24), and make use of Lemma 3.6, then
we obtain

20645 + 25 (k — 2)(UjderU” — UnbsrU")
=1+ %){(p +e— 20 (Ué; — Us&) + gm,- + 24, Arod™
+ (b +&)(Ajrdy” — Arrd;")}-

Multiplying this equation with U7 and summing for j, and taking account of (1.8),
(3.4), (3.10) and Lemma 3.2, we find

20 = D+ D Air” - o)
=(1+ %){—(p +e—2))(B — a®)éx — 2A\(€ — @) Arr €T + 2X(2kz + a))ér
+(p+e)(A+e—a)Ait —2(u+e)(kz + al)ée}.
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Thus, it follows that
2(6 - ﬁ-) =-2Me—-a)+(pu+e)(A+e—a)

because of 8 — a® # 0 on Q, or using (3.8), (3.12) and Lemma 3.6,
A(k+z) =0k — ).
Differentiating this covariantly and using Lemma 3.3, we get
(k+ z)V;iX = zAU;.
By the way, we have from (3.8) ,
aV;x = (3% — Xe + 2% — kx)U;,
where we have used Lemma 3.3 and Lemma 3.5. Combining the last three equations,
we verify that
zal = 30(k — z) — Mk + x)e — z(k* — z?),
or using (3.8) and (3.12)
(62 + gc)k = g3,

which shows that (622 + 2¢)(k — z) = 0, a contradiction because of a # 0 on (2.
Therefore Q is empty set. This completes the proof.

4. The proof of Theorem

Proof of Theorem. Let M be a connected real (2n — 1)-dimensional (n > 2) semi-
invariant submanifold of codimension 3 satisfying dn = 20w for a certain scalar
6 < £ in CP™*!, Suppose that Re¢pA = ApR¢. Then by Lemma 3.6 we have k = 0
on M. Thus, (2.8) tells us that the distinguished normal C is parallel in the normal
bundle. Hence, by Lemma 4.1 of [8], we have A(3y = A(3) = 0. Therefore, by the
reduction theorem in [5], [12], M is a real hypersurface in a complex projective space
CP™. Since we have V+C = 0, equations (1.13) and (3.1) are reduced respectively
to

ViAji — VA = g(&tbji — & Pri — 26ik;),
T(Airds" + Airdy") = (A3r€)(AiuU*) = (Aur€")(432U*) =0.

Using (1.4), (1.5) and above two equations, it is proved in [4] that g(U,U) = 0.
Hence we have A¢ = ¢A. Thus, by Theorem O we have our Theorem.

In the case where § = £, that is, M is a semi-invariant submanifold with dn = fw,
then from Theorem we have

Corollary 4.1. Let M be a semi-invariant submanifold of codimension 3 with
dn = fw in CP™*'. If M satisfies RepA = APRe, then M is locally congruent to
one of the following spaces in CP": ‘
(A1) a geodesic hypersphere (that is, a tube of radius r over a hyperplane CP"~1,
where 0 < r < %),

(A2) a tube of radius r over a totally geodesic CP*(1 < k <n —2),
where 0 <r < .
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