JACOBI OPERATORS ON A SEMI-INVARIANT SUBMANIFOLD OF CODIMENSION 3 IN A COMPLEX PROJECTIVE SPACE

U-HANG KI AND HYUNJUNG SONG

ABSTRACT. In this paper, we characterize some semi-invariant submanifolds of codimension 3 in a complex projective space $\mathbb{C}P^{n+1}$ in terms of the shape operator A, the structure tensor field ϕ and the Jacobi operator R_{ξ} with respect to the structure vector field ξ .

0. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold \tilde{M} with complex structure J if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution (T,T^{\perp}) such that T is J-invariant, and T^{\perp} is totally real ([1], [19]). In particular, M is said to be a semi-invariant submanifold if $dimT^{\perp}=1$, and the unit normal in JT^{\perp} is called a distinguished normal to M ([2], [17]). In this case, M admits an induced almost contact metric structure (ϕ, ξ, g) .

A typical example of a semi-invariant submanifold is real hypersurfaces. Takagi([15]) classified homogeneous real hypersurfaces of a complex projective space by means of six model spaces of type A_1, A_2, B, C, D and E, further he explicitly write down their principal curvatures and multiplicities in the table in [16].

Cecil and Ryan [3] extensively investigated a real hypersurface which is realized a tube of constant radius r over a complex submanifold of $\mathbb{C}P^n$ on which ξ is principal curvature vector with principal curvature $\alpha = 2\cot 2r(A\xi = \alpha\xi)$ and the corresponding focal map φ_r has constant rank, where we denote by A the shape operator of a real hypersurface in $\mathbb{C}P^n$.

On the other hand, Okumura [10] characterized real hypersurfaces of type A_1 and A_2 by the property that the shape operator A and structure tensor field ϕ commute. Namely he proved

Theorem O [10]. Let M be a connected real hypersurface of $\mathbb{C}P^n$. If M satisfies $\phi A = A\phi$, then M is locally congruent to one of the following spaces:

- (A₁) a geodesic hypersphere (that is, a tube of radius r over a hyperplane $\mathbb{C}P^{n-1}$, where $0 < r < \frac{\pi}{2}$),
- (A₂) a tube of radius r over a totally geodesic $\mathbb{C}P^k (1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$.

Mathematics Subject Classification(2000):53C25, 53C40, 53C42.

Key words and phrases: Semi-invariant submanifold, Jacobi operator, distinguished normal, almost contact metric structure, real hypersurface.

We denote by ∇ the Levi-Civita connection with respect to g. The curvature tensor field R on the submanifold M is defined by $R(X,Y) = [\nabla_X,\nabla_Y] - \nabla_{[X,Y]}$, where X and Y are vector fields on M. We define the Jacobi operator $R_{\xi} = R(\cdot,\xi)\xi$ with respect to the structure vector field ξ . Then R_{ξ} is a self-adjoint endomorphism on the tangent space of a CR submanifold. In the preceding work [4], Cho and the present author give another characterization of real hypersurfaces of type A_1 and A_2 in a complex projective space $\mathbb{C}P^n$ in terms of the shape operator A, the structure tensor field ϕ and the Jacobi operator R_{ξ} . More specifically, they proved the following:

Theorem CK [4]. Let M be a connected real hypersurface of $\mathbb{C}P^n$. If M satisfies $R_{\xi}\phi A = A\phi R_{\xi}$, then M is locally congruent to one of the following spaces:

- (A₁) a geodesic hypersphere (that is, a tube of radius r over a hyperplane $\mathbb{C}P^{n-1}$, where $0 < r < \frac{\pi}{2}$),
- (A₂) a tube of radius r over a totally geodesic $\mathbb{C}P^k (1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$.

For the real hypersurface of a complex space form many results are known. And new examples of nontrivial semi-invariant submanifolds in a complex projective space are constructed in [8], [14]. Therefore we may except to generalize some results which are valid in a real hypersurface to a semi-invariant submanifold. From this point of view, a semi-invariant submanifold of codimension 3 in a complex projective space are investigated in [6], [7], [8], [18] and so on by using properties of the third fundamental form of the submanifold and those of induced almost contact metric structure. One of them, Takagi and the present authors [8] assert the following:

Theorem KST [8]. Let M be a real (2n-1)-dimensional (n>2) semi-invariant submanifold of codimension 3 in a complex projective space $\mathbb{C}P^{n+1}$ such that the third fundamental tensor n satisfies $dn=2\theta\omega$ for a certain scalar $\theta(<\frac{c}{2})$, where $\omega(X,Y)=g(X,\phi Y)$ for any vectors X and Y on M. Then M has constant eigenvalues corresponding the shape operator A in the direction of distinguished normal and the structure vector ξ is an eigenvector of A if and only if M is locally congruent to a homogeneous real hypersurface of $\mathbb{C}P^n$.

The main purpose of the present paper is to extend Theorem CK under certain conditions on a semi-invariant submanifold of codimension 3 in a complex projective space. Namely, we prove

Theorem. Let M be a real (2n-1)-dimensional semi-invariant (n>2) submanifold of codimension 3 in a complex projective space $\mathbb{C}P^{n+1}$ such that the third fundamental form n satisfies $dn=2\theta\omega$ for a certain scalar $\theta(<\frac{c}{2})$, where $\omega(X,Y)=g(X,\phi Y)$ for any vectors X and Y on M. If M satisfies $R_{\xi}\phi A=A\phi R_{\xi}$, then M is locally congruent to one of the following spaces in $\mathbb{C}P^n$:

- (A₁) a geodesic hypersphere (that is, a tube of radius r over a hyperplane $\mathbb{C}P^{n-1}$, where $0 < r < \frac{\pi}{2}$),
- (A₂) a tube of radius r over a totally geodesic $\mathbb{C}P^k$ $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$.

Remark. The above Theorem can be considered by fact that the submanifolds of type A_1 and A_2 satisfy the condition $R_{\xi}\phi A = A\phi R_{\xi}$ respectively.

All manifolds in this paper are assumed to be connected and of class C^{∞} and the semi-invariant submanifolds are supposed to be orientable.

1. Preliminaries

Let \tilde{M} be a real 2(n+1)-dimensional Kaehlerian manifold equipped with parallel almost complex structure J and a Riemannian metric tensor G and covered by a system of coordinate neighborhoods $\{\tilde{V}; y^A\}$.

Let M be a real (2n-1)-dimensional Riemannian manifold covered by a system of coordinate neighborhoods $\{V; x^h\}$ and immersed isometrically in \tilde{M} by the immersion $i: M \to \tilde{M}$.

Throughout this paper the following convention on the range of indices are used, unless otherwise stated:

$$A, B, C, \dots = 1, 2, 3, \dots, 2(n+1); i, j, k, \dots = 1, 2, 3, \dots, 2n-1.$$

The summation convention will be used with respect to those system of indices. In the sequel we identify i(M) with M itself and represent the immersion by $y^A = y^A(x^h)$.

We put

$$B_i^A = \partial_i y^A, \quad \partial_i = \partial/\partial x^i$$

and denote by C, D and E three mutually orthogonal unit normals to M. Then denoting by g the fundamental metric tensor with components g_{ji} on M, we have $g_{ji} = G(B_j, B_i)$ since the immersion is isometric, where we have put $B_j = (B_j^A)$.

As is well-known, a submanifold M of a Kaehlerian manifold \tilde{M} is said to be a CR submanifold ([1], [19]) if it is endowed with a pair of mutually orthogonal and complementary differentiable distribution (T,T^{\perp}) such that for any $p\in M$ we have $JT_p=T_p,\ JT_p^{\perp}\subset T_p^{\perp}M$, where $T_p^{\perp}M$ denotes the normal space of M at p. In particular, M is said to be a semi-invariant submanifold ([2], [17]) provided that $dimT^{\perp}=1$ or to be CR submanifold with CR dimension n-1 ([13]). In this case the unit vector field in JT^{\perp} is called a distinguished normal to the semi-invariant submanifold and denoted this by C. Then we have

(1.1)
$$JB_i = \phi_i^h B_h + \xi_i C, \quad JC = -\xi^h B_h, \quad JD = -E, JE = D,$$

where we have put $\phi_{ji} = G(JB_j, B_i), \xi_i = G(JB_i, C), \xi^h$ being associated components of ξ_h (see [8]). A tensor field of type (1,1) with components ϕ_i^h will be denoted by ϕ . By the Hermitian property of J, it is seen that ϕ_{ji} is skew-symmetric, and that

$$\begin{split} \phi_{i}^{\ r}\phi_{r}^{\ h} &= -\delta_{i}^{\ h} + \xi_{i}\xi^{h}, \quad \xi^{r}\phi_{r}^{\ h} = 0, \quad \xi_{r}\phi_{i}^{\ r} = 0, \\ g_{rs}\phi_{j}^{\ r}\phi_{i}^{\ s} &= g_{ji} - \xi_{j}\xi_{i}, \quad \xi_{r}\xi^{r} = 1, \end{split}$$

namely, the aggregate (ϕ, ξ, g) defines almost contact metric structure.

Denoting by ∇_j the operator of van der Waerden-Bortolotti covariant differentiation with respect to the induced Riemannian metric tensor g, the equation of Gauss for M of \tilde{M} is obtained:

(1.2)
$$\nabla_{j}B_{i} = A_{ji}C + K_{ji}D + L_{ji}E,$$

where A_{ji} , K_{ji} and L_{ji} are components of the second fundamental forms in the direction of normals C, D, E respectively. Equations of Weingarten are also given by

(1.3)
$$\begin{cases} \nabla_{j}C = -A_{j}^{h}B_{h} + l_{j}D + m_{j}E, \\ \nabla_{j}D = -K_{j}^{h}B_{h} - l_{j}C + n_{j}E, \\ \nabla_{j}E = -L_{j}^{h}B_{h} - m_{j}C - n_{j}D, \end{cases}$$

where $A = (A_j^h), A_{(2)} = (K_j^h)$ and $A_{(3)} = (L_j^h)$, which are related by $A_{ji} = A_j^r g_{ir}, K_{ji} = K_j^r g_{ir}$ and $L_{ji} = L_j^r g_{ir}$ respectively, and l_j, m_j and n_j being components of the third fundamental forms.

In the sequel, we denote the normal components of $\nabla_j C$ by $\nabla_j^{\perp} C$. The distinguished normal C is said to parallel in the normal bundle if we have $\nabla_j^{\perp} C = 0$, that is, l_j and m_j vanish identically.

Since J is parallel, by differentiating (1.1) covariantly along M and using (1.1), (1.2) and (1.3), and by comparing the tangential and normal parts, we find (see [18])

(1.4)
$$\nabla_j \phi_i^h = -A_{ji} \xi^h + A_j^h \xi_i,$$

$$\nabla_j \xi_i = -A_{jr} \phi_i^{\ r},$$

$$(1.6) K_{ji} = -L_{jr}\phi_i^{\ r} - m_j\xi_i,$$

$$(1.7) L_{ji} = K_{jr}\phi_i^{\ r} + l_j\xi_i.$$

Now we put $U_j = \xi^r \nabla_r \xi_j$. Then U is orthogonal to the structure vector ξ . Because of (1.5) and properties of the almost contact metric structure, it follows that

$$\phi_{jr}U^r = A_{jr}\xi^r - \alpha\xi_j,$$

$$(1.9) U^r \nabla_j \xi_r = A_{jr}^2 \xi^r - \alpha A_{jr} \xi^r,$$

where we have put $\alpha = A_{ji}\xi^{j}\xi^{i}$.

Remark. In what follows, to write our formulas in convention forms, we denote by $\beta = A_{ii}^2 \xi^j \xi^i$, $\mu = n_t \xi^t$, $T_r A_{(2)} = k$ and $\nu = (\nabla_t k) \xi^t$.

From (1.8), we get $g(U, U) = \beta - \alpha^2$. Thus we easily see that $A\xi = \alpha\xi$ if and only if $\beta - \alpha^2 = 0$.

Differentiating (1.8) covariantly along M and making use of (1.4) and (1.5), we find

$$(1.10) \qquad \xi_j(A_{kr}U^r + \nabla_k \alpha) + \phi_{jr}\nabla_k U^r = \xi^r \nabla_k A_{jr} - A_{jr}A_{ks}\phi^{rs} + \alpha A_{kr}\phi_{jr}^{r},$$

which shows that

$$(1.11) \qquad (\nabla_k A_{rs}) \xi^r \xi^s = 2A_{kr} U^r + \nabla_k \alpha.$$

In the rest of this paper we shall suppose that \tilde{M} is a Kaehlerian manifold of constant holomorphic sectional curvature c, which is called a *complex space form*. Then equations of Gauss and Codazzi are given by

$$(1.12) R_{kjih} = \frac{c}{4} (g_{kh}g_{ji} - g_{jh}g_{ki} + \phi_{kh}\phi_{ji} - \phi_{jh}\phi_{ki} - 2\phi_{kj}\phi_{ih}) + A_{kh}A_{ji} - A_{jh}A_{ki} + K_{kh}K_{ji} - K_{jh}K_{ki} + L_{kh}L_{ji} - L_{jh}L_{ki},$$

(1.13)
$$\nabla_{k} A_{ji} - \nabla_{j} A_{ki} - l_{k} K_{ji} + l_{j} K_{ki} - m_{k} L_{ji} + m_{j} L_{ki}$$

$$= \frac{c}{4} (\xi_{k} \phi_{ji} - \xi_{j} \phi_{ki} - 2\xi_{i} \phi_{kj}),$$

$$(1.14) \qquad \nabla_k K_{ji} - \nabla_j K_{ki} = l_j A_{ki} - l_k A_{ji} + n_k L_{ji} - n_j L_{ki},$$

$$(1.15) \qquad \nabla_k L_{ji} - \nabla_j L_{ki} = m_j A_{ki} - m_k A_{ji} - n_k K_{ji} + n_j K_{ki},$$

where R_{kjih} are covariant components of the Riemann-Christoffel curvature tensor of M, and those of the Ricci by

(1.16)
$$\nabla_{k}l_{j} - \nabla_{j}l_{k} = A_{jr}K_{k}^{r} - A_{kr}K_{j}^{r} + m_{j}n_{k} - m_{k}n_{j},$$

$$(1.17) \qquad \nabla_k m_j - \nabla_j m_k = A_{jr} L_k^r - A_{kr} L_j^r + n_j l_k - n_k l_j,$$

(1.18)
$$\nabla_{k} n_{j} - \nabla_{j} n_{k} = K_{jr} L_{k}^{r} - K_{kr} L_{j}^{r} + l_{j} m_{k} - l_{k} m_{j} + \frac{c}{2} \phi_{kj}.$$

2. Semi-invariant submanifolds satisfying $dn = 2\theta\omega$

In this section we shall suppose that M is a semi-invariant submanifold of codimension 3 in a complex projective space $\mathbb{C}P^{n+1}$ and that the third fundamental form n satisfies $dn = 2\theta\omega$ for a certain scalar θ on M, namely,

$$(2.1) \nabla_{i} n_{i} - \nabla_{i} n_{j} = 2\theta \phi_{ji}.$$

Then we see that $dn = 2\theta\omega$ is independent of the choice of D and E. There is no loss of generality such that we may assume $T_rA_{(3)} = 0$ (p.61, [8]). From (1.6) and (1.7), we have

$$(2.2) K_{jr}\xi^r = -m_j, \quad L_{jr}\xi^r = l_j,$$

$$(2.3) m_r \xi^r = -k, \quad l_r \xi^r = 0.$$

Further we obtain

$$\phi_{ir}l^r = m_i + k\xi_i, \quad \phi_{ir}m^r = -l_i,$$

(2.5)
$$K_{jr}L_{i}^{r} + K_{ir}L_{j}^{r} + l_{j}m_{i} + l_{i}m_{j} = 0.$$

From (1.12) we have

(2.6)
$$-(R_{\xi})_{ji} = \frac{c}{4}(g_{ji} - \xi_{j}\xi_{i}) + \alpha A_{ji} - (A_{jr}\xi^{r})(A_{is}\xi^{s}) + kK_{ji} - m_{j}m_{i} - l_{j}l_{i}$$

because of (2.2) and (2.3), where we denote by $(R_{\xi})_{ji} = R_{jkih} \xi^k \xi^h$. From (1.18) and (2.1) we have

$$K_{jr}L_{i}^{r}-K_{ir}L_{j}^{r}+l_{j}m_{i}-l_{i}m_{j}=2(\theta-\frac{c}{4})\phi_{ij},$$

which together with (2.5) yields

(2.7)
$$K_{jr}L_{i}^{r}+l_{j}m_{i}=(\theta-\frac{c}{4})\phi_{ij}.$$

We notice here that θ is constant if n > 2 (see [8]). In the previous paper [8], we proved the following:

Lemma 2.1 [8]. Let M be a semi-invariant submanifold of codimension 3 in $\mathbb{C}P^{n+1}$ satisfying (2.1). If $\theta \neq \frac{c}{2}$, then we have $\nabla_j^{\perp}C = -k\xi_j E$ on M. Further if $A\xi = \alpha\xi$, then the distinguished normal is parallel in the normal bundle.

In what follows, we assume that M satisfies (2.1) with $\theta \neq \frac{c}{2}$ and n > 2. Then by Lemma 2.1 and (1.3), we have

$$(2.8) l_j = 0, m_j = -k\xi_j$$

Thus (1.6), (1.7) and (2.7) turn out respectively to

$$(2.9) L_{jr}\phi_i^{\ r} = -K_{ji} + k\xi_j\xi_i,$$

$$(2.10) K_{jr}\phi_{i}^{\ r} = L_{ji},$$

$$(2.11) K_{jr}L_i^{\ r} = (\theta - \frac{c}{4})\phi_{ij}.$$

From the last two equations, it follows that

(2.12)
$$L_{ji}^{2} = (\theta - \frac{c}{4})(g_{ji} - \xi_{j}\xi_{i}).$$

Furthermore, if we make use of (2.8), then the other structure equations (1.13) $\sim (1.17)$ are reduced respectively to

(2.13)
$$\nabla_{k} A_{ji} - \nabla_{j} A_{ki} = k(\xi_{j} L_{ki} - \xi_{k} L_{ji}) + \frac{c}{4} (\xi_{k} \phi_{ji} - \xi_{j} \phi_{ki} - 2\xi_{i} \phi_{kj}),$$

$$(2.14) \nabla_k K_{ji} - \nabla_j K_{ki} = n_k L_{ji} - n_j L_{ki},$$

(2.15)
$$\nabla_{k}L_{ji} - \nabla_{j}L_{ki} = k(\xi_{k}A_{ji} - \xi_{j}A_{ki}) - n_{k}K_{ji} + n_{j}K_{ki},$$

$$(2.16) A_{ir}K_{k}^{r} - A_{kr}K_{i}^{r} = k(n_{k}\xi_{i} - n_{i}\xi_{k}),$$

$$(2.17) A_{jr}L_{k}^{\ r} - A_{kr}L_{j}^{\ r} = \xi_{k}\nabla_{j}k - \xi_{j}\nabla_{k}k + k(A_{kr}\phi_{j}^{\ r} - A_{jr}\phi_{k}^{\ r}),$$

where we have used (1.5). Because of (2.2) and (2.8), it is clear that

$$(2.18) K_{jr}\xi^r = k\xi_j, \quad L_{jr}\xi^r = 0.$$

Multiplying (2.16) and (2.17) with ξ^k and summing for the index k, we have respectively

(2.19)
$$\xi^{s} A_{sr} K_{j}^{r} = k A_{jr} \xi^{r} + k (n_{j} - \mu \xi_{j}),$$

(2.20)
$$\xi^s A_{sr} L_j^r = \nu \xi_j - \nabla_j k + k U_j$$

by virtue of (1.5) and (2.18).

Transforming (2.19) by ϕ_k^{j} and taking account of (2.10), we find

(2.21)
$$\xi^{s} A_{sr} L_{k}^{r} = k(\phi_{kr} n^{r} - U_{k}),$$

which together with (2.20) implies that

$$\nabla_{j}k = \nu \xi_{j} - k(\phi_{jr}n^{r} - 2U_{j}).$$

If we transform (2.17) by $\phi_i^{\ k}$ and make use of (2.9) and (2.22), then we obtain

$$A_{sr}L_{j}^{r}\phi_{i}^{s} + A_{jr}K_{i}^{r} = k\{(n_{i} - \mu\xi_{i})\xi_{j} + 2\xi_{j}(A_{ir}\xi^{r} - \alpha\xi_{i}) + 2\xi_{i}A_{jr}\xi^{r} - A_{ji} - A_{sr}\phi_{i}^{r}\phi_{i}^{s}\},$$

or, use (2.16)

$$(2.23) A_{sr}L_j^r \phi_i^s = A_{sr}L_i^r \phi_j^s.$$

Since θ is constant if n > 2, by differentiation (2.12) covariantly gives

$$(2.24) L_{jr}\nabla_k L_i^r + L_{ir}\nabla_k L_j^r = (\theta - \frac{c}{4})(\xi_j A_{kr}\phi_i^r + \xi_i A_{kr}\phi_j^r),$$

from which, taking the skew-symmetric part with respect to indices k and j and making use of (2.11) and (2.15),

$$L_{jr} \nabla_{k} L_{i}^{r} - L_{kr} \nabla_{j} L_{i}^{r} + k(\xi_{k} A_{jr} L_{i}^{r} - \xi_{j} A_{kr} L_{i}^{r})$$

$$= (\theta - \frac{c}{4}) \{ n_{j} \phi_{ki} - n_{k} \phi_{ji} + \xi_{j} A_{kr} \phi_{i}^{r} - \xi_{k} A_{jr} \phi_{i}^{r} + \xi_{i} (A_{kr} \phi_{j}^{r} - A_{jr} \phi_{k}^{r}) \}$$

for any indices k, j and i. Thus, interchanging indices k and i, we get

$$L_{jr} \nabla_{i} L_{k}^{r} - L_{ir} \nabla_{j} L_{k}^{r} + k (\xi_{i} A_{jr} L_{k}^{r} - \xi_{j} A_{ir} L_{k}^{r})$$

$$= (\theta - \frac{c}{4}) \{ n_{j} \phi_{ik} - n_{i} \phi_{jk} + \xi_{j} A_{ir} \phi_{k}^{r} - \xi_{i} A_{jr} \phi_{k}^{r} + \xi_{k} (A_{ir} \phi_{j}^{r} - A_{jr} \phi_{i}^{r}) \}.$$

Hence, if we use (2.11) and (2.15), then we obtain

$$\begin{split} & L_{jr} \nabla_{k} L_{i}^{\ r} - L_{ir} \nabla_{k} L_{j}^{\ r} \\ & = (\theta - \frac{c}{4}) \{ 2n_{k} \phi_{ij} + \xi_{j} A_{ir} \phi_{k}^{\ r} - \xi_{i} A_{jr} \phi_{k}^{\ r} + \xi_{k} (A_{ir} \phi_{j}^{\ r} - A_{jr} \phi_{i}^{\ r}) \} \\ & + k \{ \xi_{j} (A_{kr} L_{i}^{\ r} + A_{ir} L_{k}^{\ r}) - \xi_{i} (A_{kr} L_{j}^{\ r} + A_{jr} L_{k}^{\ r}) + \xi_{k} (A_{ir} L_{j}^{\ r} - A_{jr} L_{i}^{\ r}) \}, \end{split}$$

which together with (2.24) yields

$$\begin{aligned} 2L_{jr}\nabla_{k}L_{i}^{r} \\ &= (\theta - \frac{c}{4})\{2n_{k}\phi_{ij} + \xi_{j}(A_{ir}\phi_{k}^{r} + A_{kr}\phi_{i}^{r}) + \xi_{i}(A_{kr}\phi_{j}^{r} - A_{jr}\phi_{k}^{r}) \\ &+ \xi_{k}(A_{ir}\phi_{j}^{r} - A_{jr}\phi_{i}^{r})\} \\ &+ k\{\xi_{j}(A_{kr}L_{i}^{r} + A_{ir}L_{k}^{r}) - \xi_{i}(A_{kr}L_{j}^{r} + A_{jr}L_{k}^{r}) + \xi_{k}(A_{ir}L_{j}^{r} - A_{jr}L_{i}^{r})\}.\end{aligned}$$

Multiplying ξ^{j} to the last equation and summing for j, and taking account of (2.18) and (2.21), we find

(2.25)
$$(\theta - \frac{c}{4})(A_{ir}\phi_k^r + A_{kr}\phi_i^r) + (k^2 + \theta - \frac{c}{4})(U_k\xi_i + U_i\xi_k) + k\{A_{kr}L_i^r + A_{ir}L_k^r - k(\xi_i\phi_{kr}n^r + \xi_k\phi_{ir}n^r)\} = 0.$$

3. The Jacobi operator satisfying $R_\xi \phi A = A \phi R_\xi$

We continue now, our arguments under the same hypotheses $dn = 2\theta\omega$ for a scalar $\theta(\neq \frac{c}{2})$ as in section 2. Furthermore suppose, throughout this paper, that $R_{\xi}\phi A = A\bar{\phi R}_{\xi}$. Then from (2.6) we obtain

(3.1)
$$\frac{c}{4}(A_{jr}\phi_{i}^{r} + A_{ir}\phi_{j}^{r}) - (A_{jr}\xi^{r})(A_{is}U^{s}) - (A_{ir}\xi^{r})(A_{js}U^{s}) = k(A_{jr}L_{i}^{r} + A_{ir}L_{j}^{r})$$

where we have used (1.5), (1.7) and (2.8). If we multiply ξ^{j} to (3.1) and sum for j, and make use of (1.8) and (2.18), then we obtain

(3.2)
$$k\xi^{s}A_{sr}L_{i}^{r} = -\alpha A_{ir}U^{r} - \frac{c}{4}U_{i},$$

which together with (2.21) gives,

$$k^2\phi_{jr}n^r=(k^2-\frac{c}{4})U_j-\alpha A_{jr}U^r.$$

Thus, by applying $A_t^{\ j}\xi^t$ and using (1.8), it is seen that $k^2n_tU^t=0$. We set $\Omega=\{p\in M: k(p)\neq 0\}$, and suppose that Ω is nonempty. From now on, we discuss our arguments on the open subset Ω of M. Then by the discussion above we have

$$(3.3) n(U) = 0.$$

Lemma 3.1. $\theta \neq \frac{c}{4}$ on Ω .

proof. Suppose that $\theta = \frac{c}{4}$ on Ω . Then from (2.12) it follows that

$$L_{ji}=0,$$

which together with (2.9) gives

$$K_{ji} = k\xi_j\xi_i$$
.

In this case (2.15) turns out to be

$$k(\xi_k A_{ji} - \xi_j A_{ki} + n_j \xi_k \xi_i - n_k \xi_j \xi_i) = 0,$$

which shows

$$k\{n_k + A_{kr}\xi^r - (\alpha + \mu)\xi_k\} = 0.$$

Then the last two equations imply

$$A_{ji} = \xi_j A_{ir} \xi^r + \xi_i A_{jr} \xi^r - \alpha \xi_j \xi_i$$

on Ω . Since U is orthogonal to ξ , it is seen that

$$AU=0$$
.

which together with (3.1) and $L_{ji} = 0$ implies that $A\phi = \phi A$ and hence $A\xi = \alpha \xi$ on Ω . Therefore by Lemma 2.1 we have k=0, a contradiction. This completes the proof.

Applying (3.1) by L_k^i and using (2.9), (2.12) and (3.2), we find

$$\frac{c}{4}k(A_{jr}K_{k}^{r} + A_{sr}L_{j}^{r}\phi_{k}^{s}) - k(A_{jr}\xi^{r})(L_{kt}A_{s}^{t}U^{s}) + (A_{js}U^{s})(\alpha A_{kr}U^{r} + \frac{c}{4}U_{k})$$

$$= k^{2}\{(\theta - \frac{c}{4})A_{jk} + A_{sr}L_{j}^{s}L_{k}^{r} + (\frac{c}{2} - \theta)\xi_{k}A_{jr}\xi^{r}\},$$

from which, taking the skew-symmetric part and making use of (2.16) and (2.23),

$$k^{2}\{\left(\left(\frac{c}{2}-\theta\right)A_{kr}\xi^{r}+\frac{c}{4}n_{k}\right)\xi_{j}-\left(\left(\frac{c}{2}-\theta\right)A_{jr}\xi^{r}+\frac{c}{4}n_{j}\right)\xi_{k}\}$$

$$=k\{\left(A_{jr}\xi^{r}\right)\left(L_{kt}A_{s}^{t}U^{s}\right)-\left(A_{kr}\xi^{r}\right)\left(L_{jt}A_{s}^{t}U^{s}\right)\}+\frac{c}{4}\left(U_{j}A_{kr}U^{r}-U_{k}A_{jr}U^{r}\right).$$

Applying U^k to this and using (3.3), we have

$$\frac{c}{4}\{(\beta-\alpha^2)A_{jr}U^r-(A_{rs}U^rU^s)U_j\}=k(U^kL_{kt}A_s^tU^s)A_{jr}\xi^r.$$

If we multiply $A_m^{j}\xi^m$ and summing for j, we find

$$\beta U^k L_{kt} A_s^{\ t} U^s = 0.$$

From the last two equations, it follows that

$$\beta\{(\beta-\alpha^2)A_{jr}U^r-(A_{rs}U^rU^s)U_j\}=0.$$

Since $\beta(\beta - \alpha^2) = 0$ is impossible because of the second assertion of Lemma 2.1 and (2.3), it is seen that

$$(3.4) A_{jr}U^r = \lambda U_j,$$

where we have defined the function λ by

$$(\beta - \alpha^2)\lambda = A_{rs}U^rU^s.$$

Therefore (3.2) is reduced to

$$k\xi^{s}A_{sr}L_{j}^{r}=-(\alpha\lambda+\frac{c}{4})U_{j},$$

which together with (1.8) and (2.12) yields

$$k(\theta - \frac{c}{4})\phi_{jr}U^{r} = -(\alpha\lambda + \frac{c}{4})L_{jr}U^{r}.$$

Then from Lemma 3.1 and the equation above we have

$$(3.5) L_{jr}U^r = x\phi_{jr}U^r,$$

where we have defined

(3.6)
$$(\alpha \lambda + \frac{c}{4})x = -k(\theta - \frac{c}{4}).$$

Transforming (3.5) by ϕ_i^{j} and using (2.9), we find

$$(3.7) K_{ir}U^r = xU_i.$$

Because of (2.11), (3.5) and (3.7), it is clear that

$$(x^2-\theta+\frac{c}{4})\phi_{ir}U^r=0.$$

As is already seen that $\beta - \alpha^2 \neq 0$ on Ω , we have $x^2 = \theta - \frac{c}{4}$. Thus, by Lemma 3.1, we verify that x is nonzero constant if n > 2. Hence (3.6) implies

$$(3.8) -\alpha\lambda = kx + \frac{c}{4}.$$

Thus, using (2.21), (2.22), (3.2) and (3.4), we have

(3.9)
$$\nabla_j k = \nu \xi_j + (k-x)U_j.$$

Remark. $\alpha\lambda \neq 0$ on Ω . In fact, if not, then we have from (3.8), $kx + \frac{c}{4} = 0$. Since x is nonzero constant, it follows that k is constant. Thus, (3.9) means k = x, that is $\theta = \frac{c}{4}$, a contradiction.

Applying (3.1) by U^i and making use of (1.8) and (3.4), (3.5) and (3.8), we find

$$(kx+\frac{c}{4})A_{jr}^{2}\xi^{r}=\lambda(\frac{c}{2}-\beta+\alpha\lambda)A_{jr}\xi^{r}+(kx+\frac{c}{4})(\alpha\lambda+\frac{c}{2})\xi_{j}.$$

Hence, it is verified that

(3.10)
$$A_{jr}^{2}\xi^{r} = \varepsilon A_{jr}\xi^{r} + (\alpha\lambda + \frac{c}{2})\xi_{j},$$

where the function ε is defined by

(3.11)
$$\alpha \varepsilon = \beta - \alpha \lambda - \frac{c}{2}$$

by virtue of the fact that $\alpha \lambda \neq 0$ on Ω .

Using (3.9), the equation (2.17) turns out to be

$$A_{jr}L_{k}^{r} - A_{kr}L_{j}^{r} = (k - x)(U_{j}\xi_{k} - U_{k}\xi_{j}) + k(A_{kr}\phi_{j}^{r} - A_{jr}\phi_{k}^{r}).$$

Multiplying U^k to this and summing for k, and making use of (1.8), (3.4), (3.5) and (3.10), we find

$$\{(k-x)(\varepsilon-\alpha)+\lambda(k+x)\}(A_{ir}\xi^r-\alpha\xi_i)=0.$$

Thus, by Lemma 2.1, we have

$$(3.12) (k-x)(\varepsilon-\alpha) + \lambda(k+x) = 0.$$

Now, we are going to prove that Ω is empty.

Lemma 3.2. $\beta - \alpha^2 = \frac{2k\theta}{k-x}$ on Ω .

Proof. By (3.9), (2.22) implies

(3.13)
$$\phi_{jr}n^{r} = (1 + \frac{x}{k})U_{j}.$$

Thus, by the property of almost contact metric structure, it is clear that

(3.14)
$$n_{j} = \mu \xi_{j} - (1 + \frac{x}{k}) \phi_{jr} U^{r}.$$

Combining (2.25) to (3.1), we have

(3.15)
$$\theta(A_{jr}\phi_i^r + A_{ir}\phi_j^r + U_i\xi_j + U_j\xi_i) = \lambda(U_j\phi_{ir}U^r + U_i\phi_{jr}U^r),$$

where we have used (1.8), (3.4), (3.8) and (3.13). Since $\beta - \alpha^2 \neq 0$, by multiplying this with U^i and summing for i, and using (1.8) and (3.10), we have

$$\theta(\alpha - \varepsilon + \lambda) = \lambda(\beta - \alpha^2).$$

From this and (3.11), we get $(\theta + \alpha \lambda)(\beta - \alpha^2) = (2\alpha\lambda + \frac{c}{2})\theta$. Since we have $\theta = x^2 + \frac{c}{4}$ and (3.8), it follows that $(k - x)(\beta - \alpha^2) = 2k\theta$, which proves the lemma.

From Lemma 3.2, we have

$$\nabla_{j}\beta - 2\alpha\nabla_{j}\alpha = -\frac{2\theta x}{(k-x)^{2}}\nabla_{j}k,$$

which together with (3.9) implies that

(3.16)
$$U^r \nabla_j Ur = \frac{\theta x}{x - k} U_j - \frac{\theta x \nu}{(k - x)^2} \xi_j$$

because of $g(U, U) = \beta - \alpha^2$.

Next, we put $A\xi = \alpha\xi + \rho W$, where ρ is a function on M which is not vanish on Ω and W is a unit vector field orthogonal to ξ . Then we have $\phi U = \rho W$ and $\rho^2 = \beta - \alpha^2$ because of (1.8). Thus W is also orthogonal to U. Further with (3.10) and (3.11) we get

$$(3.17) A_{ir}W^r = \rho \xi_i + (\varepsilon - \alpha)W_i.$$

by virtue of $\rho \neq 0$ on Ω . We have from (3.16)

$$(3.18) W^j U^r \nabla_j U r = 0.$$

Using (1.8), (2.18) and (2.19), we obtain

$$\rho K_{jr}W^r = \rho kW_j + k\{n_j - (\alpha + \mu)\xi_j\},\,$$

which together with (1.8) and (3.14) yields

$$(3.19) K_{jr}W^r = -xW_j.$$

Lemma 3.3. $\nabla k = (k-x)U$ on Ω .

Proof. Differentiation (3.9) covariantly gives

$$\nabla_k \nabla_j k = (\nabla_k \nu) \xi_j + \{ \nu \xi_k + (k-x) U_k \} U_j - \nu A_{kr} \phi_j^r + (k-x) \nabla_k U_j,$$

which shows

(3.20)
$$\begin{aligned} \xi_j \nabla_k \nu - \xi_k \nabla_j \nu + \nu (\xi_k U_j - \xi_j U_k + A_{jr} \phi_k^r - A_{kr} \phi_j^r) \\ &= (k - x) (\nabla_j U_k - \nabla_k U_j). \end{aligned}$$

On the other hand, differentiating (3.7) covariantly, we find

$$(3.21) \qquad (\nabla_k K_{jr}) U^r + K_{jr} \nabla_k U^r = x \nabla_k U_j,$$

which together with (3.7) implies that $(\nabla_k K_{ji})U^jU^i = 0$. If we take account of (2.14), (3.3), (3.5) and the last equation, then we get

$$U^r U^s(\nabla_r K_{js}) = 0.$$

Applying (3.21) by U^k and using this, we obtain

$$K_{jr}(U^{\mathfrak s}\nabla_{\mathfrak s}U^r)=xU^{\mathfrak s}\nabla_{\mathfrak s}U_j.$$

From this and (3.19), it follows that

$$W^r U^s \nabla_s U_r = 0.$$

Multiplying U^jW^k to (3.20) and summing for j and k and making use of (3.4), (3.17), (3.18) and the last equation, we obtain $\rho\nu(\lambda+\varepsilon-\alpha)=0$ and hence $\nu(\lambda+\varepsilon-\alpha)=0$. From this and (3.12) we verify that $\nu\lambda=0$. So we have $\nu(kx+\frac{c}{4})=0$ because of (3.8). Thus, it is, using (3.9), seen that ν vanishes on Ω . This completes the proof.

Lemma 3.4. du = 0 on Ω , where the 1-form u is defined by u(X) = g(U, X) for any vector X on M.

Proof. Since $\nu = 0$, (3.20) becomes

$$(k-x)(\nabla_j U_i - \nabla_i U_j) = 0.$$

If $du \neq 0$, then we have k = x and hence $k^2 = \theta - \frac{c}{4}$. Thus (3.8) implies $\alpha\lambda + \theta = 0$. From this and (3.12), it follows that $\theta = 0$. Thus $k^2 + \frac{c}{4} = 0$, a contradiction. Hence we have

$$\nabla_i U_i - \nabla_i U_i = 0.$$

This completes the proof of the lemma.

Lemma 3.5. $\nabla \alpha = (\varepsilon - 3\lambda)U$ on Ω .

Proof. Differentiating (3.4) covariantly, we find

$$(\nabla_k A_{jr})U^r + A_{jr}\nabla_k U^r = U_j\nabla_k \lambda + \lambda \nabla_k U_j,$$

from which, taking the skew-symmetric part and making use of Lemma 3.4,

$$(kx - \frac{c}{4})(\xi_j A_{kr} \xi^r - \xi_k A_{jr} \xi^r) + A_j^r \nabla_r U_k - A_{kr} \nabla_j U^r$$

= $U_j \nabla_k \lambda - U_k \nabla_j \lambda$,

where we have used (1.8), (2.13) and (3.5). Hence, by applying U^k and remembering (3.4) and (3.16) with $\nu = 0$, we obtain

$$(3.22) (\beta - \alpha^2) \nabla_j \lambda = (U^t \nabla_t \lambda) U_j,$$

which unable us to obtain $\xi^t \nabla_t \lambda = 0$. From this and (3.8), we verify that $\lambda \xi^t \nabla_t \alpha = 0$ and hence

$$\xi^t \nabla_t \alpha = 0.$$

If we take the inner product (1.10) with ξ^k , and use (3.23), then we get

$$\phi_j^r \xi^k \nabla_r U_k = (3\lambda - \alpha)U_j + \nabla_j \alpha,$$

where we have used (1.5), (1.11), (2.13), (2.18) and (3.4), which together with (1.9) and (3.10) yields $\nabla_j \alpha = (\varepsilon - 3\lambda)U_j$. Hence Lemma 3.5 is proved.

Lemma 3.6. $d\mu(\xi) = 0$ and $x\mu = \frac{\lambda(k+x)^2}{k-x}$ on Ω .

Proof. Using (2.14), (3.5) and Lemma 3.4, the equation (3.21) implies

$$x(n_k\phi_{jr}U^r - n_j\phi_{kr}U^r) + K_{jr}\nabla_k U^r - K_{kr}\nabla_j U^r = 0.$$

Since U is orthogonal to the structure vector ξ , by applying ξ^k and using (1.8), (2.18) and Lemma 3.4, we get

$$x\mu(A_{jr}\xi^r - \alpha\xi_j) - K_j^r(U^k\nabla_r\xi_k) + kU^r\nabla_j\xi_r = 0.$$

On the other hand, we have from (1.8), (2.19) and (3.14)

$$\xi^{s}A_{sr}K_{j}^{r}=-xA_{jr}\xi^{r}+\alpha(k+x)U_{j}.$$

Therefore, if we take account of (1.9) and (3.10), then the last two equations implies

$$\{x\mu + (\varepsilon - \alpha)(k+x)\}(A_{jr}\xi^r - \alpha\xi_j) = 0.$$

From this and (3.12) we see that $x(k-x)\mu - \lambda(k+x)^2 = 0$, which together with (3.22) and Lemma 3.3 gives $\xi^t \nabla_t \mu = 0$. Therefore, Lemma 3.6 is proved.

Lemma 3.7. Ω is empty set, that is, k vanishes identically on whole space M.

Proof. Differentiating (3.14) covariantly and taking account of (1.4), (1.5), (3.4) and Lemma 3.3, we find

$$\nabla_k n_j = \xi_j \nabla_k \mu - \mu A_{kr} \phi_j^r + \frac{x}{k^2} (k - x) U_k \phi_{jr} U^r$$
$$- (1 + \frac{x}{k}) (\lambda U_k \xi_j + \phi_{jr} \nabla_k U^r),$$

from which, taking the skew-symmetric part and using (2.1),

$$2\theta \phi_{kj} + \frac{x}{k^{2}}(k-x)\{U_{j}\phi_{kr}U^{r} - U_{k}\phi_{jr}U^{r}\}$$

$$= \xi_{j}\nabla_{k}\mu - \xi_{k}\nabla_{j}\mu - \mu(A_{kr}\phi_{j}^{r} - A_{jr}\phi_{k}^{r})$$

$$- (1 + \frac{x}{k})\{\lambda(U_{k}\xi_{j} - U_{j}\xi_{k}) + \phi_{jr}\nabla_{k}U^{r} - \phi_{kr}\nabla_{j}U^{r}\}.$$

Applying this by ξ^{j} and using Lemma 3.3 and Lemma 3.5, we find

$$\nabla_k \mu = \mu U_k + (1 + \frac{x}{k})(\lambda U_k + \phi_k^r U^j \nabla_r \xi_j),$$

or, using (1.9), (3.10) and (3.12),

(3.25)
$$\nabla_{\boldsymbol{k}}\mu = (\mu + \lambda)(1 + \frac{x}{k})U_{\boldsymbol{k}}.$$

On the other hand, the skew-symmetric part of (1.10) gives

$$\phi_{kr}\nabla_{j}U^{r} - \phi_{jr}\nabla_{k}U^{r} = \frac{c}{2}\phi_{kj} + 2A_{jr}A_{ks}\phi^{rs} + \alpha(A_{jr}\phi_{k}^{r} - A_{kr}\phi_{j}^{r}) + (\varepsilon - 2\lambda)(U_{k}\xi_{j} - U_{j}\xi_{k}),$$

where we have used (2.13), (2.18), (3.4) and Lemma 3.5.

If we substitute (3.25) and this into (3.24), and make use of Lemma 3.6, then we obtain

$$\begin{aligned} 2\theta\phi_{kj} + \frac{x}{k^{2}}(k-x)(U_{j}\phi_{kr}U^{r} - U_{k}\phi_{jr}U^{r}) \\ &= (1 + \frac{x}{k})\{(\mu + \varepsilon - 2\lambda)(U_{k}\xi_{j} - U_{j}\xi_{k}) + \frac{c}{2}\phi_{kj} + 2A_{jr}A_{ks}\phi^{rs} \\ &+ (\mu + \varepsilon)(A_{jr}\phi_{k}^{r} - A_{kr}\phi_{i}^{r})\}. \end{aligned}$$

Multiplying this equation with U^{j} and summing for j, and taking account of (1.8), (3.4), (3.10) and Lemma 3.2, we find

$$\begin{aligned} &2(\theta - \frac{c}{4})(1 + \frac{x}{k})(A_{kr}\xi^r - \alpha\xi_k) \\ &= (1 + \frac{x}{k})\{-(\mu + \varepsilon - 2\lambda)(\beta - \alpha^2)\xi_k - 2\lambda(\varepsilon - \alpha)A_{kr}\xi^r + 2\lambda(2kx + \alpha\lambda)\xi_k \\ &+ (\mu + \varepsilon)(\lambda + \varepsilon - \alpha)A_{kr}\xi^r - 2(\mu + \varepsilon)(kx + \alpha\lambda)\xi_k \}. \end{aligned}$$

Thus, it follows that

$$2(\theta - \frac{c}{4}) = -2\lambda(\varepsilon - \alpha) + (\mu + \varepsilon)(\lambda + \varepsilon - \alpha)$$

because of $\beta - \alpha^2 \neq 0$ on Ω , or using (3.8), (3.12) and Lemma 3.6,

$$\lambda^2(k+x) = \theta(k-x).$$

Differentiating this covariantly and using Lemma 3.3, we get

$$(k+x)\nabla_{j}\lambda=x\lambda U_{j}.$$

By the way, we have from (3.8)

$$\alpha \nabla_j \lambda = (3\lambda^2 - \lambda \varepsilon + x^2 - kx)U_j,$$

where we have used Lemma 3.3 and Lemma 3.5. Combining the last three equations, we verify that

$$x\alpha\lambda = 3\theta(k-x) - \lambda(k+x)\varepsilon - x(k^2-x^2),$$

or using (3.8) and (3.12)

$$(6x^2 + \frac{5}{4}c)k = x^3,$$

which shows that $(6x^2 + \frac{5}{4}c)(k-x) = 0$, a contradiction because of $\alpha\lambda \neq 0$ on Ω . Therefore Ω is empty set. This completes the proof.

4. The proof of Theorem

Proof of Theorem. Let M be a connected real (2n-1)-dimensional (n>2) semi-invariant submanifold of codimension 3 satisfying $dn=2\theta\omega$ for a certain scalar $\theta<\frac{c}{2}$ in $\mathbb{C}P^{n+1}$. Suppose that $R_{\xi}\phi A=A\phi R_{\xi}$. Then by Lemma 3.6 we have k=0 on M. Thus, (2.8) tells us that the distinguished normal C is parallel in the normal bundle. Hence, by Lemma 4.1 of [8], we have $A_{(2)}=A_{(3)}=0$. Therefore, by the reduction theorem in [5], [12], M is a real hypersurface in a complex projective space $\mathbb{C}P^n$. Since we have $\nabla^{\perp}C=0$, equations (1.13) and (3.1) are reduced respectively to

$$\nabla_{k} A_{ji} - \nabla_{j} A_{ki} = \frac{c}{4} (\xi_{k} \phi_{ji} - \xi_{j} \phi_{ki} - 2\xi_{i} \phi_{kj}),$$

$$\frac{c}{4} (A_{jr} \phi_{i}^{\ r} + A_{ir} \phi_{j}^{\ r}) - (A_{jr} \xi^{r}) (A_{is} U^{s}) - (A_{ir} \xi^{r}) (A_{js} U^{s}) = 0.$$

Using (1.4), (1.5) and above two equations, it is proved in [4] that g(U, U) = 0. Hence we have $A\phi = \phi A$. Thus, by Theorem O we have our Theorem.

In the case where $\theta = \frac{c}{4}$, that is, M is a semi-invariant submanifold with $dn = \frac{c}{2}\omega$, then from Theorem we have

Corollary 4.1. Let M be a semi-invariant submanifold of codimension 3 with $dn = \frac{c}{2}\omega$ in $\mathbb{C}P^{n+1}$. If M satisfies $R_{\xi}\phi A = A\phi R_{\xi}$, then M is locally congruent to one of the following spaces in $\mathbb{C}P^n$:

- (A₁) a geodesic hypersphere (that is, a tube of radius r over a hyperplane $\mathbb{C}P^{n-1}$, where $0 < r < \frac{\pi}{2}$),
- (A₂) a tube of radius r over a totally geodesic $\mathbb{C}P^k$ $(1 \le k \le n-2)$, where $0 < r < \frac{\pi}{2}$.

REFERENCES

- 1. A. Bejancu, CR-submanifolds of a Kähler manifold I, Proc. Amer. Math. Soc. 69 (1978), 135-142.
- 2. D.E. Blair, G.D. Ludden and K. Yano, Semi-invariant immersion, Kodai Math. Sem. Rep. 27 (1976), 313-319.
- 3. T.E. Cecil and P.J. Ryan, Focal sets and real hypersurfaces in complex projective space, Trans. Amer. Math. Soc. 269 (1982), 481-499.
- 4. J.T. Cho and U-H. Ki, Real hypersurfaces of a complex projective space in terms of the Jacobi operators, Acta Math. Hungar. 80 (1998), 155-167.
- 5. J. Erbacher, Reduction of the codimension of an isometric immersion, J. Differential Geom. 3 (1971), 333-340.
- 6. U-H. Ki, C. Li and S.-C. Lee, Semi-invariant submanifolds with L-flat normal connection in terms of the Lie derivatives, to appear in Kyungpook Math. J.
- 7. U-H. Ki and H.-J. Kim, Semi-invariant submanifolds with lift-flat normal connection in a complex projective space, Kyungpook Math. J. 40 (2000), 185-194.
- 8. U-H. Ki, H. Song and R. Takagi, Submanifolds of codimension 3 admitting almost contact metric structure in a complex projective space, Nihonkai Math. J. 11 (2000), 57-86.
- 9. R. Niebergall and P.J. Ryan, Real hypersurfaces in complex space form, in Tight and Taut submanifolds, Cambridge University Press (1998(T.E. Cecil and S.S. Chern, eds.)), 233-305.
- 10. M. Okumura, On some real hypersurfaces of a complex projective space, Trans. Amer. Math. Soc. 212 (1973), 355-364.
- 11. M. Okumura, Normal curvature and real submanifold of the complex projective space, Geometriae Dedicata 7 (1978), 509-517.
- 12. M. Okumura, Codimension reduction problem for real submanifolds of complex projective space, Colloq. Math. Soc., János Bolyai 56 (1989), 574-585.
- 13. M. Okumura and L. Vanhecke, n-dimensional real submanifolds with (n-1)-dimensional maximal holomorphic tangent subspace in complex projective spaces, Rendiconti del Circolo Mat. di Palermo 43 (1994), 233-249.
- 14. H. Song, Some differential-geometric properties of R-spaces, Tsukuba J. Math. 25 (2001), 279-298.
- 15. R. Takagi, On homogeneous real hypersurfaces in a complex projective space, Osaka J. Math. 19 (1973), 495-506.
- 16. R. Takagi, Real hypersurfaces in a complex projective space with constant principal curvatures I, II, J. Math. Soc. Japan 27 (1975), 43-53, 507-516.
- 17. Y. Tashiro, Relations between the theory of almost complex spaces and that of almost contact spaces (in Japanese), Sugaku 16 (1964), 34-61.
- 18. K. Yano and U-H. Ki, On $(f, g, u, v, w, \lambda, \mu, \nu)$ -structure satisfying $\lambda^2 + \mu^2 + \nu^2 = 1$, Kodai Math. Sem. Rep. 29 (1978), 285–307.
- 19. K. Yano and M. Kon, CR submanifolds of Kaehlerian and Sasakian manifolds, Birkhäuser (1983).

U-HANG KI
DEPARTMENT OF MATHEMATICS,
KYUNGPOOK NATIONAL UNIVERSITY,
TAEGU 702-701, KOREA

HYUNJUNG SONG
DEPARTMENT OF MATHEMATICS,
HANKUK UNIVERSITY OF FOREIGN STUDIES,
SEOUL 130-791, KOREA

Received November 29, 2000 Revised March 14, 2003