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Ricci tensor of $C$-totally real submanifolds
in Sasakian space forms
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Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the
squared mean curvature for a submanifold in a Riemannian space form with arbitrary
codimension. The Lagrangian version of this inequality was proved by the same author.
In this article, we obtain a sharp $estimate\sim$ of the Ricci tensor of a C-totally real sub-
manifold $M$ in a Sasakian space form $M(c)$ , in terms of the main extrinsic invariant,
namely the squared mean curvature. If $M$ satisfies the equality case identically, then
it is minimal. Moreover, in this case, $M$ is a ruled submanifold.

1. Preliminaries.
A $(2m+1)$-dimensional Riemannian manifold $(\overline{M}, g)$ is said to be a Sasakian

manifold if it admits an endomorphism $\phi$ of its tangent bundle $T\overline{M}$ , a vector
field $\xi$ and a l-form $\eta$ , satisfying:

$\left\{\begin{array}{l}\phi^{2}=-Id+\eta\otimes\xi,\eta(\xi)=1,\phi\xi=0,\eta\circ\phi=0\\g_{\frac{(}{\nabla}}\phi X,\phi Y)=g(X,Y)-\eta(X)\eta(Y_{\frac{)}{\nabla}}\eta(X)=g(X,\xi)(x\phi)Y=-g(X,Y)\xi+\eta(Y)X_{X}\xi=\phi X,\end{array}\right.$

for any vector fields $X,$ $Y$ on $T\overline{M}$ , where $\overline{\nabla}$ denotes the Riemannian connection
with respect to $g$ . A plane section $\pi$ in $T_{p}\overline{M}$ is called a $\phi$-section if it is spanned
by $X$ and $\phi X$ , where $X$ is a unit tangent vector orthogonal to $\xi$ . The sectional
curvature of a qS-section is called a $\phi$-sectional curvature. A Sasakian manifoid
with constant $\not\in sectional$ curvature $c$ is said to be a Sasakian space form and
is denoted by $M(c)$ .

The curvature tensor $\tilde{R}$ of a Sasakian space form $\overline{M}(c)$ is given by [1]

(1.1) $\tilde{R}(X, Y)Z=\frac{c+3}{4}\{g(Y, Z)X-g(X, Z)Y\}+$
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$+\frac{c-1}{4}\{\eta(X)\eta(Z)Y-\eta(Y)\eta(Z)X+g(X, Z)\eta(Y)\xi-g(Y, Z)\eta(X)\xi+$

$+g(\phi Y, Z)\phi X-g(\phi X, Z)\phi Y-2g(\phi X, Y)\phi Z\}$ ,

for any tangent vector fields $X,$ $Y,$ $Z$ on $\overline{M}(c)$ .
As examples of Sasakian space forms we mention $R^{2m+1}$ and $S^{2m+1}$ , with

standard Sasakian structures (see $[1],[10]$ ).
Let $M$ be an n-dimensional submanifold of a Sasakian space form $\overline{M}(c)$ of

constant g6-sectiona1 curvature $c$ . We denote by $K(\pi)$ the sectional curvature
of $M$ associated with a plane section $\pi\subset T_{p}M,p\in M$ , and $\nabla$ the Riemannian
connection of $M$ , respectively. Also, let $h$ be the second fundamental form and
$R$ the Riemann curvature tensor of $M$ . Then the equation of Gauss is given
by

(1.2) $\tilde{R}(X,Y, Z, W)=R(X,Y, Z, W)+$

$+g(h(X, W),$ $h(Y,Z))-g(h(X, Z),$ $h(Y, W))$ ,

for any vectors $X,Y,$ $Z,$ $W$ tangent to $M$ .
Let $p\in M$ and $\{e_{1}, \ldots, e_{2m+1}\}$ an orthonormal basis of the tangent space

$T_{p}\overline{M}$ , such that $e_{1},$ $\ldots,e_{n}$ are tangent to $M$ at $p$ . We denote by $H$ the mean
curvature vector, that is

(1.3) $H(p)=\frac{1}{n}\sum_{i=1}^{\mathfrak{n}}h(e_{i},e_{1})$ .

Also, we set

(1.4) $h_{ij}^{r}=g(h(e_{i},e_{j}),e_{r})$ , $i,j\in\{1, \ldots,n\},r\in\{n+1, \ldots,2m+1\}$ ,

and

(1.5) $||h||^{2}=\sum_{i_{\dot{\theta}}=1}^{\mathfrak{n}}g(h(e_{1}, e_{j}),$ $h(e:,e_{j}))$ .

Recall that for a submanifold $M$ in a Riemannian manifold, the relative
nul space of $M$ at a point $p\in M$ is defined by

$\mathcal{N}_{p}=$ {$X\in T_{p}M|h(X,Y)=0$ , for all $Y\in T_{p}M$}.
In the proof of Theorem 2.1, we will use the following result of B.-Y. Chen.

Lemma [2]. Let $n\geq 2$ and $a_{1},$
$\ldots,$

$a_{n},$
$b$ real numbers such that

$(\sum_{:=1}^{n}a_{i})^{2}=(n-1)(\sum_{=1}^{\mathfrak{n}}a_{i}^{2}+b)$
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Then $2a_{1}a_{2}\geq b$ , with equality holding if and only if
$a_{1}+a_{2}=a_{3}=\ldots=a_{n}$ .

2. Ricci tensor and squared mean curvature.
B.Y. Chen established a sharp relationship between the Ricci curvature

and the squared mean curvature for submanifolds in real space forms (see
[3]). Afterwards, he obtained the Lagrangian version of this relationship (see
[4]). First, we prove a similar inequality for an n-dimensional C-totally real
submanifold $M$ of a $(2m+1)$-dimensional Sasakian space form $\overline{M}(c)$ of constant
$\phi$-sectional curvature $c$ .

A submanifold $M$ normal to $\xi$ in a Sasakian space form $\overline{M}(c)$ is said to be
a C-totally real submanifold.

It follows that $\phi$ maps any tangent space of $M$ into the normal space, that
is, $\phi(T_{p}M)\subset T_{p}^{\perp}M$ , for every $p\in M$ .

Theorem 2.1. Let $M$ be an n-dimensional C-totally real submanifold in a
$(2m+1)$ -dimensional Sasakian space form $\overline{M}(c)$ of constant $\phi$-sectional cur-
vature $c$ . Then:

i) For each unit vector $X\in T_{p}M$ , we have

(2.1) Ric(X) $\leq\frac{1}{4}\{n^{2}||H||^{2}+(n-1)(c+3)\}$ .

ii) If $H(p)=0$ , then a unit tangent vector $X$ at $p$ satisfies the equality case
of (2.1) if and only if $X\in \mathcal{N}_{p}$ .

iii) The equality case of (2.1) holds identically for all unit tangent vectors at
$p$ if and only if either $p$ is a totally geodesic point or $n=2$ and $p$ is a totally
umbilical point.

Proof. i) Let $X\in T_{p}M$ be a unit tangent vector $X$ at $p$ . We choose an
orthonormal basis $\{e_{1}, \ldots, e_{n},e_{n+1}, \ldots,\cdot e_{2m+1}\}$ such that $e_{1},$

$\ldots,$
$e_{n}$ are tangent to

$M$ at $p$ , with $e_{n}=X,$ $ e_{2m+1}=\xi$ and $e_{n+1}$ parallel to the mean curvature
vector $H(p)$ (if $H(p)=0$ , then $e_{n+1}$ can be any unit normal vector orthogonal
to $\xi$).

Then, from the Gauss equation, we have

(2.3) $n^{2}||H||^{2}=2\tau+||h||^{2}-\frac{1}{4}n(n-1)(c+3)$ ,

where $\tau$ denotes the scalar curvature at $p$ , that is,

$\tau=\sum_{1\leq i<j\leq n}K(e_{i}\wedge e_{j})$
.

–193–



We put
$\delta=2\tau-\frac{n^{2}}{2}||H||^{2}-\frac{1}{4}n(n-1)(c+3)$ .

Then, from (2.3), we get

(2.4) $n^{2}||H||^{2}=2(\delta+||h\Vert^{2})$ .

With respect to the above orthonormal basis, (2.4) takes the following form:

$(\sum_{1=1}^{\mathfrak{n}}h^{n.+1}|)^{2}=2\{\delta+\sum_{:=1}^{\mathfrak{n}}(h_{1:}^{\mathfrak{n}+1})^{2}+\sum_{1\neq j}(h_{:j}^{n+1})^{2}+\sum_{r=\mathfrak{n}+2}^{2m}\sum_{i_{\dot{\theta}}=1}^{\mathfrak{n}}(h_{ij}^{r})^{2}\}$ .

If we put $a_{1}=h_{11}^{\mathfrak{n}+1},$ $a_{2}=\Sigma_{i=2}^{n-1}h_{1:}^{\mathfrak{n}+1}$ and $a_{3}=h_{n\mathfrak{n}}^{\mathfrak{n}+1}$ , the above equation
becomes

$(\sum_{1=1}^{3}a_{i})^{2}=2\{.r\}$ .

Thus $a_{1},$ $a_{2},a_{3}$ satisfy the Lemma of Chen (for $n=3$), i.e.

$(\sum_{1=1}^{3}a_{1})^{2}=2(b+\sum_{1=1}^{3}a^{2})$ .

Then $2a_{1}a_{2}\geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$ .
In the case under consideration, this means

$\sum_{1\leq\alpha\neq\beta\leq n-1}h_{\alpha_{\backslash }\alpha}^{\mathfrak{n}+1}h_{\beta\beta}^{n+1}\geq\delta+2\sum_{i<j}(h_{ij}^{n+1})^{2}+\sum_{r=n+2}^{2m}\sum_{i,j=1}^{n}(h_{j}^{r})^{2}$ ,

or equivalently,

(2.5) $\frac{n^{2}}{2}||H||^{2}+\frac{1}{4}n(n-1)(c+3)\geq$

$\geq 2\tau-\sum_{1\leq\alpha\neq\beta\leq \mathfrak{n}-1}h_{\alpha\alpha}^{\mathfrak{n}+1}h_{\beta\beta}^{\mathfrak{n}+1}+2\sum_{1<j}(h_{ij}^{\mathfrak{n}+1})^{2}+\sum_{r=n+2}^{2m}\sum_{i,j=1}^{\mathfrak{n}}(h_{ij}^{r})^{2}$ .

Using again the Gauss equation, we have

(2.6) $2\tau-\sum_{1\leq a\neq\beta\leq n-1}h_{\alpha\alpha}^{n+1}h_{\beta\beta}^{n+1}+2\sum_{1<j}(h_{1j}^{n+1})^{2}+\sum_{r=n+2}^{2m}\sum_{i,j=1}^{\mathfrak{n}}(h_{1j}^{r})^{2}=$

$=2S(e_{\mathfrak{n}},e_{n})+\frac{1}{4}(n-1)(n-2)(c+3)+2\sum_{1=1}^{n-1}(h_{1n}^{n+1})^{2}+$
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$+\sum_{n+2}^{2m}\{(h_{nn}^{r})^{2}+2\sum_{:=1}^{n-1}(h_{in}^{r})^{2}+(\sum_{\alpha=1}^{n-1}h_{\alpha\alpha}^{r})^{2}\}$ ,

where $S$ is the Ricci tensor of $M$ .
Combining (2.5) and (2.6), we obtain

$\frac{n^{2}}{2}\Vert H\Vert^{2}+\frac{1}{2}(n-1)(c+3)\geq 2S(e_{n},e_{n})+2\sum_{i=1}^{n-1}(h_{\dot{m}}^{n+1})^{2}+$

$+\sum_{r=\mathfrak{n}+2}^{2m}\{\sum_{i=1}^{n-1}(h_{n}^{\dot{r}})^{2}+(\sum_{\alpha=1}^{n-1}h_{\alpha\alpha}^{r})^{2}\}$ ,

which implies (2.1).
ii) Assume $H(p)=0$ . Equality holds in (2.1) if and only if

(2.7) $\left\{\begin{array}{l}h_{1n}^{r}=\ldots=h_{\mathfrak{n}-1,n}^{r}=0\\h_{n\mathfrak{n}}^{r}=\Sigma_{=1}^{n-1}h_{ii}^{r}\end{array}\right.$ $r\in\{n+1, \ldots, 2m\}$ .

Then $h_{1n}^{r}=0,\forall i\in\{1, \ldots, n\},r\in\{n+1, \ldots, 2m\}$ , i.e. $X\in \mathcal{N}_{p}$ .
iii) The equality case of (2.1) holds for all unit tangent vectors at $p$ if and

only if

(2.8) $\left\{\begin{array}{ll}h_{j}^{r}=0,i\neq j,r\in\{n+1, \ldots & 2m\},\\hi_{1}+\cdots+h_{nn}^{r}-2h_{ii}^{r}=0, & i\in\{1, \ldots,n\}, r\in\{n+1, \ldots, 2m\}.\end{array}\right.$

We distinguish two cases:
a) $n\neq 2$ , then $p$ is a totally geodesic point;
b) $n=2$ , it follows that $p$ is a totally umbilical point.
The converse is trivial. $\square $

By polarization, from Theorem 2.1, we derive:

Theorem 2.2. Let $M$ be an n-dimensional C-totally real submanifold in a
$(2m+1)$-dimensional Sasakian space form $\overline{M}(c)$ of constant $\phi$-sectional cur-
vature $c$ . Then the Ricci tensor $S$ satisfies

(2.9) $S\leq\frac{1}{4}\{n^{2}||H\Vert^{2}+(n-1)(c+3)\}g$ .

The equality case of (2.9) holds identically if and only if either $M$ is a totally
geodesic submanifold or $n=2$ and $M$ is a totally umbilical submanifold.

3. Minimality of C-totally real submanifolds.
Let $\overline{M}(c)$ be a $(2n+1)$-dimensional Sasakian space form and $M$ an n-

dimensional C-totally real submanifold of $\overline{M}(c)$ .
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We denote by $\mathcal{R}$ the maximum Ricci curvature function on $M$ (see [4]),
defined by

$\mathcal{R}(p)=\max\{S(u,u)|u\in T_{p}^{1}M\}$ , $p\in M$ ,

where $T_{p}^{1}M=\{u\in T_{p}M|g(u,u)=1\}$ .
If $n=3,$ $\mathcal{R}$ is the Chen first invariant $\delta_{M}$ defined in [2]. For $n>3,$ $\mathcal{R}$ is

the Chen invariant $\delta(n-1)$ (see [5]).
In this section, we derive an inequality for the Chen invariant $\mathcal{R}$ and prove

that any C-totally real submanifold which satisfies the equality case, identi-
cally, is minimal. This is the Sasakian version of a result ([4]) of B.-Y. Chen
for Lagrangian submanifolds in complex space forms.

Theorem 3.1. Let $M$ be an n-dimensional C-totally real submanifold in a
$(2n+1)$ -dimensional Sasakian space form $\overline{M}(c)$ of constant $\phi$-sectional curva-
ture $c$ . Then

(3.1) $\mathcal{R}\leq\frac{1}{4}\{n^{2}||H||^{2}+(n-1)(c+3)\}$ .

If $M$ satisfies the equality case of (3.1) identicdly, then $M$ is a minimal
submanifold.

Proof. The inequality (3.1) is an immediate consequence of the inequality
(2.9).

We assume that $M$ is a C-totally real submanifold of $\overline{M}(c)$ , which satisfies
the equality case of (3.1) at a point $p\in M$ . We may choose an orthonor-
mal basis $\{e_{1)}\ldots,e_{\mathfrak{n}}\}$ of $T_{p}M$ such that $\mathcal{R}(p)=S(e_{n},e_{n})$ . By the proof of
Theorem 2.1, it follows that the equations (2.7) hold, where $h_{\dot{\iota}j}^{r}$ are the coeffi-
cients of the second fundamental form with respect to the orthonormal basis
$\{e_{1}, \ldots,e_{n},e_{\mathfrak{n}+1}, \ldots,e_{2n+1}\}$ , with $e_{\mathfrak{n}+j}=\phi e_{j},j\in\{1, \ldots,n\},$ $ e_{2\mathfrak{n}+1}=\xi$ and $e_{n+1}$

parallel to the mean curvature vector $H(p)$ .
Let $A$ denote the shape operator of $M$ in $\overline{M}(c)$ . It is easy to prove that

(3.2) $A_{\phi X}Y=A_{\phi Y}X$ ,

for all vector fields $X,$ $Y$ tangent to $M$ (see, for instance, [9]). Then we have
$h_{:j}^{\mathfrak{n}+k}=h_{ik}^{\mathfrak{n}+j}=h_{jk}^{n+:}$ , for any $i,j,$ $k\in\{1, \ldots,n\}$ .

Thus, using the equations (2.7), we find

$H(p)=\frac{1}{n}\sum_{i=1}^{n}h_{::}^{\mathfrak{n}+1}e_{\mathfrak{n}+1}=\frac{2}{n}h_{\mathfrak{n}\mathfrak{n}}^{\mathfrak{n}+1}e_{\mathfrak{n}+1}=\frac{2}{n}h_{1n}^{2n}e_{\mathfrak{n}+1}=0$ .

Therefore $M$ is a minimal submanifold. $\square $
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Corollary 3.2. Let $M$ be an $n- dimens\underline{io}nal$ C-totally real submanifold of a
$(2n+1)$ -dimensional Sasakian space form $M(c)$ . If dim $\mathcal{N}_{p}$ is positive constant,
then $M$ satisfies the equality case of (3.1) identically and is foliated by totally
geodesic submanifolds.

Proof. By the above proof, it follows that $M$ satisfies the equality case of
(3.1) at a point $p\in M$ if and only if dim $\mathcal{N}_{p}\geq 1$ .

Assume that dim $\mathcal{N}_{p}$ is positive constant.
We prove that $\mathcal{N}$ is involutive and its leaves are totally geodesic.
Let $Y,$ $Z\in \mathcal{N}$ and $X\in \mathcal{N}^{\perp}$ . Codazzi equation implies $g(X, \nabla_{Y}Z)=0$ .

Thus $\nabla_{Y}Z\in \mathcal{N}$, for all $Y,$ $Z\in \mathcal{N}$. Therefore each leaf $of.\mathcal{N}$ is totally geodesic.
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