Ricci tensor of C-totally real submanifolds
 in Sasakian space forms

Koji MATSUMOTO and Ion MIHAI ${ }^{1}$

Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for a submanifold in a Riemannian space form with arbitrary codimension. The Lagrangian version of this inequality was proved by the same author. In this article, we obtain a sharp estimate of the Ricci tensor of a C-totally real submanifold M in a Sasakian space form $\widetilde{M}(c)$, in terms of the main extrinsic invariant, namely the squared mean curvature. If M satisfies the equality case identically, then it is minimal. Moreover, in this case, M is a ruled submanifold.

1. Preliminaries.

A $(2 m+1)$-dimensional Riemannian manifold ($\widetilde{M}, g)$ is said to be a Sasakian manifold if it admits an endomorphism ϕ of its tangent bundle $T \widetilde{M}$, a vector field ξ and a 1-form η, satisfying:

$$
\left\{\begin{array}{l}
\phi^{2}=-I d+\eta \otimes \xi, \eta(\xi)=1, \phi \xi=0, \eta \circ \phi=0 \\
g(\phi X, \phi Y)=g(X, Y)-\eta(X) \eta(Y), \eta(X)=g(X, \xi) \\
\left(\bar{\nabla}_{X} \phi\right) Y=-g(X, Y) \xi+\eta(Y) X, \bar{\nabla}_{X} \xi=\phi X
\end{array}\right.
$$

for any vector fields X, Y on $T \widetilde{M}$, where $\widetilde{\nabla}$ denotes the Riemannian connection with respect to g. A plane section π in $T_{p} \widetilde{M}$ is called a ϕ-section if it is spanned by X and ϕX, where X is a unit tangent vector orthogonal to ξ. The sectional curvature of a ϕ-section is called a ϕ-sectional curvature. A Sasakian manifold with constant ϕ-sectional curvature c is said to be a Sasakian space form and is denoted by $\mathscr{M}(c)$.

The curvature tensor \widetilde{R} of a Sasakian space form $\widetilde{M}(c)$ is given by [1]

$$
\begin{equation*}
\tilde{R}(X, Y) Z=\frac{c+3}{4}\{g(Y, Z) X-g(X, Z) Y\}+ \tag{1.1}
\end{equation*}
$$

[^0]\[

$$
\begin{gathered}
+\frac{c-1}{4}\{\eta(X) \eta(Z) Y-\eta(Y) \eta(Z) X+g(X, Z) \eta(Y) \xi-g(Y, Z) \eta(X) \xi+ \\
+g(\phi Y, Z) \phi X-g(\phi X, Z) \phi Y-2 g(\phi X, Y) \phi Z\}
\end{gathered}
$$
\]

for any tangent vector fields X, Y, Z on $\widetilde{M}(c)$.
As examples of Sasakian space forms we mention $\mathbf{R}^{2 m+1}$ and $S^{2 m+1}$, with standard Sasakian structures (see [1],[10]).

Let M be an n-dimensional submanifold of a Sasakian space form $\widetilde{M}(c)$ of constant ϕ-sectional curvature c. We denote by $K(\pi)$ the sectional curvature of M associated with a plane section $\pi \subset T_{p} M, p \in M$, and ∇ the Riemannian connection of M, respectively. Also, let h be the second fundamental form and R the Riemann curvature tensor of M. Then the equation of Gauss is given by

$$
\begin{gather*}
\tilde{R}(X, Y, Z, W)=R(X, Y, Z, W)+ \tag{1.2}\\
+g(h(X, W), h(Y, Z))-g(h(X, Z), h(Y, W))
\end{gather*}
$$

for any vectors X, Y, Z, W tangent to M.
Let $p \in M$ and $\left\{e_{1}, \ldots, e_{2 m+1}\right\}$ an orthonormal basis of the tangent space $T_{p} \widetilde{M}$, such that e_{1}, \ldots, e_{n} are tangent to M at p. We denote by H the mean curvature vector, that is

$$
\begin{equation*}
H(p)=\frac{1}{n} \sum_{i=1}^{n} h\left(e_{i}, e_{i}\right) . \tag{1.3}
\end{equation*}
$$

Also, we set

$$
\begin{equation*}
h_{i j}^{r}=g\left(h\left(e_{i}, e_{j}\right), e_{r}\right), \quad i, j \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m+1\} \tag{1.4}
\end{equation*}
$$

and

$$
\begin{equation*}
\|h\|^{2}=\sum_{i, j=1}^{n} g\left(h\left(e_{i}, e_{j}\right), h\left(e_{i}, e_{j}\right)\right) \tag{1.5}
\end{equation*}
$$

Recall that for a submanifold M in a Riemannian manifold, the relative null space of M at a point $p \in M$ is defined by

$$
\mathcal{N}_{p}=\left\{X \in T_{p} M \mid h(X, Y)=0, \text { for all } Y \in T_{p} M\right\}
$$

In the proof of Theorem 2.1, we will use the following result of B.-Y. Chen.
Lemma [2]. Let $n \geq 2$ and a_{1}, \ldots, a_{n}, b real numbers such that

$$
\left(\sum_{i=1}^{n} a_{i}\right)^{2}=(n-1)\left(\sum_{i=1}^{n} a_{i}^{2}+b\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if

$$
a_{1}+a_{2}=a_{3}=\ldots=a_{n}
$$

2. Ricci tensor and squared mean curvature.

B.Y. Chen established a sharp relationship between the Ricci curvature and the squared mean curvature for submanifolds in real space forms (see [3]). Afterwards, he obtained the Lagrangian version of this relationship (see [4]). First, we prove a similar inequality for an n-dimensional C-totally real submanifold M of a ($2 m+1$)-dimensional Sasakian space form $\widetilde{M}(c)$ of constant ϕ-sectional curvature c.

A submanifold M normal to ξ in a Sasakian space form $\widetilde{M}(c)$ is said to be a C-totally real submanifold.

It follows that ϕ maps any tangent space of M into the normal space, that is, $\phi\left(T_{p} M\right) \subset T_{p}^{\perp} M$, for every $p \in M$.

Theorem 2.1. Let M be an n-dimensional C-totally real submanifold in a $(2 m+1)$-dimensional Sasakian space form $\widetilde{M}(c)$ of constant ϕ-sectional curvature c. Then:
i) For each unit vector $X \in T_{p} M$, we have

$$
\begin{equation*}
\operatorname{Ric}(X) \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1)(c+3)\right\} \tag{2.1}
\end{equation*}
$$

ii) If $H(p)=0$, then a unit tangent vector X at p satisfies the equality case of (2.1) if and only if $X \in \mathcal{N}_{p}$.
iii) The equality case of (2.1) holds identically for all unit tangent vectors at p if and only if either p is a totally geodesic point or $n=2$ and p is a totally umbilical point.

Proof. i) Let $X \in T_{p} M$ be a unit tangent vector X at p. We choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 m+1}\right\}$ such that e_{1}, \ldots, e_{n} are tangent to M at p, with $e_{n}=X, e_{2 m+1}=\xi$ and e_{n+1} parallel to the mean curvature vector $H(p)$ (if $H(p)=0$, then e_{n+1} can be any unit normal vector orthogonal to ξ).

Then, from the Gauss equation, we have

$$
\begin{equation*}
n^{2}\|H\|^{2}=2 \tau+\|h\|^{2}-\frac{1}{4} n(n-1)(c+3) \tag{2.3}
\end{equation*}
$$

where τ denotes the scalar curvature at p, that is,

$$
\tau=\sum_{1 \leq i<j \leq n} K\left(e_{i} \wedge e_{j}\right)
$$

We put

$$
\delta=2 \tau-\frac{n^{2}}{2}\|H\|^{2}-\frac{1}{4} n(n-1)(c+3) .
$$

Then, from (2.3), we get

$$
\begin{equation*}
n^{2}\|H\|^{2}=2\left(\delta+\|h\|^{2}\right) \tag{2.4}
\end{equation*}
$$

With respect to the above orthonormal basis, (2.4) takes the following form:

$$
\left(\sum_{i=1}^{n} h_{i i}^{n+1}\right)^{2}=2\left\{\delta+\sum_{i=1}^{n}\left(h_{i i}^{n+1}\right)^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}\right\}
$$

If we put $a_{1}=h_{11}^{n+1}, a_{2}=\sum_{i=2}^{n-1} h_{i i}^{n+1}$ and $a_{3}=h_{n n}^{n+1}$, the above equation becomes

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left\{\delta+\sum_{i=1}^{3} a_{i}^{2}+\sum_{i \neq j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}-\sum_{2 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}\right\} .
$$

Thus a_{1}, a_{2}, a_{3} satisfy the Lemma of Chen (for $n=3$), i.e.

$$
\left(\sum_{i=1}^{3} a_{i}\right)^{2}=2\left(b+\sum_{i=1}^{3} a_{i}^{2}\right)
$$

Then $2 a_{1} a_{2} \geq b$, with equality holding if and only if $a_{1}+a_{2}=a_{3}$. In the case under consideration, this means

$$
\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1} \geq \delta+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2},
$$

or equivalently,

$$
\begin{gather*}
\frac{n^{2}}{2}\|H\|^{2}+\frac{1}{4} n(n-1)(c+3) \geq \tag{2.5}\\
\geq 2 \tau-\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2} .
\end{gather*}
$$

Using again the Gauss equation, we have

$$
\begin{align*}
& 2 \tau-\sum_{1 \leq \alpha \neq \beta \leq n-1} h_{\alpha \alpha}^{n+1} h_{\beta \beta}^{n+1}+2 \sum_{i<j}\left(h_{i j}^{n+1}\right)^{2}+\sum_{r=n+2}^{2 m} \sum_{i, j=1}^{n}\left(h_{i j}^{r}\right)^{2}= \tag{2.6}\\
& =2 S\left(e_{n}, e_{n}\right)+\frac{1}{4}(n-1)(n-2)(c+3)+2 \sum_{i=1}^{n-1}\left(h_{i n}^{n+1}\right)^{2}+
\end{align*}
$$

$$
+\sum_{n+2}^{2 m}\left\{\left(h_{n n}^{r}\right)^{2}+2 \sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{\alpha=1}^{n-1} h_{\alpha \alpha}^{r}\right)^{2}\right\}
$$

where S is the Ricci tensor of M.
Combining (2.5) and (2.6), we obtain

$$
\begin{aligned}
\frac{n^{2}}{2}\|H\|^{2}+ & \frac{1}{2}(n-1)(c+3) \geq 2 S\left(e_{n}, e_{n}\right)+2 \sum_{i=1}^{n-1}\left(h_{i n}^{n+1}\right)^{2}+ \\
& +\sum_{r=n+2}^{2 m}\left\{\sum_{i=1}^{n-1}\left(h_{i n}^{r}\right)^{2}+\left(\sum_{\alpha=1}^{n-1} h_{\alpha \alpha}^{r}\right)^{2}\right\}
\end{aligned}
$$

which implies (2.1).
ii) Assume $H(p)=0$. Equality holds in (2.1) if and only if

$$
\left\{\begin{array}{l}
h_{1 n}^{r}=\ldots=h_{n-1, n}^{r}=0 \tag{2.7}\\
h_{n n}^{r}=\sum_{i=1}^{n-1} h_{i i}^{r}
\end{array}, \quad r \in\{n+1, \ldots, 2 m\}\right.
$$

Then $h_{i n}^{r}=0, \forall i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m\}$, i.e. $X \in \mathcal{N}_{p}$.
iii) The equality case of (2.1) holds for all unit tangent vectors at p if and only if

$$
\left\{\begin{array}{l}
h_{i j}^{r}=0, i \neq j, r \in\{n+1, \ldots, 2 m\}, \tag{2.8}\\
h_{11}^{r}+\ldots+h_{n n}^{r}-2 h_{i i}^{r}=0, \quad i \in\{1, \ldots, n\}, r \in\{n+1, \ldots, 2 m\} .
\end{array}\right.
$$

We distinguish two cases:
a) $n \neq 2$, then p is a totally geodesic point;
b) $n=2$, it follows that p is a totally umbilical point.

The converse is trivial.
By polarization, from Theorem 2.1, we derive:
Theorem 2.2. Let M be an n-dimensional C-totally real submanifold in a $(2 m+1)$-dimensional Sasakian space form $\widetilde{M}(c)$ of constant ϕ-sectional curvature c. Then the Ricci tensor S satisfies

$$
\begin{equation*}
S \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1)(c+3)\right\} g . \tag{2.9}
\end{equation*}
$$

The equality case of (2.9) holds identically if and only if either M is a totally geodesic submanifold or $n=2$ and M is a totally umbilical submanifold.

3. Minimality of C-totally real submanifolds.

Let $\widetilde{M}(c)$ be a $(2 n+1)$-dimensional Sasakian space form and M an n dimensional C-totally real submanifold of $\widetilde{M}(c)$.

We denote by \mathcal{R} the maximum Ricci curvature function on M (see [4]), defined by

$$
\mathcal{R}(p)=\max \left\{S(u, u) \mid u \in T_{p}^{1} M\right\}, \quad p \in M,
$$

where $T_{p}^{1} M=\left\{u \in T_{p} M \mid g(u, u)=1\right\}$.
If $n=3, \mathcal{R}$ is the Chen first invariant δ_{M} defined in [2]. For $n>3, \mathcal{R}$ is the Chen invariant $\delta(n-1)$ (see [5]).

In this section, we derive an inequality for the Chen invariant \mathcal{R} and prove that any C-totally real submanifold which satisfies the equality case, identically, is minimal. This is the Sasakian version of a result ([4]) of B.-Y. Chen for Lagrangian submanifolds in complex space forms.

Theorem 3.1. Let M be an n-dimensional C-totally real submanifold in a $(2 n+1)$-dimensional Sasakian space form $\widetilde{M}(c)$ of constant ϕ-sectional curvature c. Then

$$
\begin{equation*}
\mathcal{R} \leq \frac{1}{4}\left\{n^{2}\|H\|^{2}+(n-1)(c+3)\right\} \tag{3.1}
\end{equation*}
$$

If M satisfies the equality case of (3.1) identically, then M is a minimal submanifold.

Proof. The inequality (3.1) is an immediate consequence of the inequality (2.9).

We assume that M is a C-totally real submanifold of $\widetilde{M}(c)$, which satisfies the equality case of (3.1) at a point $p \in M$. We may choose an orthonormal basis $\left\{e_{1}, \ldots, e_{n}\right\}$ of $T_{p} M$ such that $\mathcal{R}(p)=S\left(e_{n}, e_{n}\right)$. By the proof of Theorem 2.1, it follows that the equations (2.7) hold, where $h_{i j}^{r}$ are the coefficients of the second fundamental form with respect to the orthonormal basis $\left\{e_{1}, \ldots, e_{n}, e_{n+1}, \ldots, e_{2 n+1}\right\}$, with $e_{n+j}=\phi e_{j}, j \in\{1, \ldots, n\}, e_{2 n+1}=\xi$ and e_{n+1} parallel to the mean curvature vector $H(p)$.

Let A denote the shape operator of M in $\widetilde{M}(c)$. It is easy to prove that

$$
\begin{equation*}
A_{\phi X} Y=A_{\phi Y} X \tag{3.2}
\end{equation*}
$$

for all vector fields X, Y tangent to M (see, for instance, [9]). Then we have $h_{i j}^{n+k}=h_{i k}^{n+j}=h_{j k}^{n+i}$, for any $i, j, k \in\{1, \ldots, n\}$.

Thus, using the equations (2.7), we find

$$
H(p)=\frac{1}{n} \sum_{i=1}^{n} h_{i i}^{n+1} e_{n+1}=\frac{2}{n} h_{n n}^{n+1} e_{n+1}=\frac{2}{n} h_{1 n}^{2 n} e_{n+1}=0 .
$$

Therefore M is a minimal submanifold.

Corollary 3.2. Let M be an n-dimensional C-totally real submanifold of a $(2 n+1)$-dimensional Sasakian space form $\widetilde{M}(c)$. If $\operatorname{dim} \mathcal{N}_{p}$ is positive constant, then M satisfies the equality case of (3.1) identically and is foliated by totally geodesic submanifolds.

Proof. By the above proof, it follows that M satisfies the equality case of (3.1) at a point $p \in M$ if and only if $\operatorname{dim} \mathcal{N}_{p} \geq 1$.

Assume that $\operatorname{dim} \mathcal{N}_{p}$ is positive constant.
We prove that \mathcal{N} is involutive and its leaves are totally geodesic.
Let $Y, Z \in \mathcal{N}$ and $X \in \mathcal{N}^{\perp}$. Codazzi equation implies $g\left(X, \nabla_{Y} Z\right)=0$. Thus $\nabla_{Y} Z \in \mathcal{N}$, for all $Y, Z \in \mathcal{N}$. Therefore each leaf of \mathcal{N} is totally geodesic.

Acknowledgements. The authors would like to thank the referee for his valuable comments.

References

[1] D.E. Blair, Contact Manifolds in Riemannian Geometry, Lecture Notes in Math. 509, Springer, Berlin, 1976.
[2] B.-Y. Chen, Some pinching and classification theorems for minimal submanifolds, Archiv Math. 60 (1993), 568-578.
[3] B.-Y. Chen, Relations between Ricci curvature and shape operator for submanifolds with arbitrary codimensions, Glasgow Math. J. 41 (1999), 33-41.
[4] B.-Y. Chen, On Ricci curvature of isotropic and Lagrangian submanifolds in complex space forms, Archiv Math. 74 (2000), 154-160.
[5] B.-Y. Chen, Some new obstructions to minimal and Lagrangian isometric immersions, Japan. J. Math. 26 (2000), 1-17.
[6] F. Defever, I. Mihai and L. Verstraelen, B. Y.Chen's inequality for C-totally real submanifolds in Sasakian space forms, Boll. Un. Mat. Ital. 11 (1997), 365-374.
[7] K. Matsumoto, I. Mihai and A. Oiagă, Ricci curvature of submanifolds in complex space forms, Rev. Roum. Math. Pures Appl., to appear.
[8] I. Mihai, R. Rosca and L. Verstraelen, Some Aspects of the Differential Geometry of Vector Fields, PADGE 2, K.U. Leuven, K.U. Brussel, 1996.
[9] K. Yano and M. Kon, Anti-invariant Submanifolds, M. Dekker, New York, 1976.
[10] K. Yano and M. Kon, Structures on Manifolds, World Scientific, Singapore, 1984.

Department of Mathematics	Faculty of Mathematics
Faculty of Education	University of Bucharest
Yamagata University	Str. Academiei 14
990-8560 Yamagata	70109 Bucharest
Japan	Romania
E-mail:ej192@kdw.kj.yamagata-u.ac.jp	E-mail:imihai@math.math.unibuc.ro

Received May 22, 2002 Revised August 23, 2002

[^0]: ${ }^{1}$ This paper was written while the second author has visited Yamagata University, Faculty of Education, supported by a JSPS research fellowship. He would like to express his hearty thanks for the hospitality he received during this visit.
 Math. Subject Classification 2000: 53C40, 53C25.
 Keywords and phrases: Ricci tensor, Ricci curvature, mean curvature, Sasakian space form, C-totally real submanifold.

