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Ricci tensor of C-totally real submanifolds
in Sasakian space forms
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Abstract

B.-Y. Chen established a sharp relationship between the Ricci curvature and the
squared mean curvature for a submanifold in a Riemannian space form with arbitrary
codimension. The Lagrangian version of this inequality was proved by the same author.
In this article, we obtain a sharp estimate of the Ricci tensor of a C-totally real sub-
manifold M in a Sasakian space form M(c), in terms of the main extrinsic invariant,
namely the squared mean curvature. If M satisfies the equality case identically, then
it is minimal. Moreover, in this case, M is a ruled submanifold.

1. Preliminaries. .

A (2m+1)-dimensional Riemannian manifold (M, g) is said to be a Sasakian
manifold if it admits an endomorphism ¢ of its tangent bundle TM, a vector
field £ and a 1-form 7, satisfying:

$*=—-Id+n®¢& ) =1, ¢¢=0,n04=0,
9(¢X,8Y) = g9(X,Y) — n(X)n(Y), n(X) = 9(X, &),
L(Vx$)Y = —g(X,Y)¢ +n(Y)X, Vx& = ¢X,

for any vector fields X,Y on TM, where fidenotes the Riemannian connection
with respect to g. A plane section 7 in T, M is called a ¢-section if it is spanned
by X and ¢X, where X is a unit tangent vector orthogonal to £. The sectional
curvature of a ¢-section is called a ¢-sectional curvature. A Sasakian manifold
with constant ¢-sectional curvature c is said to be a Sasakian space form and
is denoted by M(c). _

The curvature tensor R of a Sasakian space form M(c) is given by [1]

(1) B, V)Z = S22 (0(v, 2)X - o(X, )Y }+
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+c%41-{n(X M(Z)Y —n(YN(Z)X + g(X, Z)n(Y)E — (Y, Z)n(X )+

+9(8Y, 2)¢X — g(¢X, Z)pY —29(¢X,Y)dZ},

for any tangent vector fields X,Y,Z on M (c).

As examples of Sasakian space forms we mention R?™+! and S?™+! with
standard Sasakian structures (see [1],[10]).

Let M be an n-dimensional submanifold of a Sasakian space form M(c) of
constant ¢-sectional curvature c. We denote by K () the sectional curvature
of M associated with a plane section # C T,M,p € M, and V the Riemannian
connection of M, respectively. Also, let h be the second fundamental form and
R the Riemann curvature tensor of M. Then the equation of Gauss is given
by

(1.2) R(X,Y,Z2,W) = R(X,Y,Z,W)+
+g(h(X, W), h(Y, Z)) — g(h(X, Z), h(Y,W)),

for any vectors X,Y, Z, W tangent to M.
Let p € M and {el, ,€2m+1} an orthonormal basis of the tangent space

T,,]Tf , such that e, ..., e, are tangent to M at p. We denote by H the mean
curvature vector, that is

(1.3) H(p) =~ Z h(e;, ;).
z-l
Also, we set
(1.4) hy; = g(h(es, €5) er), 63 €{l,...,n},re{n+1,.,2m+1},

and

(1.5) IAlf? = Z g(h(ei, 5), h(e, €5))-

$,7=1

Recall that for a submanifold M in a Riemannian manifold, the relative
null space of M at a point p € M is defined by

N, ={X € T,M|h(X,Y)=0, forall Y € T,M}.
In the proof of Theorem 2.1, we will use the following result of B.-Y. Chen.

Lemma [2]. Let n > 2 and a,, ..., an, b real numbers such that

(Z a;)?=(n— 1)(2 a? + b)

=1
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Then 2a1aq > b, with equality holding if and only if
a+ay=az=..=a,.

2. Ricci tensor and squared mean curvature.

B.Y. Chen established a sharp relationship between the Ricci curvature
and the squared mean curvature for submanifolds in real space forms (see
[3]). Afterwards, he obtained the Lagrangian version of this relationship (see
[4]). First, we prove a similar inequality for an n-dimensional C-totally real
submanifold M of a (2m+1)-dimensional Sasakian space form M(c) of constant
¢-sectional curvature c.

A submanifold M normal to £ in a Sasakian space form M(c) is said to be

a C-totally real submanifold.
It follows that ¢ maps any tangent space of M into the normal space, that

is, $(T,M) C T;* M, for every p € M.

Theorem 2.1. Let M be an n-dimensional C-totally real submanifold in a
(2m + 1)-dimensional Sasakian space form M(c) of constant ¢-sectional cur-
vature c. Then:

i) For each unit vector X € T,M, we have

(21) Ric(X) < 7{n® |H|[* + (n — 1)(c +3)}.

ii) If H(p) = 0, then a unit tangent vector X at p satisfies the equality case
of (2.1) if and only if X € N,.

iil) The equality case of (2.1) holds identically for all unit tangent vectors at
p if and only if either p is a totally geodesic point or n = 2 and p is a totally
umbilical point.

Proof. i) Let X € T,M be a unit tangent vector X at p. We choose an

orthonormal basis {e;, ..., €n, €n+1, -.-s €2m+1} such that ey, ..., e, are tangent to
M at p, with e, = X, esmq41 = € and e,41 parallel to the mean curvature

vector H(p) (if H(p) = 0, then e,; can be any unit normal vector orthogonal

to ).
Then, from the Gauss equation, we have
, 1
(2.3) n? | H|? = 27 + ||| — un—1)(c+3),
where 7 denotes the scalar curvature at p, that is,

= Y K(eAej).

1<i<j<n
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We put
n? 1
6 =21 — ——2—||H||2 — Zn(n —1)(c+ 3).
Then, from (2.3), we get
(24) n® | H|I* = 2(6 + [Il).
With respect to the above orthonormal basis, (2.4) takes the following form:

(;hﬁ“) _2{5+Z(hn+l 2+E(hn+1 2+ 22"5 i(h:])z}

i=1 i#£] r=n+21i,j=1
If we put a; = AJ',a; = Y05 A% and a3 = h"}!, the above equation
becomes
3 2m n
(Za,-) =2 5+Za (A B DD D (9 LD D ey V1ol
i=1 =1 i£j r=n+2i,j=1 2<a#pB<n~—1

Thus a;, a,, as satisfy the Lemma of Chen (for n = 3), i.e.

(Bie) -2(++ ).

Then 2a;a; > b, with equality holding if and only if a; + a; = a3.
In the case under consideration, this means

2m n
Z h:;—lhgg-l 2 6+2E(h:;+1 2 + Z Z(h:-J)2

1<a#/<n—-1 i<j r=n+214,j=1

or equivalently,

(25) VI + n(n = 1(c+3) >

2m n
22— Y PR YRR+ Y Y ()

1<a#p<n-1 <j r=n+42i,j5=1
Using again the Gauss equation, we have

2m n
(2.6) 2r— S0 RZEMRRET 42 (BRI + Y S (Ay)?

1<a#p<n~-1 i<j r=n+421i,j=1

= 2S(en,€0) + = (n - 1)(n 2)(c+3)+2 Z(h,"*‘1 2

=1
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n+2

where S is the Ricci tensor of M.
Combining (2.5) and (2.6), we obtain

-——||H||2 + (n —1)(c+3) > 25(en, ) + 2 Z(h"“ 2y

t=1

v 3 {Z )2+(Zh a)2},
r=n+42 1
which implies (2.1).
ii) Assume H(p) = 0. Equahty holds in (2.1) if and only if

hr = _'h; —1,n =0
(2.7) | { Y p , re{n+1,.,2m}.
Then hI, =0,Vi € {1,...,n},r € {n+1,..,2m}, ie. X € N,.
iii) The equality case of (2.1) holds for all unit tangent vectors at p if and
only if

(2.8) {hfj =0,i#j,7r€{n+1,..2m},

hiy+...+hL, —2R; =0, ie{l,..,n},re{n+1,..,2m}

We distinguish two cases: | |

a) n # 2, then p is a totally geodesic point;

b) n = 2, it follows that p is a totally umbilical point.

The converse is trivial. o

By polarization, from Theorem 2.1, we derive:

Theorem 2.2. Let M be an n-dimensional C-totally real submanifold in a
(2m + 1)-dimensional Sasakian space form M(c) of constant ¢-sectional cur-
vature c. Then the Ricci tensor S satisfies

(2.9) 5 < 7 {PIHP + (- D+ D} o

The equality case of (2.9) holds identically if and only if either M is a totally
geodesic submanifold or n =2 and M is a totally umbilical submanifold.

3. Minimality of C-totally real submanifolds.
Let M(c) be a (2n + 1)-dimensional Sasakian space form and M an n-

dimensional C-totally real submanifold of M(c).
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We denote by R the maximum Ricci curvature function on M (see [4]),

defined by
R(p) = max{S(u,u)lu € )M}, pe M,

where T) M = {u € T,M|g(u,u) = 1}.
If n = 3, R is the Chen first invariant d)s defined in [2]. For n > 3, R is

the Chen invariant §(n — 1) (see [5]).

In this section, we derive an inequality for the Chen invariant R and prove
that any C-totally real submanifold which satisfies the equality case, identi-
cally, is minimal. This is the Sasakian version of a result ([4]) of B.-Y. Chen
for Lagrangian submanifolds in complex space forms.

Theorem 3.1. Let M be an n-dimensional C-totally real submanifold in a
(2n+ 1)-dimensional Sasakian space form M(c) of constant ¢-sectional curva-
ture c. Then

(3.1) RSP + (0= 1)(e+3)).

If M satisfies the equality case of (3.1) identically, then M is a minimal
submanifold.

Proof. The inequality (3.1) is an immediate consequence of the inequality
(2.9).

We assume that M is a C-totally real submanifold of M(c), which satisfies
the equality case of (3.1) at a point p € M. We may choose an orthonor-
mal basis {ej,...,en} of T,M such that R(p) = S(en,ea). By the proof of
Theorem 2.1, it follows that the equations (2.7) hold, where h}; are the coeffi-
cients of the second fundamental form with respect to the orthonormal basis
{€1,--s€ns€niy1, - €2nt1}, With enyj = de;,5 € {1,...,n}, e2p41 = € and e,4,
parallel to the mean curvature vector H(p).

Let A denote the shape operator of M in M(c). It is easy to prove that

(3.2) AgxY = Ay X,
for all vector fields X,Y tangent to M (see, for instance, [9]). Then we have
hEHE = Wi = A, for any 4,5,k € {1, ...,n}.
Thus using the equations (2.7), we ﬁnd
2
H(p) = Z hit'en = —ha o ent1 = _hlneﬂ+1 =0.

Therefore M is a minimal submanifold. 0
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Corollary 3.2. Let M be an n-dimensional C-totally real submanifold of a
(2n+1)-dimensional Sasakian space form M (c). Ifdim N, is positive constant,
then M satisfies the equality case of (3.1) identically and 1s foliated by totally
geodesic submanifolds.

Proof. By the above proof, it follows that M satisfies the equality case of
(3.1) at a point p € M if and only if dim N, > 1.

Assume that dim M, is positive constant.

We prove that N is involutive and its leaves are totally geodesic.

Let Y,Z € M and X € N*. Codazzi equation implies g(X, VyZ) = 0.
Thus VyZ € N, for all Y, Z € N. Therefore each leaf of N is totally geodesic.
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