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$C^{*}$-ALGEBRAS WITH FREDHOLM OPERATORS WITH INDEX
NONZERO ARE NOT APPROXIMATELY SUBHOMOGENEOUS

TAKAHIRO SUDO

ABSTRACT. We show that $C^{*}$ -algebras with Fredholm operators having index nonzero are
not approximately subhomogeneous. Using this result we obtain that the unitizations of
the $C^{*}$ -algebras of some groups containing all simply connected, solvable Lie groups of
non type $R$ are not approximately subhomogeneous

Introduction. Approximately homogeneous $C^{*}$ -algebras (AH-algebras), i.e, inductive
limits of finite direct sums of homogeneous $C^{*}$ -algebras, have been classified by the
K-theory of C’-algebras. It has been one of the interesting problems to determine the
structure of concrete examples of AH-algebras. Elliott and Evans [EE] first showed that
the irrational rotation algebras are inductive limits of two direct sums of matrix algebras
over the $C^{*}$ -algebra of all continuous functions on the torus, and its generalization to
certain higher-dimensional noncommutative tori was considered by Elliott and Q. Lin
[EL].

On the other hand, it is known that Toeplitz algebra(s) is an extension of the algebra
of all continuous functions on the torus (or other spaces) by the $C^{*}$ -algebra of all compact
operators (or the commutator ideal) (AH-algebras are not closed under extensions in
general), and is not finite since the algebra is generated by the unilateral shift with
Fredholm index-l (cf.[Mp, 3.5]). Also, the Fredholm index is an obstruction to whether
essentially normal operators are normal operators plus compact operators, and it is also
closely related to the notion of quasidiagonality of operators (cf. Davidson [Dv, IX.
Corollary 7.4 and IX.8], Brown-Douglas-Fillmore [BDF1-2], Salinas [S1], O’Donovan
[Od] and Voiculescu [V1]).

In this paper we show that $C^{*}$ -algebras with Fredholm operators having index nonzero
are not approximately subhomogeneous (ASH). Consequently, using Z’ep and Rosen-
berg’s results ([Zp],[Re]), we obtain that the unitizations of the group $C^{*}$ -algebras of
the $ax+b$ groups over real or complex fields and some semi-direct products of $\mathbb{R}^{n}$ by $R$

are not ASH. As an application we have that the unitizations of group $C^{*}$-algebras of
all simply connected, solvable Lie groups of non type $R$ are not ASH.

As a remark, these results could be deduced from a point of view of quasidiagonality
(cf. [Sl, Remark 2.3]).
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Notation. We denote by $B(H)$ the $C^{*}$ -algebra of all bounded operators on a separable,
infinite dimensional Hilbert space $H$ , and by $F_{m}(H)$ the set of all Fredholm operators
on $H$ with index $m\in \mathbb{Z}$ (cf. [B1], [Mp], [Pd1-2] and [Wo] for general references).

Theorem 1. Let $\mathfrak{U}$ be a $C^{*}$ -algebra in $B(H)$ . If $\mathfrak{U}\cap F_{m}(H)\neq\emptyset$ for some $m\neq 0$ , then
$\mathfrak{U}$ is not approximately subhomogeneous ( $i.e$, not an ASH-algebra).

Proof. Suppose that $\mathfrak{U}$ is approximately subhomogeneous, i.e, $\mathfrak{U}=\varliminf_{\prime}\mathfrak{U}_{n}$ with $\mathfrak{U}_{n}$ finite
direct sums of subhomogeneous $C^{*}$ -algebras $\mathfrak{U}_{n,k}(1\leq k\leq l_{n}<\infty)$ by definition. Since
$F_{m}(H)$ is open in $B(H)$ ($cf.[Pd2$ , Proposition 3.3.18]), and $\mathfrak{U}\cap F_{m}(H)\neq\emptyset$ , we have
$\mathfrak{U}_{n}\cap F_{m}(H)\neq\emptyset$ for some $n$ . Let $a=(a_{k})_{k=1}^{l_{n}}\in \mathfrak{U}_{n}\cap F_{m}(H)$ with $\mathfrak{U}_{n}=\oplus_{k=1}^{l_{n}}\mathfrak{U}_{n,k}$ . Now
let $c\in \mathfrak{U}_{n}$ with Index$(c)=m\neq 0$ . We consider the universal atomic representation $\Phi$

of $\mathfrak{U}_{n}$ acting on the universal Hilbert space $\tilde{H}$ (cf. [Tk]) such that

$\Phi(c)=(\pi(c))\in\oplus_{k=1}^{l_{\mathfrak{n}}}\oplus_{\pi\in\hat{\mathfrak{U}}_{\mathfrak{n},k}}\pi(\mathfrak{U}_{n,k})$

where $\hat{\mathfrak{U}}_{n}=\bigcup_{k=1}^{l_{\mathfrak{n}}}\hat{\mathfrak{U}}_{n,k}$ , and $\hat{\mathfrak{U}}_{n},\hat{\mathfrak{U}}_{n,k}$ are the spaces of all irreducible representations of
$\mathfrak{U}_{n}$ and $\mathfrak{U}_{n,k}$ up to unitary equivalence respectively, and $\pi(\mathfrak{U}_{n,k})$ for any $\pi\in\hat{\mathfrak{U}}_{n,k}$ is
isomorphic to a matrix algebra over $\mathbb{C}$ (Note that $\mathfrak{U}_{n,k}$ is subhomogeneous means the
dimension of elements of $\hat{\mathfrak{U}}_{n,k}$ is bounded). Since $c=U\Phi(c)U^{*}$ for $U$ an unitary from
$H$ to $\tilde{H}$ , it follows that

Index$(c)=Index(U\Phi(c)U^{*})=Index(U)+Index(\Phi(c))+Index(U’)=Index(\Phi(c))<\infty$

in a generalized sense from the identification between $H$ and $\tilde{H}$ . Note dim $ker(\pi(c))=$

$\dim ker(\pi(c)^{*})$ from an elementary fact of linear algebra theory, where $ker(\cdot)$ means the
kernel. Then dim ker$(\Phi(c))=\dim ker(\Phi(c)^{*})$ is deduced. Thus, Index $(\Phi(c))=0$ , which
is the contradiction. $\square $

Remark. In particular, we may take $\mathfrak{U}_{n,k}$ as the so-called dimension drop algebras
(cf.[JS]). As a special case, $\mathfrak{U}_{n,k}$ may be the algebra of continuous functions $f$ on the
interval $[0,1]$ such that $f(O),$ $f(1)\in \mathbb{C}$ and $f(t)\in M_{I}(\mathbb{C})$ for $0<t<1$ and for some $l$ .
Corollary 2. Under the same situation as Theorem 1, $\mathfrak{U}$ is not $AH$.

Proof. Note that AH-algebras are ASH. $\square $

Remark. The homogeneous algebras $\mathfrak{U}_{n,k}$ for AH-algebras are usually taken as matrix
algebras over commutative $C^{*}$ -algebras. But homogeneous algebras are not always of
this type.

Theorem 1 implies

Corollary 3. For an ASH-algebra $\mathfrak{U}$ in $B(H)$ , we have $\mathfrak{U}\cap F_{m}(H)=\emptyset$ for any $m\neq 0$ .

The next corollary will be useful later:
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Corollary 4. Let $\mathfrak{U}$ be a $C^{*}$ -algebra with a quotient $\mathcal{Q}$ in $B(H)$ . If $\mathcal{Q}\cap F_{m}(H)\neq\emptyset$ for
some $m\neq 0$ , then $\mathfrak{U}$ is not ASH.

Proof. Note that ASH-algebras are closed under quotients since so are subhomogeneous
algebras. $\square $

Remark. Note that the quasidiagonality for operator algebras is not closed under quo-
tients in general (cf. [Sl, Remark 3.4]).

Now recall that Z’ep [Zp] and Rosenberg $[{\rm Re}]$ studied the structure of group $C^{*}-$

algebras of the real $ax+b$ group, and the $ax+b$ group over complex (or nonarchimedean
fields) and certain semi-direct products of $\mathbb{R}^{n}$ by $\mathbb{R}$ with hyperbolic orbits by actions of
R. We say that one of these groups is in the class ZR.

Corollary 5. Let $G$ be a group in the class $ZR$ . Then the unitizations $C^{*}(G)^{+}$ of the
group $C^{*}$ -algebra $C^{*}(G)$ of $G$ is not ASH.

Proof. Z’ep and Rosenberg showed that the unitizations $C^{*}(G)^{+}$ for $G$ in the class ZR
has an irreducible representation $\pi$ such that $\pi(C^{*}(G)^{+})$ contains a Fredholm operator
with index nonzero ([Zp], $[{\rm Re}]$ ). Thus Corollary 4 implies the conclusion. $\square $

Remark. Note that $C^{*}(G)^{+}$ of $G$ above is finite and of type I.

Corollary 6. Let $G$ be a locally compact group with an amenable closed normal subgroup
$H$ whose quotient $G/H$ is isomorphic to a group in the class $ZR$ . Then the unitizations
$C^{*}(G)^{+}$ and $C_{r}^{*}(G)^{+}$ are not ASH, where $C_{r}^{*}(G)$ is the reduced group $C^{*}$ -algebra of $G$ .

Proof. Note that we have the following quotients and equality:

$C^{*}(G)^{+}\rightarrow C_{r}^{*}(G)^{+}\rightarrow C_{r}^{*}(G/H)^{+}=C^{*}(G/H)^{+}$

since $H$ is amenable for the second quotient and $G/H$ is amenable for the equality
(cf.[Kn, p.1349], [Dx, Chapter 18] and [FD, 12.20, p.1172]) since $G/H$ is a group in the
class ZR. Using Corollary 4, we complete the proof. $\square $

Remark. When a simply connected solvable Lie group $G$ has the $ax+b$ group as a
quotient, it is of non type $R$ in the sense of [AM]. We can take $G$ to be of non type
I. For example, we may let $G=M\times K$ for $M$ the Mautner group (cf. a remark of
Proposition 10) and $K$ in the class ZR.

Theorem 7. Let $G$ be a simply connected solvable Lie group of non type R. Then the
unitization $C^{*}(G)^{+}$ is not ASH.

Proof. By [AM, Proposition 2.2, p.172], $G$ has a quotient isomorphic to one of the
following:

$\left\{\begin{array}{ll}The real (proper) & ax+b group: A=\mathbb{R}x_{\alpha}\mathbb{R},\\S_{c}=R^{2}\rangle\triangleleft\alpha^{c}R, & S=\mathbb{R}^{2}\rangle\triangleleft\beta R^{2},\end{array}\right.$
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where the actions $\alpha,$
$\alpha^{c},$ $\beta$ are defined by

$\left\{\begin{array}{ll}\alpha_{t}(s)=e^{t}s, & t, s\in \mathbb{R},\\\alpha_{t}^{c}=e^{ct} & , \beta_{(s,t)}=e^{s}[Matrix]\end{array}\right.$

for $c\in R\backslash \{0\}$ . Note that Rosenberg’s methods calculating Fredholm index of certain
elements of certain quotients of the unitizations of the $C^{*}$ -algebras of the real or complex
$ax+b$ groups and the semi-direct products in the class ZR are applicable to those of
$A,$ $S$ and $S_{c}$ respectively. In fact, the groups $A,$ $S$ and $S_{c}$ are similar as the complex
$ax+b$ group or the semi-direct products in the class ZR having wandering orbits by their
actions. In particular, note that $C^{*}(S)$ is isomorphic to the crossed product $C^{*}(\mathbb{C})\lambda_{\beta}\mathbb{C}$

with the identification between $R^{2}$ and $\mathbb{C}$ via $(s, t)=s+it$ . Therefore, we can show
that the unitizations $C^{*}(A)^{+},$ $C^{*}(S_{c})^{+}$ and $C^{*}(S)^{+}$ have quotients containing Fredholm
operators with index nonzero. Since $G$ is amenable and of non type $R$, there is a quotient
map from $C^{*}(G)^{+}$ to either $C^{*}(A)^{+},$ $C^{*}(S_{c})^{+}$ or $C^{*}(S)^{+}$ . Thus Corollary 4 deduces
the conclusion. $\square $

Remark. See [Sd4-6] for the algebraic structure of group $C^{*}$ -algebras of some connected
or disconnected Lie groups, that is, they have finite composition series with their sub-
quotients either AH-algebras or continuous fields of AH-algebras.

Theorem 7 tempts us to raise the following question:

Question. Let $G$ be a simply connected solvable Lie group of type R. Then the uniti-
zation $C^{*}(G)^{+}$ is not ASH? In particular, we may take $G$ as the real Heisenberg group
or the Mautner group.

On the other hand, it follows that

Theorem 8. Let $\mathfrak{U}$ be a liminal $C^{*}$ -algebra in $B(H)$ . Then $\mathfrak{U}$ or its unitization $\mathfrak{U}^{+}$

have no intersection with $F_{m}(H)$ for any $m\neq 0$ .

Proof. When $\mathfrak{U}$ is nonunital, we consider $\mathfrak{U}^{+}$ . Let $\Phi$ be the universal atomic represen-
tation of $\mathfrak{U}^{+}$ (or $\mathfrak{U}$ when it is unital). Then $\Phi(\mathfrak{U}^{+})\cong(\oplus_{\pi\in\hat{\mathfrak{U}}}\pi(\mathfrak{U}^{+}))\oplus \mathbb{C}1$ , where $\hat{\mathfrak{U}}$ is
the space of all irreducible representations of $\mathfrak{U}$ , identified with $(\mathfrak{U}^{+})^{\wedge}\backslash \{1\}$ , and 1 is the
trivial representation of $\mathfrak{U}^{+}$ . Note that $\pi(\mathfrak{U}^{+})$ is isomorphic to either $K^{+}$ or a matrix
algebra over $\mathbb{C}$, and $\pi(\mathfrak{U})$ is isomorphic to a matrix algebra over $\mathbb{C}$ when $\mathfrak{U}$ is unital.

When $\pi(\mathfrak{U}^{+})\cong K^{+}$ $\equiv K+\mathbb{C}1_{\pi}$ , if $c$ is a Fredholm operator in $\mathfrak{U}^{+}$ , we have
Index$(\pi(c))=Index(1_{\pi})=0$ . Therefore, Index$(c)=0$ follows from the same argu-
ment as in the proof of Theorem 1. $\square $

Remark. Compare this theorem with the result [Sl, Theorem 2.2].

Corollary 9. Let $G$ be a connected, nilpotent Lie group or a real connected, semi-simple
Lie group. Then the unitization of $C^{*}(G)$ in $B(H)$ has no intersection with $F_{m}(H)$ for
any $m\neq 0$ .

Proof. It is known that $C^{*}(G)$ is liminal (cf.[Dx, 13.11.12]).
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Remark. The Hilbert space $H$ may be taken as the universal representation space of
$C^{*}(G)$ or $L^{2}(G)$ the space of all square integrable functions on $G$ with the convolution.
The real Heisenberg group is in the case of Corollary 9. Note that any connected
nilpotent Lie group is of type $R$ [AM]. Thus Corollary 9 suggests that the Question is
negative.

More generally, it follows that

Proposition 10. Let $\mathfrak{U}$ be a $C^{*}$ -algebm in $B(\oplus_{\lambda\in\Lambda}H_{\lambda})$ by a direct sum representation
$\oplus\lambda\in\Lambda\pi\lambda$ , where $H_{\lambda}$ are representation spaces of $\pi_{\lambda}$ . If $\pi_{\lambda}(\mathfrak{U})$ has no intersection with
$F_{m}(H_{\lambda})$ for any $m\neq 0$ and $\lambda$ , then $\mathfrak{U}$ has no intersection with $F_{m}(\oplus_{\lambda\in\Lambda}H_{\lambda})$ for any
$m\neq 0$ .

Proof. When $a\in \mathfrak{U}$ is a Fredholm operator, note that

Index
$(a)=Index(\oplus_{\lambda\in\Lambda}\pi_{\lambda}(a))=\sum_{\lambda\in\Lambda}Index(\pi_{\lambda}(a))=0$

. $\square $

Remark. We may take $\mathfrak{U}$ as a $C^{*}$-algebra of continuous fields on a locally compact
Hausdorff space with its fibers AH or ASH-algebras. In particular, the group $C^{*}$ -algebra
of the discrete Heisenberg group $H_{3}^{Z}=\mathbb{Z}^{2}\rangle\triangleleft \mathbb{Z}$ is in the case of Proposition 10. In fact,
$C^{*}(H_{3}^{Z})$ is regarded as a $C^{*}$-algebra of continuous fields on $T$ with its fibers given by
the crossed products $\{C(T)\rangle\triangleleft\theta_{z}Z\}_{z\in T}$ (rotation algebras), where the action $\theta_{z}$ of $Z$ on
$T$ is defined by $\theta_{z}(w)=zw$ for $w\in T$.

Remark. We also have that the group C’-algebra of the Mautner group is in the case
of Proposition 10. Recall that the Mautner group $M_{5}$ is defined by the semi-direct
product $\mathbb{C}^{2}x_{\alpha}R$, where $\alpha_{t}(e^{2\pi it}z, e^{2\pi i\theta t}w)$ for $t\in R,$ $z,$

$w\in \mathbb{C}$ and $\theta$ an irrational
number (cf. [AM]). Then $C^{*}(M_{5})$ is isomorphic to the crossed product $C_{0}(\mathbb{C}^{2})\rangle\triangleleft\hat{\alpha}R$

with $\hat{\alpha}$ the dual action of $a$ through the Fourier transform, and regarded as a $C^{*}-$

algebra of continuous fields on $[0, \infty)^{2}$ with its fibers $\mathfrak{B}_{t}$ given by $\mathfrak{B}_{(0,0)}=C_{0}(R)$ and
$\mathfrak{B}_{t}=C_{0}(R)\otimes C(T)xR\cong C_{0}(\mathbb{R}\times T)\otimes K$ for $t\in\{0\}\times(0, \infty)\cup(0, \infty)\times\{0\}$ , and $\mathfrak{B}_{t}=$

$C_{0}(R^{2})\otimes C(T^{2})xR\cong C_{0}(R^{2})\otimes K\otimes(C(T)x_{e}Z)$ for $t\in(O, \infty)^{2}$ , which is deduced from
the natural quotient map from $\mathbb{C}^{2}$ to $[0, \infty)^{2}$ defined by $\mathbb{C}^{2}\ni(0,0)\leftrightarrow(0,0)\in[0, \infty)^{2}$

and $(\mathbb{C}\backslash \{0\})\times\{0\}\ni(z, O)\leftrightarrow(|z|, 0)\in(0, \infty)\times\{0\}$ and $\{0\}\times(\mathbb{C}\backslash \{0\})\ni(0, w)\leftrightarrow$

$(0, |w|)\in\{0\}\times(0, \infty)$ and $(\mathbb{C}\backslash \{0\})^{2}\ni(z, w)\vdash*(|z|, |w|)\in(0, \infty)^{2}$ (cf. [Le], [Sd4]).
Since $M_{5}$ is of type $R$ , this remark suggests that the Question is negative.

From this point of view, we propose the following conjecture:

Conjecture. Let $G$ be a simply connected solvable Lie group of type R. Then $C^{*}(G)$ is
ASH?
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