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STRUCTURE OF GROUP $C^{*}$-ALGEBRAS OF
SEMI-DIRECT PRODUCTS OF $\mathbb{C}^{n}$ BY $Z$

TAKAHIRO SUDO

ABSTRACT. We consider the structure of group C’-algebras of semi-direct products of $C^{\iota}$

by Z. As an application we estimate the stable rank and connected stable rank of these
C’-algebras, and treat the case of semi-direct products of $R^{n}$ by $Z$ similarly.

\S 0. INTRODUCTION

Group C’-algebras have played important roles in the progress of the theory of $C^{*}-$

algebras. In particular, their structure for Lie groups has been investigated (cf.[Dx],
[Rs], [Grl,2], [Pg], [Wg], etc). On the other hand, the stable rank for $C^{*}$-algebras
was introduced by M.A. Rieffel [Rfl] as a noncommutative analogue of the covering
dimension for topological spaces, and he raised an interesting problem such as describing
the stable rank of group $C^{*}$ -algebras of Lie groups in terms of groups. On this problem
some partial answers were obtained by [Sh],[ST1,2] and [Sd1-4]. In particular, in [Sd4]
the author investigated the structure of group $C^{*}$ -algebras of Lie semi-direct products
of $\mathbb{C}^{n}$ by $\mathbb{R}$ and estimated their stable rank and connected stable rank.

In this paper we obtain finite composition series of group C’-algebras of the semi-
direct products of $\mathbb{C}^{n}$ by $Z$ , by analyzing their subquotients explicitly using some meth-
ods of [Sd4] similarly. Using this result we give the rank estimations of these group
C’-algebras, and especially that of semi-direct products of $R^{n}$ by Z. These are dis-
connected solvable (Lie) groups, and contain the discrete Mautner group studied by L.
Baggett [Bg] to construct some unitary representations of the Mautner group through
Mackey machine. We emphasize that this paper will be the first step to explore the
algebraic structure of $C^{*}$-algebras of general disconnected solvable Lie groups.

We now prepare some notations. Let $C^{*}(G)$ be the (full) group $C^{*}$ -algebra of a
locally compact group $G$ ($cf.[Dx$ , Part $II],[Pd$ , Chapter 7]). We denote by $\hat{G}_{1}$ the
space of all l-dimensional representations of $G$ . Let $C_{0}(X)$ be the $C^{*}$ -algebra of all
complex valued continuous functions on a locally compact Hausdorff space $X$ vanishing
at infinity. When $X$ is compact, we set $C_{0}(X)=C(X)$ . Let $K$ be the $C^{*}$ -algebra of all
compact operators on a countably infinite dimensional Hilbert space. For a $C^{*}$ -algebra
$\mathfrak{U}$ , we denote by $sr(\mathfrak{U}),$ $csr(\mathfrak{U})$ its stable rank, connected stable rank respectively ([Rfl]).

2000 Mathematics Subject Classification: Primary $46L05,46L80,22D25,19K56$ .
Key words and phrases: Group C’-algebras, Semi-direct products, Lie groups, Stable rank
Research partially supported by Japan Society for the Promotion of Science

–135–



By definition, $sr(\mathfrak{U}),$ $csr(\mathfrak{U})\in\{1,2, \cdots , \infty\}$ . We review some formulas of these stable
ranks used later as follows:

(F1): For an exact sequence of $C^{*}$ -algebras: $0\rightarrow?\rightarrow \mathfrak{U}\rightarrow \mathfrak{U}/?\rightarrow 0$ , we have that

$sr(3)\vee sr(\mathfrak{U}/?)\leq sr(\mathfrak{U})\leq sr(2)\vee sr(\mathfrak{U}/?)\vee csr(\mathfrak{U}/2)$ , $csr(\mathfrak{U})\leq csr(?)\vee oer(\mathfrak{U}/?)$ ,

where $\vee$ is the maximum (See [Rfl, Theorem 4.3, 4.4 and 4.11], [Sh, Theorem 3.9]).
(F2): By [Rfl, Proposition 1.7] and [Nsl], for $X$ a locally compact Hausdorff space,

$sr(C_{0}(X))=[\dim X^{+}/2]+1$ , $csr(C_{0}(X))\leq[(\dim X^{+}+1)/2]+1$

where $X^{+}$ means the one-point compactification of $X$ , dim $X^{+}$ is the covering dimension
of $X^{+}$ , and $[x]$ means the maximum integer $\leq x$ . We set $\dim_{C}X=[\dim X/2]+1$ .

(F3): For the $n\times n$ matrix algebra $M_{n}(\mathfrak{U})$ over a $C^{*}$-algebra $\mathfrak{U}$ , by [Rfl, Theorem
6.1] and [$RM$ , Theorem 4.7],

$sr(M_{n}(\mathfrak{U}))=\{(sr(\mathfrak{U})-1)/n\}+1$ , oer $(M_{n}(\mathfrak{U}))\leq\{(csr(\mathfrak{U})-1)/n\}+1$

where $\{x\}$ means the least integer $\geq x$ .
(F4): For a $C^{*}$-algebra $\mathfrak{U}$,

$sr(\mathfrak{U}\otimes K)=sr(\mathfrak{U})\wedge 2$ , oer $(\mathfrak{U}\otimes K)\leq csr(\mathfrak{U})\wedge 2$

$where\wedge is$ the minimum. See [Rfl, Theorem 3.6 and 6.4], ([Sh, Theorem 3.10], [Nsl]).

\S 1. GROUP $C^{*}$ -ALGEBRAS OF SEMI-DIRECT PRODUCTS OF $\mathbb{C}^{n}$ BY $Z$

Let $G=\mathcal{O}\aleph_{\alpha}Z$ be a semi-direct product with $\alpha$ an automorphic action of $Z$ on $\mathbb{C}^{n}$ ,
in other words, $\alpha_{t}\in GL_{n}(\mathbb{C})$ for $t\in Z$ . By definition of C’-crossed products (cf.[Pd,
Chapter 7]) and using the Fourier transform, we have the isomorphisms:

$C^{*}(G)\cong C’(\mathbb{C}^{n})\aleph_{\alpha}Z\cong C_{0}(\alpha)x_{\hat{\alpha}}Z$

where $\hat{\alpha}$ is defined by the equation of the inner product: \langle $\alpha_{t}(z)|w)=\langle z|\hat{\alpha}_{t}(w)\rangle$ for
$z,$ $w\in \mathbb{C}^{n},$ $t\in \mathbb{Z}$ . Since the origin $0_{n}$ of $\mathbb{C}^{n}$ is $\hat{\alpha}$-invariant, we have the following exact
sequence:

$0\rightarrow C_{0}(\mathbb{C}^{\iota}\backslash \{0_{\mathfrak{n}}\})x_{\hat{\alpha}}Z\rightarrow C_{0}(\mathbb{C}^{n})\aleph_{\dot{\alpha}}Z\rightarrow C^{*}(Z)\rightarrow 0$

because $C^{*}(Z)\cong C(T)$ by the Fourier transform.
For the sake of convenience, we consider the following example:

Example 1.1. If $G=\mathbb{C}x_{\alpha}Z$ , then for some $w\in \mathbb{C}\backslash \{0\}$ , a$t(z)=w^{t}z$ for $z\in \mathbb{C},$ $t\in \mathbb{Z}$ .
If $w=1$ , then $C^{*}(G)\cong C_{0}(\mathbb{C}\times T)$ . When $w\not\in T$, by Green’s result [Grl, Corollary 15],

$C_{0}(\mathbb{C}\backslash \{0\})xZ\cong C((C\backslash \{0\})/Z)\otimes K\cong C(T^{2})\otimes K$.
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If $w=e^{2\pi i\theta}\in T\backslash \{1\}$ , then $C_{0}(\mathbb{C}\backslash \{0\}))\triangleleft\hat{\alpha}\mathbb{Z}\cong C_{0}(R)\otimes(C(T))\triangleleft\hat{\alpha}\mathbb{Z})$ , where $C(T))\triangleleft\hat{\alpha}\mathbb{Z}$

is the rotation algebra $C(T)x_{\theta}\mathbb{Z}$ by the angle $ 2\pi\theta$ ($cf.[AP]$ , [EE]).

We now investigate general cases in the following. Taking a suitable basis of $\mathbb{C}^{n}$ for
the Jordan decomposition of $\alpha_{1}$ , and assuming it as a canonical basis of $\mathbb{C}^{n}$ , we may
assume that $\alpha_{1}$ is equal to the diagonal sum as follows: for $\beta_{j}\in \mathbb{C}(1\leq j\leq l)$ ,

$\alpha_{1}=(\oplus_{j=1}^{m}\left(\begin{array}{lll}\beta_{j} & & 0\\ & \ddots & \\0 & & \beta_{j}\end{array}\right))\oplus(\oplus_{k=m+1}^{l}())$

on the direct sum decomposition $\mathbb{C}^{n}=(\oplus_{j=1}^{m}\mathbb{C}^{n_{j}})\oplus(\oplus_{k=m+1}^{l}\mathbb{C}^{n_{k}})$ . Then for $t\in Z$ , we
have that

$\hat{\alpha}_{t}=(\oplus_{j=1}^{m}\left(\begin{array}{lll}\overline{\beta}_{j}^{t} & & 0\\ & \ddots & \\0 & & \overline{\beta}_{j}^{t}\end{array}\right))\oplus(\oplus_{k=m+1}^{l}$ ( $t\overline{\beta}_{k}^{t.-1}$

. $t\overline{\beta}_{B}^{t-1}\beta_{k}^{t}*$ ) $)$

Note that there exists a quotient map from $C^{*}(G)$ to $C_{0}(\mathbb{C}^{g}\times T)$ for some $0\leq g\leq n$ ,
where $\mathbb{C}^{g}\times T$ is homeomorphic to $\hat{G}_{1}$ , and $\mathbb{C}^{9}$ is homeomorphic to the subspace of $\mathbb{C}^{n}$

fixed under $\hat{\alpha}$ . If some $\beta_{j}$ or $\beta_{k}$ are 1, then $g\geq 1$ . By (F1) and (F2), we obtain that

$\left\{\begin{array}{l}sr(C^{*}(G))\geq sr(C_{0}(\hat{G}_{1})=\dim_{\mathbb{C}}\hat{G}_{1}\\csr(C_{0}(\hat{G}_{1}))\leq[(\dim\hat{G}_{1}+1)/2]+1=\dim_{\mathbb{C}}\hat{G}_{1}+1\end{array}\right.$

We consider the restrictions of $\hat{\alpha}$ to the $\hat{\alpha}$-invariant subspaces

$\mathbb{C}^{90}\oplus(\oplus_{j=1}^{m^{\prime}}(\mathbb{C}\backslash \{0\})^{n_{j}^{\prime}})\oplus(\oplus_{k=m+1}^{I^{\prime}}(\mathbb{C}^{n_{k}^{\prime}}\backslash \{0_{n_{k}^{\prime}}\}))$

for $0\leq m^{\prime}\leq m,$ $0\leq n_{j}^{\prime}\leq n_{j},$ $m+1\leq l^{\prime}\leq l$ and $0\leq n_{k}^{\prime}\leq n_{k}$ , where $\mathbb{C}^{90}$ means the
direct sum of $\mathbb{C}^{n_{j}}$ for $1\leq j\leq m$ such that $\beta_{j}=1$ . Moreover, we need to consider the
following decomposition: for $m+1\leq k\leq l^{\prime}$ ,

$\mathbb{C}^{n_{k}^{\prime}}\backslash \{0_{n_{k}^{\prime}}\}=((\mathbb{C}\backslash \{0\})\times\{0_{\iota_{k}^{\prime}-1}\})\cup(\mathbb{C}\times(\mathbb{C}^{n_{\acute{k}}-1}\backslash \{0_{n_{k}^{\prime}-1}\}))$

In addition, we decompose $\mathbb{C}^{n_{k}^{\prime}-1}\backslash \{0_{n_{k}^{\prime}-1}\}$ into the disjoint union of the $\hat{\alpha}$-invariant
subspaces $\mathbb{C}^{j_{k}^{\prime}-1}\times(\mathbb{C}\backslash \{0\})\times\{0_{\iota_{\iota}^{\prime}.-1-j_{k}^{\prime}}\}(1\leq j_{k}^{\prime}\leq n_{k}^{\prime})$ . We let

$X_{s}=\mathbb{C}^{90}\oplus(\oplus_{j=1}^{m^{\prime}}(\mathbb{C}\backslash \{0\})^{n_{j}^{\prime}})\oplus(\oplus_{k=m+1}^{l^{\prime}}Y_{k})$
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an $\hat{\alpha}$ invariant subspace obtained as above, where

$Y_{k}=\left\{\begin{array}{ll}(\mathbb{C}\backslash \{0\})\times\{0_{\mathfrak{n}_{k}^{\prime}-1}\} & or\\C^{j_{k}^{\prime}-1}\times(\mathbb{C}\backslash \{0\})\times\{0_{\mathfrak{n}_{k}^{\prime}-1-j_{k}^{\prime}}\}. & \end{array}\right.$

If $\beta_{k}=1$ for some $m+l\leq k\leq l$ , the subspace $(\mathbb{C}\backslash \{0\})\times\{0_{n_{k}-1}\}$ is fixed under $\hat{\alpha}$ .
Thus in this case we assume that $Y_{k}=\mathbb{C}^{j_{k}^{\prime}-1}\times(\mathbb{C}\backslash \{0\})\times\{0_{\mathfrak{n}_{t}^{\prime}.-1-j_{k}^{\prime}}\}$ for some $j_{k}^{\prime}$ in
what follows.

We now note that

$\left(\begin{array}{lll}\overline{\beta}_{j}^{\ell} & & 0\\ & \ddots & \\0 & & \overline{\beta}_{\dot{f}}^{t}\end{array}\right)\left(\begin{array}{l}z_{l}\\|\\z_{\mathfrak{n}_{j}^{/}}\end{array}\right)=\left(\begin{array}{l}\beta_{j}^{t}z_{l}\\|\\\overline{\beta}_{j}^{\ell}z_{n_{j}^{\prime}}\end{array}\right)-$

for $(z_{1}, \cdots , z_{n_{j}^{\prime}})\in(\mathbb{C}\backslash \{0\})^{\mathfrak{n}_{j}^{\prime}}$ , and

$(_{0}^{\overline{\beta}_{k}^{t}}$

$t\overline{\beta}_{k}^{t.-1}$

. $t\overline{\beta}_{g}^{\ell-1)}\beta_{k}^{t}*\left(\begin{array}{l}w_{l}\\|\\w_{j^{\prime},0^{k}}\\|\\0\end{array}\right)=[\overline{\beta}_{kj^{\prime}-+t\overline{\beta}_{k}^{k-1}w_{j_{k}^{\prime}}}^{\ell_{w}}w_{j_{k}^{\prime}}k_{\frac{1}{\beta}}k^{*}0)$

for $(w_{1}, \cdots w_{j_{k}^{\prime}}, 0, \cdots , 0)\in C^{j_{k}^{\prime}-1}\times(C\backslash \{0\})x\{0_{\mathfrak{n}_{k}^{\prime}-1-j_{k}^{\prime}}\}$ . By direct calculation, the
action $\hat{\alpha}$ on $X_{\epsilon}$ is one of the following three cases (cf.[Sd4]):

\left\{\begin{array}{l}\\\\\end{array}\right.

where the first case is that $\beta_{j}$ or $\beta_{k}\not\in T$ for some $j,$ $k$ , or $j^{\prime}\geq 2$ for some $j^{\prime}$ , the
second one is that all $\beta_{j},$ $\beta_{k}\in T$ and one of them is an irrational number in $R(mod 2\pi)$

identified with $T$, and the third one $is$ that all $\beta_{j},$ $\beta_{k}$ are rational numbers. We consider
the crossed product $C_{0}(X_{s})xZ$ in each case.

If the action of $Z$ on $X_{\epsilon}$ is free and wandering, we have by [Grl, Corollary 15] that

$C_{0}(X_{\iota})*Z\cong C_{0}(X_{s}/Z)\otimes K$

We note that $X_{\epsilon}$ contains an $\hat{\alpha}$-invariant closed subspace which is a copy of $\mathbb{C}\backslash \{0\}$ ,
and its orbit space by $\hat{\alpha}$ is homeomorphic to $T^{2}$ . Hence we have $sr(C_{0}(X_{s}/Z))\geq 2$ .
Therefore, $sr(C_{0}(X_{s}/Z)\otimes K)=2$ .
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We next consider the free and nonwandering case. Then

$X_{s}=\mathbb{C}^{90}\oplus(\oplus_{j=1}^{m^{\prime}}(\mathbb{C}\backslash \{0\})^{n_{j}^{\prime}})\oplus(\oplus_{k=m^{\prime}+1}^{l^{\prime}}((\mathbb{C}\backslash \{0\})\times\{0_{n_{k}^{\prime}-1}\}))$

where the restriction of $\hat{\alpha}$ to each direct factor $\mathbb{C}\backslash \{0\}$ of $X_{s}$ is a rotation, and one of
these restrictions is an irrational rotation. Thus we have that for some $u_{s}\geq 1$ ,

$C_{0}(X_{s})yZ\cong C_{0}(\mathbb{C}^{g0}\times R^{u})\otimes(C(T^{u}\cdot)x\mathbb{Z})$ .

Moreover, by [EL2] (cf.[EE]), $C(T^{u}\cdot)\aleph Z$ is an inductive limit of finite direct sums of
matrix algebras over $C(T)$ with their matrix sizes going to infinity. Therefore, by (F3)
and [Rfl, Theorem 5.1], we obtain that $sr(C_{0}(X_{\epsilon})\nu \mathbb{Z})\leq 2$ and $csr(C_{0}(X_{\epsilon})xZ)\leq 2$ .

If $u_{s}\geq 2$ , then we have a quotient as follows:

$C_{0}(X_{\iota})xZ\rightarrow C([0,1]^{2})\otimes(C(T^{u}\cdot)\nu Z)\rightarrow 0$ .
By [NOP, Proposition 5.3], we obtain that $sr(C_{0}(X_{s})nZ)\geq sr(C([0,1]^{2})\otimes(C(T^{u}\cdot)\aleph$

$Z))\geq 2$ .
If $u_{\epsilon}=1$ , we suppose that $sr(C_{0}(X_{\epsilon})*Z)=1$ . Then $sr(C([0,1])\otimes(C(T)xZ))=1$ .

Then the $K_{1}$-group of $C([0,1])\otimes(C(T)\nu Z)$ must be trivial by [NOP, Proposition 5.2].
However, this is impossible since the K-groups of $C(T)xZ$ are $Z^{2}$ so that the $K_{1}$-group
of $C([0,1])\otimes(C(T)xZ)$ is also $Z^{2}$ by K\"unneth formula (cf.[Wo, 9.3.3]). Therefore,
$sr(C_{0}(X_{s})_{\aleph}Z)\geq 2$ .

Finally, we consider the nonfree case. Then

$X_{s}=\mathbb{C}^{90}\oplus(\oplus_{j=1}^{m^{\prime}}(\mathbb{C}\backslash \{0\})^{n_{j}^{\prime}})\oplus(\oplus_{k=m^{\prime}+1}^{I^{\prime}}((\mathbb{C}\backslash \{0\})\times\{0_{n_{k}^{\prime}-1}\}))$

where the restriction of $\hat{\alpha}$ to each direct factor $\mathbb{C}\backslash \{0\}$ of $X_{s}$ is a rational rotation. Then

$C_{0}(X_{s})*Z\cong C_{0}(R^{2go+u}\cdot)\otimes(C(T^{u}\cdot)\nu Z)$

for some $u_{\epsilon}\geq 1$ . Moreover, we have that for a $p\geq 2$ ,

$0\rightarrow C_{0}(R)\otimes(C(T^{u}\cdot)\aleph Z_{p})\rightarrow C(T^{u})\aleph Z\rightarrow C(T^{u}\cdot)\aleph Z_{p}\rightarrow 0$

with $C(T^{u}\cdot)xZ_{p}$ a homogeneous $C^{*}$ -algebra (cf.[ELl], [Dv, VIII.9] for some cases with
$C(T^{u}\cdot)\rangle\triangleleft Z_{p}\cong M_{p}(C(T^{u}\cdot)))$ . By (F1), (F2) and (F3),

$ 2\leq sr(M_{p}(C_{0}(R^{2go+u_{\epsilon}+1}\times \mathbb{T}^{u_{\iota}})))=\{[(2(g_{0}+u_{s})+1)/2]/p\}+1\leq$

$sr(C_{0}(X_{s})xZ)\leq sr(M_{p}(C_{0}(R^{2go+u.+1}\times T^{u_{\epsilon}})))\vee csr(M_{p}(C_{0}(R^{2go+u_{\iota}}\times T^{u}\cdot)))$

$\leq\{[(2(g_{0}+u_{s})+1)/2]/p\}+1=\{(g_{0}+u_{\epsilon})/p\}+1$ ,

$csr(C_{0}(X_{s})\aleph Z)\leq csr(M_{p}(C_{0}(R^{2go+u_{\epsilon}+1}\times T^{u_{\epsilon}})))\vee csr(M_{p}(C_{0}(R^{2g0+u}\cdot\times T^{u}\cdot)))$

$\leq\{[(2(g_{0}+u_{s})+2)/2]/p\}+1=\{(g_{0}+u_{s}+1)/p\}+1$ .

Summing up the above argument we obtain that
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Theorem 1.2. Let $G=\mathbb{C}^{n}n_{\alpha}Z$ be a semi-direct product of $\mathbb{C}^{n}$ by Z. Then there exists
a finite composition series $\{2_{s}\}_{s=1}^{r}$ of $C^{*}(G)$ such that

$X_{s}/2_{s-1}\cong\left\{\begin{array}{ll}C_{0}(\mathbb{C}^{g}\times \mathbb{T})=C_{0}(G_{1}), g\geq 0 & s=r,\\[Case] & 1\leq s<r\end{array}\right.$

where $u_{s-1}\geq u_{s}$ , dim $X_{s-1}\geq\dim X_{s}$ and the action $\Theta_{s}$ of $Z$ is a multi-rotation.
Moreover, applying (F1) to the above composition series inductively we obtain that

Theorem 1.3. In the situation of Theorem 1.2, we have that
$ 2\vee\dim_{\mathbb{C}}\hat{G}_{1}\vee\max(\{(g_{0}+u_{s})/p_{s}\}+1)\leq$

$sr(C^{*}(G))\leq(1+\dim_{C}\hat{G}_{1})\vee\max(\{(90+u_{\epsilon}+1)/p_{s}\}+1)$ ,

oer $(C^{*}(G))\leq(1+\dim_{\mathbb{C}}\hat{G}_{1})\vee\max(\{(g_{0}+u_{s}+1)/p_{s}\}+1)$

where $p_{s}$ means the penod of $\Theta_{s}$ when it is a rational rotation.
Remark. By [Eh, Theorem 2.2], we have that oer $(C^{*}(G))\geq 2$ . Hence if all the periods
$p_{s}$ of the rational rotations $\Theta_{\delta}$ are large enough, we can obtain that

$\left\{\begin{array}{ll}sr(C^{*}(G))=2\vee\dim_{\mathbb{C}}\hat{G}_{1}, & if dim \hat{G}_{1} even,\\2 V \dim_{C}\hat{G}_{1}\leq sr(C^{*}(G))\leq & 1+\dim_{\mathbb{C}}\hat{G}_{1}, if dim \hat{G}_{1} odd,\end{array}\right.$

$\left\{\begin{array}{ll}csr(C^{*}(G))=2, & if \dim_{C}\hat{G}_{1}=1 or 2,\\2\leq csr(C^{*}(G))\leq & (1+\dim_{\mathbb{C}}\hat{G}_{1}), otherwise.\end{array}\right.$

Compare Theorem 1.2 and 1.3 with [Sd2], [Sd4] and [ST2].
In particular, we have the following:

Corollary 1.4. Let $G=C^{n}\aleph_{\alpha}Z$ be a semi-direct produ $ct$ of $\alpha$ by Z. We suppose
that $C’(G)$ has no finite dimensional irreducible representations except l-dimensional
ones, that is, any restrection of $\alpha$ to the $\alpha$-invariant subspaces as above is not a rational
rotation. Then we have the rank formulas as in the above remark.
Remark. By Lie’s theorem (cf.[OV, Theorem 5 in \S 4]), any connected solvable (real or
complex) Lie group has either one or infinite dimensional irreducible representations.
Example 1.5. The discrete Mautner group $M$ is defined by $\mathbb{C}\aleph_{\alpha}Z$ with $\alpha_{t}(z)=e^{i\ell}z$

for $z\in \mathbb{C},$ $t\in Z$ . Note $e^{2\pi i\ell}=1$ for $t\in Z$ . Then $C^{*}(M)$ has the following structure
from Example 1.1:

$0\rightarrow C_{0}(R)\otimes(C(T)n_{\theta}Z)\rightarrow C^{*}(M)\rightarrow C(T)\rightarrow 0$

where $C(T)\rangle\triangleleft\theta Z$ is as in Example 1.1 with $\theta=1/2\pi$ . Then we have $sr(C^{*}(M))=2>$
$1=\dim_{\mathbb{C}}\hat{M}_{1}$ , and oer$(C^{*}(M))=2$ .

Next let $G=\mathbb{C}^{2}\aleph_{\alpha}Z$ with $\alpha_{t}(z_{1}, z_{2})=(e^{i\pi\ell}z_{1}, e^{i\pi t}z_{2})$ . Then by the same calculation
as before Theorem 1.2, we have $sr(C^{*}(G))=3,$ $csr(C^{*}(G))\leq 4$ and $\dim_{C}\hat{G}_{1}=1$ .

If $G=\mathbb{C}^{3}n_{\alpha}Z$ with $\alpha_{t}(z_{1}, z_{2}, z_{3})=(e^{t}z_{1}, e^{i\pi t}z_{2}, e^{i\pi t}z_{3})$ , then we have $sr(C^{*}(G))=3$

or 4, $csr(C^{*}(G))\leq 4$ and $\dim_{\mathbb{C}}\hat{G}_{1}=1$ .
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Example 1.6. Let $G^{\lambda}=\mathbb{C}^{2}x_{\alpha^{\lambda}}\mathbb{Z}$ with $\alpha_{t}^{\lambda}(z_{1}, z_{2})=(e^{it}z_{1}, e^{i\lambda t}z_{2})$ for $t\in Z,$ $z_{1},$ $z_{2}\in \mathbb{C}$

and $\lambda\in R\backslash \{0\}$ . Then $C^{*}(G^{\lambda})$ has a finite composition series $\{3_{j}\}_{j=1}^{4}$ such that

$\left\{\begin{array}{ll}3_{4}/3_{3}=C^{*}(G^{\lambda})/2_{3}\cong C(T), & 2_{3}/2_{2}\cong C_{0}(\mathbb{R})\otimes(C(T)\rangle\triangleleft\theta \mathbb{Z}),\\3_{2}/3_{1}\cong C_{0}(R)\otimes(C(T)\aleph_{\lambda\theta}Z & , 2_{1}\cong C_{0}(R^{2})\otimes(C(T^{2})n_{\Theta}Z)\end{array}\right.$

where $C(T)\nu_{\theta}\mathbb{Z}$ and $C(T)\aleph_{\lambda\theta}Z$ are defined as in Example 1.1 with $\theta=1/2\pi$ , and $\Theta$

means the multi-rotation by the multi-angle $(\theta, \lambda\theta)$ . Then we have that

$sr(C^{*}(G^{\lambda}))=2=csr(C^{*}(G^{\lambda}))>1=\dim_{\mathbb{C}}\hat{G}_{1}^{\lambda}$ .

Remark. From Theorem 1.2 and [Sd4] we see that the tensor products $C^{*}(G)\otimes K$,
$C^{*}(G^{\prime})\otimes K$ for $G=\mathbb{C}^{n}\aleph_{\alpha}Z,$ $G^{\prime}=\mathbb{C}^{n^{\prime}}\aleph_{\alpha^{l}}R$ have the almost same structure. But it is
not true that $C^{*}(G)$ is stably isomorphic to $C^{*}(G^{\prime})$ , since $\hat{G}_{1}$ has $T$ as a direct product
subspace while $\hat{G}_{1}^{\prime}$ is homeomorphic to $R^{k}$ for some $k\geq 1$ . However, some subquotients
of these group $C^{*}$ -algebras are stably isomorphic.

\S 2. THE CASE OF SEMI-DIRECT PRODUCTS OF $R^{n}$ BY $Z$

In this last section, we apply Theorem 1.2 to the cases of semi-direct products $H=$

$R^{n}\aleph_{\beta}$ Z. By the same way as in [Sd4], we put $G=\alpha\aleph_{\alpha}\mathbb{Z}$ with $\alpha_{t}(x+iy)=$

$\beta_{\ell}(x)+i\beta_{t}(y)$ for $x,$ $ y\in R^{\mathfrak{n}}t\in$ Z. Then $C^{*}(H)$ is a quotient $C^{*}$-algebra of $C^{*}(G)$ .
Keeping the notation of Theorem 1.2, we have the following:

Theorem 2.1. Let $H=R^{n}x_{\beta}Z$ be a semi-direct product of $R^{n}$ by Z. Then there
exists a finite composition series $\{\mathcal{L}_{s}\}_{s=1}^{r}$ of $C^{*}(H)$ such that

$L_{s}/\mathcal{L}_{s-1}\cong\left\{\begin{array}{ll}C_{0}(\hat{H}_{1})=C_{0}(R^{h}\times T), h\geq 0 & s=r,\\\{C_{0}(V_{s})\mathfrak{B}_{s}C_{0}(Y_{s})\bigotimes_{\otimes}K or & 1\leq s<r\end{array}\right.$

where $Y_{s}$ is a closed subset of $X_{s}/Z$ , and $V_{s}$ is a closed subset of $R^{2g_{O}+u}$ . and $\mathfrak{B}_{s}$ is
equal to $(C(T^{u}\cdot)\aleph\ominus. Z)$ or its quotient $C^{*}$ -algebra.

Remark. The above remark is true in the case of $R^{n}\aleph_{\beta}\mathbb{Z}$ and $R^{n^{\prime}}\chi\beta^{\prime}$ R.
Moreover, we obtain that

Theorem 2.2. In the situation of Theorem 2.1, we have that

$\dim_{\mathbb{C}}\hat{H}_{1}\vee\max(\{[(v_{s}+u_{s}+1)/2]/p_{\epsilon}\}+1)\leq$

$sr(C^{*}(H))\leq(1+\dim_{\mathbb{C}}\hat{H}_{1})\vee\max(\{[(v_{s}+u_{s}+2)/2]/p_{s}\}+1)$ ,

$2\leq csr(C^{*}(H))\leq(1+\dim_{\mathbb{C}}\hat{H}_{1})\vee\max(\{[(v_{s}+u_{s}+2)/2]/p_{s}\}+1)$

where $v_{s}=\dim V_{s}$ , and $p_{s}$ means the period of $\Theta_{s}$ when $\Theta_{s}$ is a rational rotation.
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Example 2.3. Let $K=R\aleph\rho Z$ with $\beta_{t}(x)=e^{t}x$ for $x\in R,$ $t\in Z$ , which is regarded
as a closed normal subgroup of the proper $ax+b$ group. Then we have that

$0\rightarrow\oplus^{2}(C(T)\otimes K)\rightarrow^{i}C^{*}(K)\frac{q\backslash }{r}C(T)\rightarrow 0$ .

Then we obtain that $sr(C^{*}(K))=1$ or 2, and $csr(C^{*}(K))=2>1=\dim_{\mathbb{C}}\hat{K}_{1}$ . On the
other hand, since $C^{*}(K)\cong C_{0}(R)\aleph_{\hat{\beta}}Z$ , we have $sr(C_{0}(R)\aleph_{\hat{\beta}}Z)\leq sr(C_{0}(R))+1=2$ by
[Rfl, Theorem 7.1]. Moreover, we have the 6-term exact sequence (cf.[Wo]) of K-groups
for the above sequence:

$Z^{2}\rightarrow^{i_{r}}K_{0}(C^{*}(K))\frac{q.\backslash }{r}Z$

$\partial\uparrow$ $\downarrow$

$Z\leftarrow^{q_{.}}K_{1}(C^{*}(K))\leftarrow^{i_{.}}Z^{2}$

On the other hand, the Pimsner-Voiculescu sequence (cf.[Bl]) for $C^{*}(K)$ is given by

$0$ $\rightarrow 0\rightarrow K_{0}(C^{*}(K))$

$\uparrow$ $\downarrow$

$ K_{1}(C^{*}(K))\leftarrow Z\leftarrow$ $Z$

since $K_{0}(C_{0}(R))\cong 0$ and $K_{1}(C_{0}(R))\cong Z$ . It follows that $K_{0}(C^{*}(K))$ is assumed to be a
subgroup of Z. Now, if the index map $\partial$ is zero, $i_{*}$ must be injective so that $K_{0}(C^{*}(K))$

contains $Z^{2}$ as a subgroup, which $is$ the contradiction. Therefore, $\partial$ is nonzero. Then
Nagy or Nistor’s result ([Ny], [Ns2]) implies that $sr(C^{*}(K))\geq 2$ .
Example 2.4. Let $H=R^{2}x_{\beta}Z$ with $\beta_{\ell}(x, y)=(x+ty, y)$ for $x,$ $y\in Rt\in Z$ , which is
regarded as a closed normal subgroup of the Heisenberg Lie group. Then we have that

$0\rightarrow C_{0}((R\backslash \{0\})\times R)\times_{\hat{\beta}}Z\rightarrow C^{*}(H)\rightarrow C_{0}(RxT)\rightarrow 0$

with $C_{0}((R\backslash \{0\})\times R)\aleph Z\cong C_{0}((R\backslash \{0\})\times \mathbb{T})\otimes K$, where $\hat{\beta}_{\ell}(x^{\prime}, y^{\prime})=(x^{\prime}, tx^{\prime}+y^{\prime})$ for
$x^{\prime},$ $y^{\prime}\in R$. Then we obtain that $sr(C^{*}(H))=2=\dim_{\mathbb{C}}\hat{H}_{1}$ , and $csr(C^{*}(H))=2$ .
Acknowledgment. The author would like to thank Professor S. Kawakami for stimulating
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