STRUCTURE OF GROUP C^{*}-ALGEBRAS OF SEMI-DIRECT PRODUCTS OF \mathbb{C}^{n} BY \mathbb{Z}

Takahiro SUDO

Abstract

We consider the structure of group C^{*}-algebras of semi-direct products of \mathbb{C}^{n} by \mathbf{Z}. As an application we estimate the stable rank and connected stable rank of these C^{*}-algebras, and treat the case of semi-direct products of \mathbb{R}^{n} by \mathbb{Z} similarly.

§0. Introduction

Group C^{*}-algebras have played important roles in the progress of the theory of C^{*} algebras. In particular, their structure for Lie groups has been investigated (cf.[Dx], $[\mathrm{Rs}],[\mathrm{Gr} 1,2],[\mathrm{Pg}],[\mathrm{Wg}]$, etc). On the other hand, the stable rank for C^{*}-algebras was introduced by M.A. Rieffel [Rfl] as a noncommutative analogue of the covering dimension for topological spaces, and he raised an interesting problem such as describing the stable rank of group C^{*}-algebras of Lie groups in terms of groups. On this problem some partial answers were obtained by [Sh],[ST1,2] and [Sd1-4]. In particular, in [Sd4] the author investigated the structure of group C^{*}-algebras of Lie semi-direct products of \mathbb{C}^{n} by \mathbb{R}, and estimated their stable rank and connected stable rank.

In this paper we obtain finite composition series of group C^{*}-algebras of the semidirect products of \mathbb{C}^{n} by \mathbb{Z}, by analyzing their subquotients explicitly using some methods of [Sd4] similarly. Using this result we give the rank estimations of these group C^{*}-algebras, and especially that of semi-direct products of \mathbb{R}^{n} by \mathbb{Z}. These are disconnected solvable (Lie) groups, and contain the discrete Mautner group studied by L. Baggett [Bg] to construct some unitary representations of the Mautner group through Mackey machine. We emphasize that this paper will be the first step to explore the algebraic structure of C^{*}-algebras of general disconnected solvable Lie groups.

We now prepare some notations. Let $C^{*}(G)$ be the (full) group C^{*}-algebra of a locally compact group G (cf.[Dx, Part II],[Pd, Chapter 7]). We denote by \hat{G}_{1} the space of all 1-dimensional representations of G. Let $C_{0}(X)$ be the C^{*}-algebra of all complex valued continuous functions on a locally compact Hausdorff space X vanishing at infinity. When X is compact, we set $C_{0}(X)=C(X)$. Let \mathbb{K} be the C^{*}-algebra of all compact operators on a countably infinite dimensional Hilbert space. For a C^{*}-algebra \mathfrak{A}, we denote by $\operatorname{sr}(\mathfrak{A}), \operatorname{csr}(\mathfrak{A})$ its stable rank, connected stable rank respectively ([Rf1]).

[^0]By definition, $\operatorname{sr}(\mathfrak{A}), \operatorname{csr}(\mathfrak{A}) \in\{1,2, \cdots, \infty\}$. We review some formulas of these stable ranks used later as follows:
(F1): For an exact sequence of C^{*}-algebras: $0 \rightarrow \mathfrak{I} \rightarrow \mathfrak{A} \rightarrow \mathfrak{A} / \mathfrak{I} \rightarrow 0$, we have that

$$
\operatorname{sr}(\mathfrak{I}) \vee \operatorname{sr}(\mathfrak{A} / \mathfrak{I}) \leq \operatorname{sr}(\mathfrak{A}) \leq \operatorname{sr}(\mathfrak{I}) \vee \operatorname{sr}(\mathfrak{A} / \mathfrak{I}) \vee \operatorname{csr}(\mathfrak{A} / \mathfrak{I}), \quad \operatorname{csr}(\mathfrak{A}) \leq \operatorname{csr}(\mathfrak{I}) \vee \operatorname{csr}(\mathfrak{A} / \mathfrak{I})
$$

where V is the maximum (See [Rf1, Theorem 4.3, 4.4 and 4.11], [Sh , Theorem 3.9]).
(F2): By [Rf1, Proposition 1.7] and [Ns1], for X a locally compact Hausdorff space,

$$
\operatorname{sr}\left(C_{0}(X)\right)=\left[\operatorname{dim} X^{+} / 2\right]+1, \quad \operatorname{csr}\left(C_{0}(X)\right) \leq\left[\left(\operatorname{dim} X^{+}+1\right) / 2\right]+1
$$

where X^{+}means the one-point compactification of $X, \operatorname{dim} X^{+}$is the covering dimension of X^{+}, and $[x]$ means the maximum integer $\leq x$. We set $\operatorname{dim}_{C} X=[\operatorname{dim} X / 2]+1$.
(F3): For the $n \times n$ matrix algebra $M_{n}(\mathfrak{A})$ over a C^{*}-algebra \mathfrak{A}, by [Rf1, Theorem 6.1] and [Rf2, Theorem 4.7],

$$
\operatorname{sr}\left(M_{n}(\mathfrak{X})\right)=\{(\operatorname{sr}(\mathfrak{X})-1) / n\}+1, \quad \operatorname{csr}\left(M_{n}(\mathfrak{X})\right) \leq\{(\operatorname{csr}(\mathfrak{X})-1) / n\}+1
$$

where $\{x\}$ means the least integer $\geq x$.
(F4): For a C^{*}-algebra \mathfrak{A},

$$
\operatorname{sr}(\mathfrak{A} \otimes \mathbb{K})=\operatorname{sr}(\mathfrak{A}) \wedge 2, \quad \operatorname{csr}(\mathfrak{A} \otimes \mathbb{K}) \leq \operatorname{csr}(\mathfrak{A}) \wedge 2
$$

where \wedge is the minimum. See [Rf1, Theorem 3.6 and 6.4], ([Sh, Theorem 3.10], [Ns1]).

§1. Group C^{*}-algebras of SEmi-direct products of \mathbb{C}^{n} by \mathbb{Z}

Let $G=\mathbb{C}^{n} \rtimes_{\alpha} \mathbb{Z}$ be a semi-direct product with α an automorphic action of \mathbb{Z} on \mathbb{C}^{n}, in other words, $\alpha_{t} \in G L_{n}(\mathbb{C})$ for $t \in \mathbb{Z}$. By definition of C^{*}-crossed products (cf. $[\mathrm{Pd}$, Chapter 7]) and using the Fourier transform, we have the isomorphisms:

$$
C^{*}(G) \cong C^{*}\left(\mathbb{C}^{n}\right) \rtimes_{\alpha} \mathbb{Z} \cong C_{0}\left(\mathbb{C}^{n}\right) \rtimes_{\hat{\alpha}} \mathbb{Z}
$$

where $\hat{\alpha}$ is defined by the equation of the inner product: $\left\langle\alpha_{t}(z) \mid w\right\rangle=\left\langle z \mid \hat{\alpha}_{t}(w)\right\rangle$ for $z, w \in \mathbb{C}^{n}, t \in \mathbb{Z}$. Since the origin 0_{n} of \mathbb{C}^{n} is $\hat{\alpha}$-invariant, we have the following exact sequence:

$$
0 \rightarrow C_{0}\left(\mathbb{C}^{n} \backslash\left\{0_{n}\right\}\right) \rtimes_{\hat{\alpha}} \mathbb{Z} \rightarrow C_{0}\left(\mathbb{C}^{n}\right) \rtimes_{\hat{\alpha}} \mathbb{Z} \rightarrow C^{*}(\mathbb{Z}) \rightarrow 0
$$

because $C^{*}(\mathbb{Z}) \cong C(\mathbb{T})$ by the Fourier transform.
For the sake of convenience, we consider the following example:
Example 1.1. If $G=\mathbb{C} \rtimes_{\alpha} \mathbb{Z}$, then for some $w \in \mathbb{C} \backslash\{0\}, \hat{\alpha}_{t}(z)=w^{t} z$ for $z \in \mathbb{C}, t \in \mathbb{Z}$. If $w=1$, then $C^{*}(G) \cong C_{0}(\mathbb{C} \times \mathbb{T})$. When $w \notin \mathbb{T}$, by Green's result [Gr1, Corollary 15],

$$
C_{0}(\mathbb{C} \backslash\{0\}) \rtimes \mathbb{Z} \cong C((\mathbb{C} \backslash\{0\}) / \mathbb{Z}) \otimes \mathbb{K} \cong C\left(\mathbb{T}^{2}\right) \otimes \mathbb{K}
$$

If $w=e^{2 \pi i \theta} \in \mathbb{T} \backslash\{1\}$, then $C_{0}(\mathbb{C} \backslash\{0\}) \rtimes_{\hat{\alpha}} \mathbb{Z} \cong C_{0}(\mathbb{R}) \otimes\left(C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z}\right)$, where $C(\mathbb{T}) \rtimes_{\hat{\alpha}} \mathbb{Z}$ is the rotation algebra $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ by the angle $2 \pi \theta$ (cf.[AP], [EE]).

We now investigate general cases in the following. Taking a suitable basis of \mathbb{C}^{n} for the Jordan decomposition of α_{1}, and assuming it as a canonical basis of \mathbb{C}^{n}, we may assume that α_{1} is equal to the diagonal sum as follows: for $\beta_{j} \in \mathbb{C}(1 \leq j \leq l)$,

$$
\alpha_{1}=\left(\oplus_{j=1}^{m}\left(\begin{array}{ccc}
\beta_{j} & & 0 \\
& \ddots & \\
0 & & \beta_{j}
\end{array}\right)\right) \oplus\left(\oplus_{k=m+1}^{l}\left(\begin{array}{cccc}
\beta_{k} & & & 0 \\
1 & \ddots & & \\
& \ddots & \ddots & \\
0 & & 1 & \beta_{k}
\end{array}\right)\right)
$$

on the direct sum decomposition $\mathbb{C}^{n}=\left(\oplus_{j=1}^{m} \mathbb{C}^{n_{j}}\right) \oplus\left(\oplus_{k=m+1}^{l} \mathbb{C}^{n_{k}}\right)$. Then for $t \in \mathbb{Z}$, we have that

$$
\hat{\alpha}_{t}=\left(\oplus_{j=1}^{m}\left(\begin{array}{ccc}
\bar{\beta}_{j}^{t} & & 0 \\
& \ddots & \\
0 & & \bar{\beta}_{j}^{t}
\end{array}\right)\right) \oplus\left(\oplus_{k=m+1}^{l}\left(\begin{array}{cccc}
\bar{\beta}_{k}^{t} & t \bar{\beta}_{k}^{t-1} & & * \\
& \ddots & \ddots & \\
& & \ddots & t \bar{\beta}_{k}^{t-1} \\
0 & & & \bar{\beta}_{k}^{t}
\end{array}\right)\right)
$$

Note that there exists a quotient map from $C^{*}(G)$ to $C_{0}\left(\mathbb{C}^{g} \times \mathbb{T}\right)$ for some $0 \leq g \leq n$, where $\mathbb{C}^{g} \times \mathbb{T}$ is homeomorphic to \hat{G}_{1}, and \mathbb{C}^{g} is homeomorphic to the subspace of \mathbb{C}^{n} fixed under $\hat{\alpha}$. If some β_{j} or β_{k} are 1 , then $g \geq 1$. By (F1) and (F2), we obtain that

$$
\left\{\begin{array}{l}
\operatorname{sr}\left(C^{*}(G)\right) \geq \operatorname{sr}\left(C_{0}\left(\hat{G}_{1}\right)=\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}\right. \\
\operatorname{csr}\left(C_{0}\left(\hat{G}_{1}\right)\right) \leq\left[\left(\operatorname{dim} \hat{G}_{1}+1\right) / 2\right]+1=\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}+1
\end{array}\right.
$$

We consider the restrictions of $\hat{\boldsymbol{\alpha}}$ to the $\hat{\alpha}$-invariant subspaces

$$
\mathbb{C}^{g_{0}} \oplus\left(\oplus_{j=1}^{m^{\prime}}(\mathbb{C} \backslash\{0\})^{n_{j}^{\prime}}\right) \oplus\left(\oplus_{k=m+1}^{l^{\prime}}\left(\mathbb{C}^{n_{k}^{\prime}} \backslash\left\{0_{n_{k}^{\prime}}\right\}\right)\right)
$$

for $0 \leq m^{\prime} \leq m, 0 \leq n_{j}^{\prime} \leq n_{j}, m+1 \leq l^{\prime} \leq l$ and $0 \leq n_{k}^{\prime} \leq n_{k}$, where $\mathbb{C}^{g_{0}}$ means the direct sum of $\mathbb{C}^{n_{j}}$ for $1 \leq j \leq m$ such that $\beta_{j}=1$. Moreover, we need to consider the following decomposition: for $m+1 \leq k \leq l^{\prime}$,

$$
\mathbb{C}^{n_{k}^{\prime}} \backslash\left\{0_{n_{k}^{\prime}}\right\}=\left((\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1}\right\}\right) \cup\left(\mathbb{C} \times\left(\mathbb{C}^{n_{k}^{\prime}-1} \backslash\left\{0_{n_{k}^{\prime}-1}\right\}\right)\right)
$$

In addition, we decompose $\mathbb{C}^{n_{k}^{\prime}-1} \backslash\left\{0_{n_{k}^{\prime}-1}\right\}$ into the disjoint union of the $\hat{\alpha}$-invariant subspaces $\mathbb{C}^{j_{k}^{\prime}-1} \times(\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1-j_{k}^{\prime}}\right\}\left(1 \leq j_{k}^{\prime} \leq n_{k}^{\prime}\right)$. We let

$$
X_{s}=\mathbb{C}^{g_{0}} \oplus\left(\oplus_{j=1}^{m^{\prime}}(\mathbb{C} \backslash\{0\})^{n_{j}^{\prime}}\right) \oplus\left(\oplus_{k=m+1}^{l^{\prime}} Y_{k}\right)
$$

an $\hat{\alpha}$ invariant subspace obtained as above, where

$$
Y_{k}= \begin{cases}(\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1}\right\} & \text { or } \\ \mathbb{C}^{j_{k}^{\prime}-1} \times(\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1-j_{k}^{\prime}}\right\} & \end{cases}
$$

If $\beta_{k}=1$ for some $m+l \leq k \leq l$, the subspace $(\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}-1}\right\}$ is fixed under $\hat{\alpha}$. Thus in this case we assume that $Y_{k}=\mathbb{C}^{j_{k}^{\prime}-1} \times(\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1-j_{k}^{\prime}}\right\}$ for some j_{k}^{\prime} in what follows.

We now note that

$$
\left(\begin{array}{ccc}
\bar{\beta}_{j}^{t} & & 0 \\
& \ddots & \\
0 & & \bar{\beta}_{j}^{t}
\end{array}\right)\left(\begin{array}{c}
z_{1} \\
\vdots \\
z_{n_{j}^{\prime}}
\end{array}\right)=\left(\begin{array}{c}
\bar{\beta}_{j}^{t} z_{1} \\
\vdots \\
\bar{\beta}_{j}^{t} z_{n_{j}^{\prime}}
\end{array}\right)
$$

for $\left(z_{1}, \cdots, z_{n_{j}^{\prime}}\right) \in(\mathbb{C} \backslash\{0\})^{n_{j}^{\prime}}$, and

$$
\left(\begin{array}{cccc}
\bar{\beta}_{k}^{t} & t \bar{\beta}_{k}^{t-1} & & * \\
& \ddots & \ddots & \\
& & \ddots & t \bar{\beta}_{k}^{t-1} \\
0 & & & \bar{\beta}_{k}^{t}
\end{array}\right)\left(\begin{array}{c}
w_{1} \\
\vdots \\
w_{j_{k}^{\prime}} \\
0 \\
\vdots \\
0
\end{array}\right)=\left(\begin{array}{c}
* \\
\vdots \\
\bar{\beta}_{k}^{t} w_{j_{k}^{\prime}-1}+t \bar{\beta}_{k}^{k-1} w_{j_{k}^{\prime}} \\
\bar{\beta}_{k}^{t} w_{j_{k}^{\prime}} \\
0 \\
\vdots \\
0
\end{array}\right)
$$

for $\left(w_{1}, \cdots, w_{j_{k}^{\prime}}, 0, \cdots, 0\right) \in \mathbb{C}_{j_{k}^{\prime}-1} \times(\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1-j_{k}^{\prime}}\right\}$. By direct calculation, the action $\hat{\alpha}$ on X_{s} is one of the following three cases (cf.[Sd4]):

$$
\left\{\begin{array}{l}
\text { Free and wandering case } \\
\text { Free and nonwandering case } \\
\text { Nonfree case }
\end{array}\right.
$$

where the first case is that β_{j} or $\beta_{k} \notin \mathbb{T}$ for some j, k, or $j^{\prime} \geq 2$ for some j^{\prime}, the second one is that all $\beta_{j}, \beta_{k} \in \mathbb{T}$ and one of them is an irrational number in $\mathbb{R}(\bmod 2 \pi)$ identified with \mathbb{T}, and the third one is that all β_{j}, β_{k} are rational numbers. We consider the crossed product $C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}$ in each case.

If the action of \mathbb{Z} on X_{s} is free and wandering, we have by [Gr1, Corollary 15] that

$$
C_{0}\left(X_{s}\right) \rtimes \mathbb{Z} \cong C_{0}\left(X_{s} / \mathbb{Z}\right) \otimes \mathbb{K}
$$

We note that X_{s} contains an $\hat{\alpha}$-invariant closed subspace which is a copy of $\mathbb{C} \backslash\{0\}$, and its orbit space by $\hat{\alpha}$ is homeomorphic to \mathbb{T}^{2}. Hence we have $\operatorname{sr}\left(C_{0}\left(X_{s} / \mathbb{Z}\right)\right) \geq 2$. Therefore, $\operatorname{sr}\left(C_{0}\left(X_{s} / \mathbb{Z}\right) \otimes \mathbb{K}\right)=2$.

We next consider the free and nonwandering case. Then

$$
X_{s}=\mathbb{C}^{g_{0}} \oplus\left(\oplus_{j=1}^{m^{\prime}}(\mathbb{C} \backslash\{0\})^{n_{j}^{\prime}}\right) \oplus\left(\oplus_{k=m^{\prime}+1}^{l^{\prime}}\left((\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1}\right\}\right)\right)
$$

where the restriction of $\hat{\alpha}$ to each direct factor $\mathbb{C} \backslash\{0\}$ of X_{s} is a rotation, and one of these restrictions is an irrational rotation. Thus we have that for some $u_{s} \geq 1$,

$$
C_{0}\left(X_{s}\right) \rtimes \mathbb{Z} \cong C_{0}\left(\mathbb{C}^{g_{0}} \times \mathbb{R}^{u_{s}}\right) \otimes\left(C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}\right)
$$

Moreover, by [EL2] (cf.[EE]), $C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}$ is an inductive limit of finite direct sums of matrix algebras over $C(\mathbb{T})$ with their matrix sizes going to infinity. Therefore, by (F3) and $\left[\mathrm{Rfl}\right.$, Theorem 5.1], we obtain that $\operatorname{sr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right) \leq 2$ and $\operatorname{csr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right) \leq 2$.

If $u_{s} \geq 2$, then we have a quotient as follows:

$$
C_{0}\left(X_{s}\right) \rtimes \mathbb{Z} \rightarrow C\left([0,1]^{2}\right) \otimes\left(C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}\right) \rightarrow 0
$$

By [NOP, Proposition 5.3], we obtain that $\operatorname{sr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right) \geq \operatorname{sr}\left(C\left([0,1]^{2}\right) \otimes\left(C\left(\mathbb{T}^{u_{0}}\right) \rtimes\right.\right.$ $\mathbb{Z})) \geq 2$.

If $u_{s}=1$, we suppose that $\operatorname{sr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right)=1$. Then $\operatorname{sr}(C([0,1]) \otimes(C(\mathbb{T}) \rtimes \mathbb{Z}))=1$. Then the K_{1}-group of $C([0,1]) \otimes(C(\mathbb{T}) \rtimes \mathbb{Z})$ must be trivial by [NOP, Proposition 5.2]. However, this is impossible since the K-groups of $C(\mathbb{T}) \rtimes \mathbb{Z}$ are \mathbb{Z}^{2} so that the K_{1}-group of $C([0,1]) \otimes\left(C(\mathbb{T}) \rtimes \mathbb{Z}\right.$) is also \mathbb{Z}^{2} by Künneth formula (cf.[Wo, 9.3.3]). Therefore, $\operatorname{sr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right) \geq 2$.

Finally, we consider the nonfree case. Then

$$
X_{s}=\mathbb{C}^{g_{0}} \oplus\left(\oplus_{j=1}^{m^{\prime}}(\mathbb{C} \backslash\{0\})^{n_{j}^{\prime}}\right) \oplus\left(\oplus_{k=m^{\prime}+1}^{l^{\prime}}\left((\mathbb{C} \backslash\{0\}) \times\left\{0_{n_{k}^{\prime}-1}\right\}\right)\right)
$$

where the restriction of $\hat{\alpha}$ to each direct factor $\mathbb{C} \backslash\{0\}$ of X_{s} is a rational rotation. Then

$$
C_{0}\left(X_{s}\right) \rtimes \mathbb{Z} \cong C_{0}\left(\mathbb{R}^{2 g_{0}+u_{s}}\right) \otimes\left(C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}\right)
$$

for some $u_{s} \geq 1$. Moreover, we have that for a $p \geq 2$,

$$
0 \rightarrow C_{0}(\mathbb{R}) \otimes\left(C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}_{p}\right) \rightarrow C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z} \rightarrow C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}_{p} \rightarrow 0
$$

with $C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}_{p}$ a homogeneous C^{*}-algebra (cf.[EL1], [Dv, VIII.9] for some cases with $C\left(\mathbb{T}^{u_{s}}\right) \rtimes \mathbb{Z}_{p} \cong M_{p}\left(C\left(\mathbb{T}^{u_{s}}\right)\right)$). By (F1), (F2) and (F3),

$$
\begin{aligned}
2 & \leq \operatorname{sr}\left(M_{p}\left(C_{0}\left(\mathbb{R}^{2 g_{0}+u_{s}+1} \times \mathbb{T}^{u_{s}}\right)\right)\right)=\left\{\left[\left(2\left(g_{0}+u_{s}\right)+1\right) / 2\right] / p\right\}+1 \leq \\
\operatorname{sr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right) & \leq \operatorname{sr}\left(M_{p}\left(C_{0}\left(\mathbb{R}^{2 g_{0}+u_{s}+1} \times \mathbb{T}^{u_{s}}\right)\right)\right) \vee \operatorname{csr}\left(M_{p}\left(C_{0}\left(\mathbb{R}^{2 g_{0}+u_{s}} \times \mathbb{T}^{u_{s}}\right)\right)\right) \\
& \leq\left\{\left[\left(2\left(g_{0}+u_{s}\right)+1\right) / 2\right] / p\right\}+1=\left\{\left(g_{0}+u_{s}\right) / p\right\}+1, \\
\operatorname{csr}\left(C_{0}\left(X_{s}\right) \rtimes \mathbb{Z}\right) & \leq \operatorname{csr}\left(M_{p}\left(C_{0}\left(\mathbb{R}^{2 g_{0}+u_{s}+1} \times \mathbb{T}^{u_{s}}\right)\right)\right) \vee \operatorname{csr}\left(M_{p}\left(C_{0}\left(\mathbb{R}^{2 g_{0}+u_{s}} \times \mathbb{T}^{u_{s}}\right)\right)\right) \\
& \leq\left\{\left[\left(2\left(g_{0}+u_{s}\right)+2\right) / 2\right] / p\right\}+1=\left\{\left(g_{0}+u_{s}+1\right) / p\right\}+1 .
\end{aligned}
$$

Summing up the above argument we obtain that

Theorem 1.2. Let $G=\mathbb{C}^{n} \rtimes_{\alpha} \mathbb{Z}$ be a semi-direct product of \mathbb{C}^{n} by \mathbb{Z}. Then there exists a finite composition series $\left\{\mathfrak{I}_{s}\right\}_{s=1}^{r}$ of $C^{*}(G)$ such that
where $u_{s-1} \geq u_{s}, \operatorname{dim} X_{s-1} \geq \operatorname{dim} X_{s}$ and the action Θ_{s} of \mathbb{Z} is a multi-rotation.
Moreover, applying (F1) to the above composition series inductively we obtain that Theorem 1.3. In the situation of Theorem 1.2, we have that

$$
\begin{gathered}
2 \vee \operatorname{dim}_{\mathbf{C}} \hat{G}_{1} \vee \max \left(\left\{\left(g_{0}+u_{s}\right) / p_{s}\right\}+1\right) \leq \\
\operatorname{sr}\left(C^{*}(G)\right) \leq\left(1+\operatorname{dim}_{\mathbf{C}} \hat{G}_{1}\right) \vee \max \left(\left\{\left(g_{0}+u_{s}+1\right) / p_{s}\right\}+1\right), \\
\operatorname{csr}\left(C^{*}(G)\right) \leq\left(1+\operatorname{dim}_{\mathbf{C}} \hat{G}_{1}\right) \vee \max \left(\left\{\left(g_{0}+u_{s}+1\right) / p_{s}\right\}+1\right)
\end{gathered}
$$

where p_{s} means the period of Θ_{s} when it is a rational rotation.
Remark. By [Eh, Theorem 2.2], we have that $\operatorname{csr}\left(C^{*}(G)\right) \geq 2$. Hence if all the periods p_{s} of the rational rotations Θ_{s} are large enough, we can obtain that

$$
\begin{aligned}
& \left\{\begin{array}{l}
\operatorname{sr}\left(C^{*}(G)\right)=2 \vee \operatorname{dim}_{\mathbb{C}} \hat{G}_{1}, \quad \text { if } \operatorname{dim} \hat{G}_{1} \text { even, } \\
2 \vee \operatorname{dim}_{\mathbb{C}} \hat{G}_{1} \leq \operatorname{sr}\left(C^{*}(G)\right) \leq 1+\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}, \quad \text { if } \operatorname{dim} \hat{G}_{1} \text { odd },
\end{array}\right. \\
& \left\{\begin{array}{l}
\operatorname{csr}\left(C^{*}(G)\right)=2, \quad \text { if } \operatorname{dim}_{\mathbb{C}} \hat{G}_{1}=1 \text { or } 2, \\
2 \leq \operatorname{csr}\left(C^{*}(G)\right) \leq\left(1+\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}\right), \quad \text { otherwise } .
\end{array}\right.
\end{aligned}
$$

Compare Theorem 1.2 and 1.3 with [Sd2], [Sd4] and [ST2].
In particular, we have the following:
Corollary 1.4. Let $G=\mathbb{C}^{n} \rtimes_{\alpha} \mathbb{Z}$ be a semi-direct product of \mathbb{C}^{n} by \mathbb{Z}. We suppose that $C^{*}(G)$ has no finite dimensional irreducible representations except 1-dimensional ones, that is, any restriction of α to the α-invariant subspaces as above is not a rational rotation. Then we have the rank formulas as in the above remark.
Remark. By Lie's theorem (cf.[OV, Theorem 5 in §4]), any connected solvable (real or complex) Lie group has either one or infinite dimensional irreducible representations.
Example 1.5. The discrete Mautner group M is defined by $\mathbb{C} \rtimes_{\alpha} \mathbb{Z}$ with $\alpha_{t}(z)=e^{i t} z$ for $z \in \mathbb{C}, t \in \mathbb{Z}$. Note $e^{2 \pi i t}=1$ for $t \in \mathbb{Z}$. Then $C^{*}(M)$ has the following structure from Example 1.1:

$$
0 \rightarrow C_{0}(\mathbb{R}) \otimes\left(C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}\right) \rightarrow C^{*}(M) \rightarrow C(\mathbb{T}) \rightarrow 0
$$

where $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ is as in Example 1.1 with $\theta=1 / 2 \pi$. Then we have $\operatorname{sr}\left(C^{*}(M)\right)=2>$ $1=\operatorname{dim}_{C} \hat{M}_{1}$, and $\operatorname{css}\left(C^{*}(M)\right)=2$.

Next let $G=\mathbb{C}^{2} \rtimes_{\alpha} \mathbb{Z}$ with $\alpha_{t}\left(z_{1}, z_{2}\right)=\left(e^{i \pi t} z_{1}, e^{i \pi t} z_{2}\right)$. Then by the same calculation as before Theorem 1.2, we have $\operatorname{sr}\left(C^{*}(G)\right)=3, \operatorname{csr}\left(C^{*}(G)\right) \leq 4$ and $\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}=1$.

If $G=\mathbb{C}^{3} \rtimes_{\alpha} \mathbb{Z}$ with $\alpha_{t}\left(z_{1}, z_{2}, z_{3}\right)=\left(e^{t} z_{1}, e^{i \pi t} z_{2}, e^{i \pi t} z_{3}\right)$, then we have $\operatorname{sr}\left(C^{*}(G)\right)=3$ or $4, \operatorname{csr}\left(C^{*}(G)\right) \leq 4$ and $\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}=1$.

Example 1.6. Let $G^{\lambda}=\mathbb{C}^{2} \rtimes_{\alpha^{\lambda}} \mathbb{Z}$ with $\alpha_{t}^{\lambda}\left(z_{1}, z_{2}\right)=\left(e^{i t} z_{1}, e^{i \lambda t} z_{2}\right)$ for $t \in \mathbb{Z}, z_{1}, z_{2} \in \mathbb{C}$ and $\lambda \in \mathbb{R} \backslash\{0\}$. Then $C^{*}\left(G^{\lambda}\right)$ has a finite composition series $\left\{\mathfrak{I}_{j}\right\}_{j=1}^{4}$ such that

$$
\left\{\begin{array}{l}
\mathfrak{I}_{4} / \mathfrak{I}_{3}=C^{*}\left(G^{\lambda}\right) / \mathfrak{I}_{3} \cong C(\mathbb{T}), \quad \mathfrak{I}_{3} / \mathfrak{I}_{2} \cong C_{0}(\mathbb{R}) \otimes\left(C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}\right) \\
\mathfrak{I}_{2} / \mathfrak{I}_{1} \cong C_{0}(\mathbb{R}) \otimes\left(C(\mathbb{T}) \rtimes_{\lambda \theta} \mathbb{Z}\right), \quad \mathfrak{I}_{1} \cong C_{0}\left(\mathbb{R}^{2}\right) \otimes\left(C\left(\mathbb{T}^{2}\right) \rtimes_{\Theta} \mathbb{Z}\right)
\end{array}\right.
$$

where $C(\mathbb{T}) \rtimes_{\theta} \mathbb{Z}$ and $C(\mathbb{T}) \rtimes_{\lambda \theta} \mathbb{Z}$ are defined as in Example 1.1 with $\theta=1 / 2 \pi$, and Θ means the multi-rotation by the multi-angle $(\theta, \lambda \theta)$. Then we have that

$$
\operatorname{sr}\left(C^{*}\left(G^{\lambda}\right)\right)=2=\operatorname{csr}\left(C^{*}\left(G^{\lambda}\right)\right)>1=\operatorname{dim}_{\mathbb{C}} \hat{G}_{1}^{\lambda}
$$

Remark. From Theorem 1.2 and [Sd4] we see that the tensor products $C^{*}(G) \otimes \mathbb{K}$, $C^{*}\left(G^{\prime}\right) \otimes \mathbb{K}$ for $G=\mathbb{C}^{n} \rtimes_{\alpha} \mathbb{Z}, G^{\prime}=\mathbb{C}^{n^{\prime}} \rtimes_{\alpha^{\prime}} \mathbb{R}$ have the almost same structure. But it is not true that $C^{*}(G)$ is stably isomorphic to $C^{*}\left(G^{\prime}\right)$, since \hat{G}_{1} has \mathbb{T} as a direct product subspace while \hat{G}_{1}^{\prime} is homeomorphic to \mathbb{R}^{k} for some $k \geq 1$. However, some subquotients of these group C^{*}-algebras are stably isomorphic.

§2. The Case of semi-direct products of \mathbb{R}^{n} by \mathbb{Z}

In this last section, we apply Theorem 1.2 to the cases of semi-direct products $H=$ $\mathbb{R}^{n} \rtimes_{\beta} \mathbb{Z}$. By the same way as in [Sd4], we put $G=\mathbb{C}^{n} \rtimes_{\alpha} \mathbb{Z}$ with $\alpha_{t}(x+i y)=$ $\beta_{t}(x)+i \beta_{t}(y)$ for $x, y \in \mathbb{R}^{n} t \in \mathbb{Z}$. Then $C^{*}(H)$ is a quotient C^{*}-algebra of $C^{*}(G)$. Keeping the notation of Theorem 1.2, we have the following:
Theorem 2.1. Let $H=\mathbb{R}^{n} \rtimes_{\beta} \mathbb{Z}$ be a semi-direct product of \mathbb{R}^{n} by \mathbb{Z}. Then there exists a finite composition series $\left\{\mathfrak{L}_{s}\right\}_{s=1}^{r}$ of $C^{*}(H)$ such that

$$
\mathfrak{L}_{s} / \mathfrak{L}_{s-1} \cong \begin{cases}C_{0}\left(\hat{H}_{1}\right)=C_{0}\left(\mathbb{R}^{h} \times \mathbb{T}\right), h \geq 0 & s=r \\
\left\{\begin{array}{ll}
C_{0}\left(Y_{s}\right) \otimes \mathbb{K} \text { or } & 1 \leq s<r \\
C_{0}\left(V_{s}\right) \otimes \mathfrak{B}_{s} &
\end{array}\right. \text {, }\end{cases}
$$

where Y_{s} is a closed subset of X_{s} / \mathbb{Z}, and V_{s} is a closed subset of $\mathbb{R}^{2 g_{0}+u}$ and \mathfrak{B}_{s} is equal to $\left(C\left(\mathbb{T}^{u_{s}}\right) \rtimes_{\Theta_{s}} \mathbb{Z}\right)$ or its quotient C^{*}-algebra.
Remark. The above remark is true in the case of $\mathbb{R}^{n} \rtimes_{\beta} \mathbb{Z}$ and $\mathbb{R}^{n^{\prime}} \rtimes_{\beta^{\prime}} \mathbb{R}$.
Moreover, we obtain that
Theorem 2.2. In the situation of Theorem 2.1, we have that

$$
\begin{gathered}
\operatorname{dim}_{\mathbb{C}} \hat{H}_{1} \vee \max \left(\left\{\left[\left(v_{s}+u_{s}+1\right) / 2\right] / p_{s}\right\}+1\right) \leq \\
\operatorname{sr}\left(C^{*}(H)\right) \leq\left(1+\operatorname{dim}_{\mathbb{C}} \hat{H}_{1}\right) \vee \max \left(\left\{\left[\left(v_{s}+u_{s}+2\right) / 2\right] / p_{s}\right\}+1\right) \\
2 \leq \operatorname{csr}\left(C^{*}(H)\right) \leq\left(1+\operatorname{dim}_{\mathbb{C}} \hat{H}_{1}\right) \vee \max \left(\left\{\left[\left(v_{s}+u_{s}+2\right) / 2\right] / p_{s}\right\}+1\right)
\end{gathered}
$$

where $v_{s}=\operatorname{dim} V_{s}$, and p_{s} means the period of Θ_{s} when Θ_{s} is a rational rotation.

Example 2.3. Let $K=\mathbb{R} \rtimes_{\beta} \mathbb{Z}$ with $\beta_{t}(x)=e^{t} x$ for $x \in \mathbb{R}, t \in \mathbb{Z}$, which is regarded as a closed normal subgroup of the proper $a x+b$ group. Then we have that

$$
0 \longrightarrow \oplus^{2}(C(\mathbb{T}) \otimes \mathbb{K}) \xrightarrow{i} C^{*}(K) \xrightarrow{q} C(\mathbb{T}) \longrightarrow 0 .
$$

Then we obtain that $\operatorname{sr}\left(C^{*}(K)\right)=1$ or 2 , and $\operatorname{csr}\left(C^{*}(K)\right)=2>1=\operatorname{dim}_{C} \hat{K}_{1}$. On the other hand, since $C^{*}(K) \cong C_{0}(\mathbb{R}) \rtimes_{\hat{\beta}} \mathbb{Z}$, we have $\operatorname{sr}\left(C_{0}(\mathbb{R}) \rtimes_{\hat{\beta}} \mathbb{Z}\right) \leq \operatorname{sr}\left(C_{0}(\mathbb{R})\right)+1=2$ by [Rf1, Theorem 7.1]. Moreover, we have the 6-term exact sequence (cf.[Wo]) of K-groups for the above sequence:

On the other hand, the Pimsner-Voiculescu sequence (cf.[B1]) for $C^{*}(K)$ is given by

since $K_{0}\left(C_{0}(\mathbb{R})\right) \cong 0$ and $K_{1}\left(C_{0}(\mathbb{R})\right) \cong \mathbb{Z}$. It follows that $K_{0}\left(C^{*}(K)\right)$ is assumed to be a subgroup of \mathbb{Z}. Now, if the index map ∂ is zero, i_{*} must be injective so that $K_{0}\left(C^{*}(K)\right)$ contains \mathbb{Z}^{2} as a subgroup, which is the contradiction. Therefore, ∂ is nonzero. Then Nagy or Nistor's result ([Ny], [Ns2]) implies that $\operatorname{sr}\left(C^{*}(K)\right) \geq 2$.
Example 2.4. Let $H=\mathbb{R}^{2} \rtimes_{\beta} \mathbb{Z}$ with $\beta_{t}(x, y)=(x+t y, y)$ for $x, y \in \mathbb{R}, t \in \mathbb{Z}$, which is regarded as a closed normal subgroup of the Heisenberg Lie group. Then we have that

$$
0 \rightarrow C_{0}((\mathbb{R} \backslash\{0\}) \times \mathbf{R}) \rtimes_{\hat{\beta}} \mathbb{Z} \rightarrow C^{*}(H) \rightarrow C_{0}(\mathbf{R} \times \mathbb{T}) \rightarrow 0
$$

with $C_{0}((\mathbb{R} \backslash\{0\}) \times \mathbb{R}) \rtimes \mathbb{Z} \cong C_{0}((\mathbb{R} \backslash\{0\}) \times \mathbb{T}) \otimes \mathbb{K}$, where $\hat{\beta}_{t}\left(x^{\prime}, y^{\prime}\right)=\left(x^{\prime}, t x^{\prime}+y^{\prime}\right)$ for $x^{\prime}, y^{\prime} \in \mathbb{R}$. Then we obtain that $\operatorname{sr}\left(C^{*}(H)\right)=2=\operatorname{dim}_{\mathbb{C}} \hat{H}_{1}$, and $\operatorname{csr}\left(C^{*}(H)\right)=2$.
Acknowledgment. The author would like to thank Professor S. Kawakami for stimulating comments and bringing my attention to the paper $[\mathrm{Bg}]$, and thank the referee for some corrections and reading the manuscript carefully.

References

[AP] J. Anderson and W. Paschke, The rotation algebra, Houston J. Math. 15 (1989), 1-26.
$[\mathrm{Bg}] \quad$ L. Baggett, Representations of the Mautner group, I, Pacific J. Math. 77 (1978), 7-22.
[B1] B. Blackadar, K-theory for Operator Algebras, Second Edition, Cambridge, 1998.
[Dv] K.R. Davidson, C^{*}-algebras by Example, Fields Institute Monographs, AMS, 1996.
[Dx] J. Dixmier, C*-algebras, North-Holland, 1962.
[Eh] N. Elhage Hassan, Rangs stables de certaines extensions, J. London Math. Soc. 52 (1995), 605-624.
[EE] G.A. Elliott and D.E. Evans, The structure of the irrational rotation C^{*}-algebra, Ann. Math. (1993), 477-501.
[EL1] G.A. Elliott and Q. Lin, Cut-down method in the inductive limit decomposition of noncommutative tori, J. London Math. Soc. 54 (1996), 121-134.
[EL2] _, Cut-down method in the inductive limit decomposition of noncommutative tori, II: The degenerate case, Operator Algebras and Their Applications, Fields Ints. Commun. 13 (1997), 91-123.
[Gr1] P. Green, C^{*}-algebras of transformation groups with smooth orbit space, Pacific. J. Math. 72 (1977), 71-97.
[Gr 2$] \quad$, The structure of imprimitivity algebras, J. Funct. Anal. 36 (1980), 88-104.
[Ng] K. Nagami, Dimension Theory, Academic Press, New York-London, 1970.
[NOP] M. Nagisa, H. Osaka and N.C. Phillips, Ranks of algebras of continuous C^{*}-algebra valued functions, Preprint.
[Ny] G. Nagy, Some remarks of lifting invertible elements from quotient C^{*}-algebras, J. Operator Theory 21 (1989), 379-386.
[Ns1] V. Nistor, Stable range for tensor products of extensions of \mathcal{K} by $C(X)$, J. Operator Theory 16 (1986), 387-396.
[Ns2] , Stable rank for a certain class of type $I C^{*}$-algebras, J. Operator Theory 17 (1987), 365-373.
[OV] A.L. Onishchik and E.B. Vinberg, Lie Groups and Algebraic Groups, Springer-Verlag, 1990.
[Pd] G.K. Pedersen, C*-Algebras and their Automorphism Groups, Academic Press, London-New York-San Francisco, 1979.
$[\mathrm{Pg}] \quad$ D. Poguntke, Simple quotients of group C^{*}-algebras for two step nilpotent groups and connected Lie groups, Ann. Scient. Éc. Norm. Sup. 16 (1983), 151-172.
[Rf1] M.A. Rieffel, Dimension and stable rank in the K-theory of C^{*}-algebras, Proc. London Math. Soc. 46 (1983), 301-333.
[Rf2] , The homotopy groups of the unitary groups of non-commutative tori, J. Operator Theory 17 (1987), 237-254.
[Rs] J. Rosenberg, The C^{*}-algebras of some real and p-adic solvable groups, Pacific. J. Math. Soc. 65 (1976), 175-192.
[Sh] A.J-L. Sheu, A cancellation theorem for projective modules over the group C^{*}-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), 365-427.
[Sd1] T. Sudo, Stable rank of the reduced C^{*}-algebras of non-amenable Lie groups of type I, Proc. Amer. Math. Soc. 125 (1997), 3647-3654.
[Sd2] , Stable rank of the C^{*}-algebras of amenable Lie groups of type I, Math. Scand. 84 (1999), 231-242.
[Sd3] , Dimension theory of group C^{*}-algebras of connected Lie groups of type I, J. Math. Soc. Japan 52 (2000), 583-590.
[Sd4] , Structure of group C^{*}-algebras of Lie semi-direct products $\mathbb{C}^{n} \rtimes \mathbb{R}$, To appear.
[ST1] T. Sudo and H. Takai, Stable rank of the C^{*}-algebras of nilpotent Lie groups, Internat. J. Math. 6 (1995), 439-446.
[ST2] , Stable rank of the C^{*}-algebras of solvable Lie groups of type I, J. Operator Theory 38 (1997), 67-86.
[Wg] X. Wang, The C^{*}-algebras of a class of solvable Lie groups, Pitman Research Notes 199, 1989.
[Wo] N.E. Wegge-Olsen, K-theory and C^{*}-algebras, Oxford Univ. Press, 1993.
Department of Mathematical Sciences, Faculty of Science, University of the Ryúkyus, Nishihara-cho, Okinawa 903-0213, Japan.

E-mail address: sudo@math.u-ryukyu.ac.jp

Received March 13, 2001 Revised June 29, 2001

[^0]: 2000 Mathematics Subject Classification: Primary 46L05, 46L80, 22D25, 19 K 56.
 Key words and phrases: Group C^{*}-algebras, Semi-direct products, Lie groups, Stable rank Research partially supported by Japan Society for the Promotion of Science

