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On Certain Rational Cuboid Problems
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0 Introduction

In this paper we study a certain kind of generalization of the congruent number problem. Namely,
we mainly discuss the rational solutions of the equation (0.5) stated below, and we show how to
generate all the solutions. The complete set of the solutions is given via the congruent number
problem (see Theorem 1.2). We shall also discuss the similar equation (0.4).

The congruent number problem asks to find a criterion for the existence of a rectangle with
rational sides and a rational diagonal having a given even integral area (saying $2N$). If there
exists such a rectangle, we say $N$ is a congruent number.

By putting $x,$ $y$ and $z$ to be the sides and the diagonal, respectively, we can formulate this
problem to find an non-trivial rational solution (that is $xyz\neq 0$ ) for the system of equations:

$\left\{\begin{array}{l}x^{2}+y^{2}=z^{2}\\xy=2N\end{array}\right.$ (0.1)

This is a famous problem origined in the ancient Arabic time. We can reformulate the problem
by a slight modification of variables. By putting $x=1-t^{2},$ $y=2t,$ $z=1+t^{2}$ with $t\in Q(0.1)$

is deformed to a single equation

$z^{2}t(1-t^{2})=N(1+t^{2})^{2}$ .
So we obtain an eUiptic curve

$V^{2}=U^{3}-N^{2}U$ (0.2)

by putting $U=-Nt,$ $V=N^{2}(1+t^{2})/z$ . By this transformation we obtain a bijective correspon-
dence between the nontrivial rational solutions of (0.1) and those of (0.2) (that means $V\neq 0$).
In 1983 Tunnell has discovered a nice criterion for the congruent number (see Tunnel [T]). So
we study the analogous problem for a cuboid instead of a rectangle. Let us consider a cuboid $K$

with the sides $x,$ $y$ and $z$ . We say $K$ to be a rational cuboid if $x,$ $y$ and $z$ are rational numbers.
We suppose $K$ is situated in the $(x, y, z)$-space with the sides lying on the corresponding axis.
We denote the diagonaJs on the $(x, y)$-surface, $(y, z)$ -surface and $(z,x)$-surface by $p,$ $q$ and $r$ ,
respectively, and we denote the inner diagonal by $w$ .

Now we can set our problems:
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Problem $0$ (Perfect rational cuboid problem):

Does there exist a rational cuboid $K$ with rational diagonals $p,$ $q,$ $r$ and $w$ ?

Problem 1:

Let $N$ be a positive integer. Find a criterion that $N$ to be a volume of a rational cuboid with
rational diagonals $p,$ $q$ and $r$ .

Problem 2:

Let $N$ be a positive integer. Find a criterion that $N$ to be a volume of a rational cuboid with
rational diagonals $p,$ $q$ and $w$ .

By using above notation we can formulate the Problem $0$ as finding a nontrivial (that means
$xyz\neq 0)$ rational solution of the system of equations

$\left\{\begin{array}{l}x^{2}+y^{2}=p^{2}\\y^{2}+z^{2}=q^{2}\\z^{2}+x^{2}=r^{2}\\x^{2}+y^{2}+z^{2}=w^{2}\end{array}\right.$ (0.3)

It is not found any example of perfect rational cuboid still now, and we do not make the argument
on (0.3) in this paper. If we neglect the condition for $N$ , we get the following formulations of
Problem 1 and Problem 2, respectively:

$\left\{\begin{array}{l}x^{2}+y^{2}=p^{2}\\y^{2}+z^{2}=q^{2}\\z^{2}+x^{2}=r^{2}\end{array}\right.$ (0.4)

and

$\left\{\begin{array}{l}x^{2}+y^{2}=p^{2}\\y^{2}+z^{2}=q^{2}\\x^{2}+y^{2}+z^{2}=w^{2}\end{array}\right.$ (0.5)

0.1 Preliminaries
To proceed further considerations we need some classical transformatioms.

Lemma 0.1 Let us consider the following elliptic curves $F(M, N)$ and $C(M, N)$ determined by
complex parameters $M,$ $N$ with $MN(M-N)\neq 0$ :

$F(M, N)=$

$\{[x_{0},x_{1},x_{2},x_{3}]\in P^{3}(C) : x_{0}^{2}+Mx_{1}^{2}=x_{2}^{2},x_{0}^{2}+Nx_{1}^{2}=x_{3}^{2}\}$ (0.6)

$C(M, N)=\{[x, y, z]\in P^{2}(C):zy^{2}=x(x+Mz)(x+Nz)\}$ . (0.7)

–76 –



Then $F(M, N)$ is isomorphic to $C(M, N)$ by the following map $\psi$ : $F(M, N)\rightarrow C(M, N)$

$\left\{\begin{array}{l}x=x_{3}-x_{2}\\y=(N-M)x_{1}\\z=\frac{1}{MN}\{(M-N)x_{0}+Nx_{2}-Mx_{3}\}\end{array}\right.$ (0.8)

The inverse map of $\psi$ is given by $\varphi$ : $C(M, N)\rightarrow F(M, N)$

$\left\{\begin{array}{l}x_{0}=(x+Mz)\{y^{2}-M(x+Nz)^{2}\}\\x_{1}=2(x+Nz)(x+Mz)y\\x_{2}=(x+Mz)\{y^{2}+M(x+Nz)^{2}\}\\x_{3}=(x+Nz)\{y^{2}+N(x+Mz)^{2}\}\end{array}\right.$ (0.9)

These isomorphisms become to be Q-isomorphisms provided $M,$ $N\in Q$ .

Lemma 0.2 Let us consider an elliptic curve

$y^{2}=x^{4}+cx^{2}+dx+e$

with rational coefficients $c,$
$d$ and $e$ . By the birational transformation

$x=\frac{v-27d}{6u+36c}$ , $y=u/18-c/6-x^{2}$ (0.10)

we obtain a Q-isomorphic Weierstrass equation

$v^{2}=u^{3}-27(c^{2}+12e)u+27$ ($2c^{3}+27d^{2}-72$ce).

The inverse transformation is given by

$u=3(6x^{2}+6y+c),$ $v=27(4x^{3}+4xy+2cx+d)$ . (0.11)

Lemma 0.3 Suppose $a,$ $b\in Q$ . Then two elliptic curves

$E_{1}$ : $y^{2}=x^{3}+ax^{2}+bx$

and
$E_{2}$ : $Y^{2}=X^{3}-2aX^{2}+(a^{2}-4b)X$

are isogenous with the following isogeny maps (of degree 2):

$\psi:E_{2}\varphi:E_{1}(x,y)$ $\leftrightarrow\rightarrow\rightarrow$ $E_{1}E_{2}(\frac{y^{2}}{x^{2}}$ $\frac{y(b-x^{2})}{x^{2}})$ ,

(X, Y) $\vdash\rightarrow$ $(\frac{Y^{2}}{4X^{2}}$ $\frac{Y(a^{2}-4b-X^{2})}{8X^{2}})$ .
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1 The rational cuboid problem of Euler type

In this section we discuss the nontrivial rational solution of

$\left\{\begin{array}{l}x^{2}+y^{2}=p^{2}\\y^{2}+z^{2}=q^{2}\\x^{2}+y^{2}+z^{2}=w^{2}\end{array}\right.$

By putting $X=x/p,$ $Y=y/p,$ $Z=z/p,$ $Q=q/p$ and $W=w/p$ , this system of equations is
transformed to

$\left\{\begin{array}{l}X^{2}+Y^{2}=1\\Y^{2}+Z^{2}=Q^{2}\\1+Z^{2}=W^{2}\end{array}\right.$ (1.1)

The nontrivial rational solutions of the first equation in (1.1) are parametrized by

$\left\{X=Y=\frac{\frac{l-t^{2}}{1\ovalbox{\tt\small REJECT}_{t}^{t^{2}}}}{1+t^{2}}\right.$

with $t\in Q-\{0, \pm 1\}$ . By the same way the solutions of the third equation are given by

$\left\{\begin{array}{l}Z=\frac{2s}{1-s^{2}}\\W=\frac{1+s^{2}}{1-s^{2}}\end{array}\right.$

with $s\in Q-\{0, \pm 1\}$ . So we obtain an equation

$Q^{2}=\frac{4t^{2}}{(1+t^{2})^{2}}+\frac{4s^{2}}{(1-s^{2})^{2}}$

that is birationally equivalent with (1.1) over Q.
By putting

$u=(1+t^{2})(1-s^{2})Q/2$

we obtain the equation
$u^{2}=(s^{2}t^{2}+1)(s^{2}+t^{2})$ . (1.2)

Now our problem is rearranged to find the rational solutions of (1.2).
For this purpose we construct the nonsingular complex surface $S_{1}$ determined by (1.2) as

the following.
First we note that (1.2) determines a double covering complex variety $V_{1}$ over the product

of s-sphere and t-sphere. It contains twelve rational double points of type $A_{1}$ at

$(s,t)=(0,0),$ $(0, \infty),$ $(\infty, 0),$ $(\infty, \infty)$ ,
$(1, \pm i)$ , $(-1, \pm i),$ $(i, \pm 1),$ $(-1, \pm 1)$ .

After the resolution of these singularities we obtain the required surface $S_{1}$ . We denote the
exceptional curve obtained by the resolution at the point $(a, b)$ by $\Theta_{a,b}$ (see the conceptional
Figure 1).
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For each value $s=a$ of the set $\{0, \pm 1, \pm i, \infty\}$ we obtain two rational curves over the complex
line $\{s=a\}$ in $(s, t)$ -space. We denote them $D_{a}^{\pm}$ with the index of s-coordinate. By the same
way we determine $C_{b}^{\pm}$ for the complex line $\{t=b\}$ with $b\in\{0, \pm 1, \pm i, \infty\}$ .

Remark 1.1 We note that all the trivial complex solutions of (1.1) are contained in the union
$\Lambda_{1}$ of the rational curves

$C_{0}^{\pm},$ $C_{\infty}^{\pm},$ $C_{1}^{\pm},$ $C_{-1}^{\pm},$ $D_{0}^{\pm},$ $D_{\infty}^{\pm},$ $D_{1}^{\pm},$ $D_{-1}^{\pm}$

via the above correspondence.

Theorem 1.1 The algebraic surface $S_{1}$ given by (1.2) is birationally equivalent over $Q$ with

$S_{2}$ : $y^{2}=z(z^{2}+4)x(x^{2}-1)$ .

The birational map is given by
$\phi$ : $S_{1}\rightarrow S_{2}$

$\left\{\begin{array}{l}x=\frac{t+u+s^{2}t}{s(t-1)^{2}}\\y=\frac{4t(t+u+s^{2}+s^{2}tu+s^{2}t^{3}+s^{4}t^{2})}{s(t-1)^{3}}\\z=2st\end{array}\right.$ (1.3)

and
$\psi$ : $S_{2}\rightarrow S_{1}$

$\left\{\begin{array}{l}s=\frac{z(-4x+y-2z)}{2(y+2z+xz^{2})}\\t=\frac{y+2z+xz^{2}}{-4x+y-2z}\\u=(4y^{2}-32x^{3}z+16yz+16z^{2}-48x^{2}z^{2}+y^{2}z^{2}-16x^{3}z^{3}-4yz^{3}+4z^{4}-12x^{2}z^{4}-2x^{3}z^{5})\\/(4(4x-y+2z)(y+2z+xz^{2}))\end{array}\right.$

(1.4)

Remark 1.2 We obtain the following seven curves on $S_{2}$ corresponding to $\Lambda_{1}$ on $S_{1}$ mentioned
above :

$\{x=y=0\},$ $\{z=y=0\}$

$\{x=\pm 1, y=0\}$ ,
$\{x=(z^{2}+4)/4z, y=(z^{2}-4)(z^{2}+4)/8z\}$

$\{x=(z+2)^{2}/(z-2), y=4z(z+2)(z^{2}+4)/(z-2)^{3}\}$

$\{x=-(z-2)^{2}/(z+2)^{2} , y=4z(z-2)(z^{2}+4)/(z+2)^{3}\}$ .

We denote by $\Lambda_{2}$ the union of these curves on $S_{2}$ .
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Proof: We get the above transformation as the composition of the following transforma-
tions:

First transform:
$T_{1}(s, t, u)=(v_{1}, t_{1}, u_{1})=$ ( $st,$ $t$ , tu).

By $T_{1}$ we obtain the transformed equation

$u_{1}^{2}=(v_{1}^{2}+1)(t_{1}^{4}+v_{1}^{2})$ . (1.5)

We can regard (1.5) as an elliptic fibered surface over $v_{1}$ -space. That has four singular fibers
over $v_{1}=0,$ $\pm i,$ $\infty$ of type $I_{0}^{*}$ using the notation of Kodaira. Next we proceed

$T_{2}(v_{1}, t_{1}, u_{1})=(v_{2}, t_{2}, u_{2})=(v_{1},1/(t_{1}-1),$ $u_{1}/(t_{1}-1)^{2})$

to get rid the section
$\sigma(v_{1})=(v_{1}, t_{1}, u_{1})=(v_{1},1, v_{1}^{2}+1)$

to the section at infinity. Then we get the equation. To get a monic form of the right hand side
we proceed

$T_{3}(v_{2}, t_{2}, u_{2})=(v_{3}, t_{3}, u_{3})=(v_{2}, (v_{2}^{2}+1)t_{2},$ $(v_{2}^{2}+1)u_{2})$ .
Then we get

$u_{3}^{2}=t_{3}^{4}+4t_{3}^{3}+6(v_{3}^{2}+1)t_{3}^{2}+4(v_{3}^{2}+1)t_{3}+(v_{3}^{2}+1)^{3}$ (1.6)

To cancel the term of $t_{3}^{3}$ we proceed

$T_{4}(v_{3}, t_{3}, u_{3})=(v_{4}, t_{4}, u_{4})=(v_{3}, t_{3}+1, u_{3})$ .

Then we get
$u_{4}^{2}=t_{4}^{4}+6v_{4}^{2}t_{4}^{2}+4v_{4}^{2}(v_{4}^{2}-1)t_{4}+v_{4}^{2}(v_{4}^{4}-v_{4}^{2}+1)$ . (1.7)

Now we put

$\left\{\begin{array}{l}c(v_{4})=6v_{4}^{2}\\d(v_{4})=4v_{4}^{2}(v_{4}^{2}-1)\\e(v_{4})=v_{4}^{2}(v_{4}^{4}-v_{4}^{2}+1)\end{array}\right.$

According to Lemma 0.2 we can shift the quartic polynomial of $t_{4}$ in (1.6) to a cubic polynomial.
In fact, by the transform

$\left\{\begin{array}{l}x_{1}=18(u_{4}+t_{4}^{2}+v_{4}^{2})\\y_{1}=108(t_{4}^{3}+t_{4}u_{4}-v_{4}^{2}+3t_{4}v_{4}^{2}+v_{4}^{4})\\z_{1}=v_{4}\end{array}\right.$

we get
$y_{1}^{2}=x_{1}^{3}-3^{4}(2z_{1}(z_{1}^{2}+1))^{2}x_{1}$ . (1.8)

So we perform the final transform

$\left\{\begin{array}{l}y_{2}x_{2}=\frac{\frac{x_{1}}{18z_{1}t_{1}^{z_{1}^{2}+1)}}}{27z_{1}(z_{1}^{2}+1)}=\\z_{2}=2z_{1}\end{array}\right.$

–80 –



Then we obtain the required form
$y_{2}^{2}=z_{2}(z_{2}^{2}+4)x_{2}(x_{2}^{2}-1)$ . (1.9)

By the composition of the above transformations we obtain the transformation $\phi$ .
Q.E.D.

By this theorem we can obtain all the nontrivial rational solution of (1.1) from the set of
ratioal points $S_{2}(Q)$ on the vriety $S_{2}$ . So we discuss how to generates $S_{2}(Q)$ .

Let us cosider the elliptic curves
$E_{1}$ : $w_{1}^{2}$ $=$ $x(x^{2}-1)$

$E_{2}$ : $w_{2}^{2}$ $=$ $z(z^{2}+4)$

The product type abelian variety $E_{1}\times E_{2}$ admits an involution

$\iota$ : $((x, w_{1}),$ $(z, w_{2}))\leftrightarrow((-x, -w_{1}),$ $(-z, -w_{2}))$ .

The surface $S_{2}$ is identified as the Kummer surface $ E_{1}\times E_{2}/\iota$ .

Remark 1.3 We note that $E_{1}$ and $E_{2}$ are isogenous, and the isogeny is given as follows:
$f1$ : $E_{1}$ $\rightarrow$ $E_{2}$

$(x, w_{1})$ $\leftrightarrow$ $(w_{1}^{2}/x^{2}, -w_{1}(x^{2}+1)/x^{2})$ .
The dual isogeny is given by

$f_{2}$ : $E_{2}$ $\rightarrow$ $E_{1}$

$(z, w_{2})$ $\leftrightarrow$ $(w_{2}^{2}/4z^{2}, w_{2}(4-z^{2})/(8z^{2}))$ .

This is the consequence of Lemmma1.3

According to this isogeny our problem is reduced to the rational points on the rational points
on the Kummer surface of product type

Kum1 : $\eta^{2}=\xi(\xi^{2}-1)\zeta(\zeta^{2}-1)$ (1.10)

that can be considered as $ E_{1}\times E_{1}/\iota$ , where $\iota$ indicates the involution $P\leftrightarrow-P$ on the abelian
variety. In fact the following transformations give two to one correspondences between $S_{2}$ and
$Kum_{1}$ :

$\Phi$ : $\left\{\begin{array}{l}\xi=x\\\eta=\frac{y(4-z^{2})}{8z^{2}}\\\zeta=\frac{y^{2}}{4x(x^{2}-1)z^{2}}\end{array}\right.$

and

$\Psi$ : $\left\{\begin{array}{l}x=\xi\\ yz==\frac{-\frac{\eta(1+\zeta^{2})}{\eta\sigma^{2}}}{\zeta^{2}\xi(\xi^{2}-1)}\end{array}\right.$
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Remark 1.4 Now we set the following curves on Kum $\iota$ :

$\Gamma_{1}^{\pm}$ $=$ $\{\xi=\pm 1, \eta=0\}$ ,
$r_{2}^{\pm}$ $=$ $\{\xi-\zeta=0, \eta=\pm\xi(\xi^{2}-1)\}$ ,
$\Gamma_{3}^{\pm}$ $=$ $\{\eta=\pm 2\xi\zeta\}$ ,

and we set
$\Lambda_{3}=\Gamma_{1}^{+}\cup\Gamma_{1}^{-}\cup\Gamma_{2}^{+}\cup\Gamma_{2}^{-}\cup\Gamma_{3}^{+}\cup\Gamma_{3}^{-}$

The rational points on $\Lambda_{3}$ correspond to the tnvial solution of $(1,Z)$ .

It is well known that $E_{1}(Q)=\{(0,0), (\pm 1,0), O=(\infty, \infty)\}$ . So the abelian variety dose
not induce any nontrivial rational point on $Kum_{1}$ .

Now we suppose a rational point $(\xi, \zeta, \eta)$ on $Kum_{1}$ . Let us make the prime decomposition
of $\xi(\xi^{2}-1)$ as

$\xi^{3}-\xi=p_{1}p_{2}\cdots p_{k}\times s^{2}$ ,

where $s$ indicates a certain number in Q. To get a square number $\eta^{2}$ it must hold also

$\zeta^{3}-\zeta=p_{1}p_{2}\cdots p_{k}\times u^{2}$ ,

with a certain number $u$ in Q. By putting $N=p_{1}\cdots p_{k},$ $\xi=X/N,$ $s=Y/N^{2}$ in the former
equality we obtain

$Y^{2}=X^{3}-N^{2}$X. (1.11)

By putting $\zeta=Z/N,$ $u=W/N^{2}$ in the latter we have

$W^{2}=Z^{3}-N^{2}Z$ (1.12)

by the same way. As we stated in Section 1 (0.2) the above equations (1.11) and (1.12) take the
form of the classical congruent number equation. As the consequence of the above investigation
we have the following:

Proposition 1.1 Let $N$ be a congruent number, and let (X, Y), $(Z, W)$ be nontrivial solutions
of the congruent number equation (1.11) and (1.12), respectively. By putting

$(\xi, \zeta, \eta)=(X/N, Z/N, YW/N^{3})$ ,

we obtain a rational point $(\xi, \zeta,\eta)$ of Kum1 $\cdot$ Conversely, every nontrivial rational point of
Kum1 is obtained in this way.

As the consequence of Theorem 1.1 and the above arguments we have:

Theorem 1.2 There is a 2: 1 correspondence $\psi\circ\Psi$ from the set of rational points on $Kum_{1}$ to
the set of nontrivial solutions of 1.2 outside the divisor $\Lambda_{3}$ . The composite $\Phi\circ\phi$ gives the 2: 1
correspondence of the converse direction.

Now we know that the rational solution of our original problem 0.5 is given via the pair of
rational points on the elliptic curve 0.2 with the same congruent number $N$ .
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2 The Problem SRC and its variation
Concerning the equation (0.4) we can proceed the similar consideration, and we can get an
analogous result. By putting $X=x/p,$ $Y=y/p,$ $Z=z/p,$ $Q=q/p$ and $R=r/p$ we can
deduce the following system of equations from (0.4):

$\left\{\begin{array}{l}X^{2}+Y^{2}=1\\Y^{2}+Z^{2}=Q^{2}\\Z^{2}+X^{2}=R^{2}\end{array}\right.$ (2.1)

Theorem 2.1 The variety defined by (2.1) is birationally equivalent over $Q(\sqrt{2})$ with

$S$ : $y^{2}=x(x^{2}-4x+2)z(z^{2}+8z+8)$ . (2.2)

Remark 2.1 The above surface $S$ is a Kummer surface induced from the product type ablian
variety $T_{1}\times T_{2}$ with

$T_{1}$ : $y_{1}^{2}$ $=$ $x_{1}(x_{1}^{2}-4x_{1}+2)$ ,
$T_{2}$ : $y_{2}^{2}$ $=$ $x_{2}(x_{2}^{2}+8x_{2}+8)$ .

Moreover $T_{1}$ and $T_{2}$ are isogenous over $Q$ with the isogeny stated in Lemma 0.3.

Remark 2.2 Two elliptic curves $T_{1}$ and $T_{2}$ are isomorphic over the real quadratic field $Q(\sqrt{2})$ ,
and they are isomorphic with the torus $C/(Z+\sqrt{-2}Z)$ as a complex curve. So they are examined
to be modular curves and with Mordell-Weil rank $0$ (see $Cremona[CJ$). Hence by the similar
argument as in Section 1 we have two to one correspondence defined over $Q(\sqrt{2})$ between the
set of non-tnvial $Q(\sqrt{2})$ -rational points on the surface (2.2) and that of the self product Kummer
surface

$T^{2}=U(U^{2}-2U+\frac{1}{2})V(V^{2}-2V+\frac{1}{2})$ (2.3)

outside a certain divisor.

Here we describe the exact process to get the equivalence in Theorem 2.1.
-First step-
By putting

$\left\{X=Y=\frac{\frac{1-u^{2}}{1r_{u}^{u^{2}}}}{1+u^{2}}\right.$

we can reduce the variety (2.1) to the equation

$\left\{\begin{array}{l}x_{0}^{2}+\frac{4u^{2}}{(1+u^{2})^{2}}\tilde{x}_{1}^{2}=x_{2}^{2}\\x_{0}^{2}+\frac{(1-u^{2})^{2}}{(1+u^{2})^{2}}\tilde{x}_{1}^{2}=x_{3}^{2}\end{array}\right.$ (2.4)
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By considering $\tilde{x}_{1}/(1+u^{2})$ a new variable $x_{1}$ we get a parametrized family of space elliptic
curves $F(4u^{2}, (1-u^{2})^{2})$ in Lemma 0.1. Hence we can transform it to the family of plane elliptic
curves of the following form:

$\Sigma$ : $t^{2}=s(s^{2}+4u^{2})(s+(1-u^{2})^{2})$ .

It determines an elliptic surface over u-sphere. It has the singular fibers of type $I_{4}$ over $u=$
$0,$ $\pm 1,$ $\infty$ and those of type $I_{2}$ over $u=\pm\sqrt{2}+1,$ $\pm\sqrt{2}-1$ .

-Second step-
We define an intermediate surface

$K_{1}$ : $w_{1}^{2}=(2x_{1}^{2}-4x_{1}+1)(u_{1}^{4}-4x_{1}u_{1}^{2}+2x_{1}^{2})$ . (2.5)

That is obtained by looking for the another elliptic fibration for $\Sigma$ . We can regard $K_{1}$ as an
elliptic surface over $x_{1}$ -sphere with singular fibers of type $I_{0}^{*}$ over $x_{1}=0,$ $\infty,$ $1\pm 1/\sqrt{2}$ . This
configuration shows that it is a product type Kummer surface. In fact the transformation

$\left\{\begin{array}{l}x_{1}=\frac{u^{2}s+2(\sqrt{2}+1)u^{2}(u^{2}-1)}{\sqrt{2}(\sqrt{2}+1)s+2\sqrt{2}u^{2}(u^{2}-1)}\\w_{1}=\frac{u^{2}(u^{2}-1)(u^{2}-3-2\sqrt{2})t}{2\{(\sqrt{2}+1)s+2u^{4}-2u^{2}\}^{2}}\\u_{1}=u\end{array}\right.$ (2.6)

gives the equivalence $hom\Sigma$ to $K_{1}$ .
-Third step-
The elliptic surface $K_{1}$ has a global section $u_{1}=1,$ $w_{1}=2x_{1}^{2}-4x_{1}+1$ defined over Q. So we

get rid it to the section at infinity. After that we make the routine work of the transformation
in Lemma 0.2. The above process is realized by the transformation

$\left\{\begin{array}{l}x=x_{1}\\y=8(u_{1}^{3}+u_{1}w_{1}-2u_{1}x_{1}-2u_{1}^{2}x_{1}-4u_{1}^{3}x_{1}-2w_{1}x_{1}-2u_{1}w_{1}x_{1}+2x_{1}^{2}+\\8u_{1}x_{1}^{2}+8u_{1}^{2}x_{1}^{2}+2u_{1}^{3}x_{1}^{2}+2w_{1}x_{1}^{2}-8x_{1}^{3}-4u_{1}x_{1}^{3}-4u_{1}^{2}x_{1}^{3}+4x_{1}^{4})/(x_{1}(u_{1}-1)^{3})\\z=\frac{2(u_{1}^{2}+w_{1}-2x_{1}-2u_{1}^{2}x_{1}+2x_{1}^{2})}{x_{1}(u_{1}-1)^{2}}\end{array}\right.$

(2.7)
gives the equivalence between $K_{1}$ and $S$ .

(The variation of the Problem SRC) As we have studied we can not get an equivalence
defined over $Q$ from (2.1) to a product type Kummer surface. So we perform a slight modification
of the problem to get a nice description of the rational points. Let us consider the variety

$\left\{\begin{array}{l}X^{2}+Y^{2}=1\\2Y^{2}+Z^{2}=Q^{2}\\Z^{2}+2X^{2}=R^{2}\end{array}\right.$ (2.8)

Proposition 2.1 We get an equivalence between (2.8) and the surface (2.2) defined over Q.
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We can obtain this equivalence by the similar method as in Theorem 2.1.
-First step-
By putting

$\left\{X=Y=\frac{\frac{l-u^{2}}{1\ovalbox{\tt\small REJECT}_{u}^{u^{2}}}}{1+u^{2}}\right.$

we can reduce the variety (2.8) to the equation

$\left\{\begin{array}{l}x_{0}^{2}+2\cdot\frac{4u^{2}}{(1+u^{2})^{2}}\tilde{x}_{1}^{2}=x_{2}^{2}\\x_{0}^{2}+2\cdot\frac{(1-u^{2})^{2}}{(1+u^{2})^{2}}\tilde{x}_{1}^{2}=x_{3}^{2}\end{array}\right.$

By considering $\tilde{x}_{1}/(1+u^{2})$ to be a new variable $x_{1}$ , we get a parametrized family of space elliptic
curves $F(8u^{2},2(1-u^{2})^{2})$ in Lemma 0.1. Hence we can transform it to the family of plane elliptic
curves of the following form:

$\Sigma$ : $t^{2}=s(s+8u^{2})(s+2(1-u^{2})^{2})$ .
It determines an elliptic surface over u-sphere.

-Second step-
We consider again the intermediate surface

$K_{1}$ : $w_{1}^{2}=(2x_{1}^{2}-4x_{1}+1)(u_{1}^{4}-4x_{1}u_{1}^{2}+2x_{1}^{2})$ .
We can find the birational Q-equivalence between $K_{1}$ and $\Sigma$ , as the following:

$\left\{\begin{array}{l}x_{1}=\frac{2s+t+2su^{2}}{4(-2+s+4u^{2}-2u^{4})}\\w_{1}=(-8s-4s^{2}+2s^{3}-8t-t^{2}-32u^{2}+16s^{2}u^{2}+8tu^{2}+128u^{4}+16su^{4}-\\4s^{2}u^{4}+8tu^{4}-192u^{6}-8tu^{6}+128u^{8}-8su^{8}-32u^{10})/(8(-2+s+4u^{2}-2u^{4})^{2})\\u_{1}=u\end{array}\right.$

and

$\left\{\begin{array}{l}s=4(u_{1}^{2}+w_{1}-2x_{1}-2u_{1}^{2}x_{1}+2x_{1}^{2})\\t=8(-u_{1}^{2}-u_{1}^{4}-w_{1}-u_{1}^{2}w_{1}+x_{1}+8u_{1}^{2}x_{1}+u_{1}^{4}x_{1}+2w_{1}x_{1}-6x_{1}^{2}-6u_{1}^{2}x_{1}^{2}+4x_{1}^{3})\\u=u_{1}\end{array}\right.$

-Third step- This is the exactly same as the third step in Theorem 2.1.

Finally we can state certain systems of rational solutions of $(1,4)$ .
Proposition 2.2

$\left\{\begin{array}{l}x=-2(k^{2}-4k+5)^{2}(k^{2}-5k+5)(k^{2}-5)\\y=-4k(k-2)(2k-5)(k^{2}-4k+5)(k^{2}-5k+5)\\z=k(k-1)(k-2)(k-3)(k-5)(2k-5)(3k-5)\\p=-2(k^{2}-4k+5)(k^{2}-5k+5)(k^{4}-4k^{3}+8k^{2}-20k+25)\\q=k(k-2)(2k-5)(-5k^{4}+48k^{3}-166k^{2}+240k-125)\\r=2k^{8}-26k^{7}+14k^{6}-446k^{5}+1066k^{4}-2230k^{3}+3525k^{2}-3250k+1250\end{array}\right.$ (2.9)
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$\left\{\begin{array}{l}x=-8k(2k^{2}+1)(48k^{8}-16k^{6}+4k^{2}-3)\\y=(4k^{4}-12k^{2}+1)(48k^{8}-16k^{6}+4k^{2}-3)\\z=4(64k^{12}-80k^{10}+80k^{8}-120k^{6}+20k^{4}-5k^{2}+1)\\p=-(4k^{4}+20k^{2}+1)(48k^{8}-16k^{6}+4k^{2}-3)\\q=320k^{12}-640k^{10}+560k^{8}-64k^{6}+140k^{4}-40k^{2}+5\\r=4(64k^{12}+208k^{10}-112k^{8}+56k^{6}-28k^{4}+13k^{2}+1)\end{array}\right.$ (2.10)

$\left\{\begin{array}{l}x=2b(4a^{4}+3a^{2}+1)(4a^{4}+a^{2}-1)\\y=4ab(2a^{2}+1)(4a^{4}+a^{2}-1)\\z=(2a^{2}+1)(16a^{8}+8a^{6}-15a^{4}-10a^{2}+1)\\p=2b(4a^{4}+5a^{2}+1)(4a^{4}+a^{2}-1)\\q=-(2a^{2}+1)(16a^{8}+8a^{6}+a^{4}+6a^{2}+1)\\r=32a^{10}+64a^{8}+26a^{6}-a^{4}+4a^{2}+3\\a,bb^{2}=2(a^{2}+1)\end{array}\right.$ (2.11)

$\left\{\begin{array}{l}x=4a(2b^{2}-b+1)(2b^{2}+b+1)(4b^{4}+b^{2}-1)\\y=-8ab(2b^{2}+1)(4b^{4}+b^{2}-1)\\z=(2b^{2}+1)(4b^{4}+b^{2}+4ab-1)(4b^{4}+b^{2}-4ab-1)\\p=4a(b^{2}+1)(4b^{2}+1)(4b^{4}+b^{2}-1)\\q=-(2b^{2}+1)(16b^{8}+8b^{6}-7b^{4}+16a^{2}b^{2}-2b^{2}+1)\\r=64a^{2}b^{8}+16b^{8}+32a^{2}b^{6}+24b^{6}-28a^{2}b^{4}+17b^{4}-8a^{2}b^{2}+6b^{2}+4a^{2}+1\\a,b2a^{2}=b^{2}+1\end{array}\right.$ (2.12)

Proof. We obtain 4 rational curves on $\Sigma$ as the lifting of the following curves on $s$ , u-plane
corresponding to each parametrization (2.9), (2.10), (2.11) and (2.12), respectively:

$s=u^{2}-1$

$s=4u^{2}(2u^{2}-1)$

$s^{2}+4u^{2}s+16u^{6}=0$

$s^{2}+12u^{2}s+32u^{4}+32u^{6}=0$

Q.E.D.
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