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A NOTE ON UNIQUENESS IN AN INVERSE PROBLEM
FOR A SEMILINEAR PARABOLIC EQUATION

SHIN-ICHI NAKAMURA

ABSTRACT. Consider the mixed problem for a semilinear parabolic equation $u_{t}-$

$\Delta u+a(u)=0$ . Isakov proved the uniqueness result of the function $a$ by prescribing
any initial and lateral Dirichlet data and measuring lateral Neumann data and final
data under the condition $a(O)=0$ . In this note we shall $8tudy$ the case $a(O)\neq 0$ .

1. Introduction. Let $\Omega$ be a bounded domain in $R$“ $(n\geq 2)$ with a $C^{2}$-boundary
$\partial\Omega$ and set $QT\equiv\Omega x(0, T)$ in $R^{n+1}$ . Let $H$ be the subspace of function $g$ on
$\partial Q\tau\backslash \{t=T\}$ which belongs to $C^{2,1}(\partial\Omega x[0,T])\cap C^{1}(\overline{\Omega}x\{0\})$ and which have
$C^{\lambda,\lambda/2}(Q_{T})$ extensions. We now $\omega nsider$ the mixed problem:

(1.1) $u_{\ell}-\Delta u+a(u)=0$ in $Q_{T}$ ,
(1.2) $u=g\in H$ on $\partial Q_{T}\backslash \{t=T\}$ ,

where $a(s)\in C^{2}(R)$ satisfies the conditions:

(1.3a) $a(s)$ and $a..(s)$ are bounded on $R$ ,

(1.3b) $0\leq a$. $\leq M$ ,

where $M$ is a positive constant.
Under the condition (1.3b), there is a unique solution $u\in H^{2,1}(Q\tau)\cap C(Q\tau)$ to

the problem $(1.1)-(1.2)$ ($Thmrem6.1$ in [3, p. 452] and [2]). (The norms and the
properties of the function spaces can be found in [2] or [3].) So we may define

$h=u$ on $\Omega x\{T\},$ $h=\partial_{\nu}u$ on $\partial\Omega x(0,T)$ ,

here $\nu$ denotes the unit exterior normal to $\partial\Omega$ . We are interested in uniqueness
results of the function $a$ from the map:

$\Lambda(a)$ : $g\leftrightarrow h$ .

Let $\Lambda_{j}=\Lambda(a^{j})(j=1,2)$ . The following theorem can be derived from Theorem 1
in [2].
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Theorem I. Assume that, for $a=a^{j}(j=1,2)$ ,

(1.4) $a^{j}(0)=0$ .
If $\Lambda_{1}=\Lambda_{2}$ on $H$ , then $a^{1}=a^{2}$ .

In this note we shall study the assumption (1.4). Define $u^{j}$ as a solution to the
problem $(1.1)-(1.2)$ with $a=a^{j}(j=1,2)$ . The following lemma will be proved in
section 2 by modyfying the methods for a semilinear eniptic equation in [4]:

Lemma. If $\Lambda_{1}=\Lambda_{2}$ on $H$ , then
(1.5) $a^{1}(0)=a^{2}(0)$ .

Combining this lemma with the above theorem I, we can remove the assumption
(1.4) to derive the following theorem:
Theorem. If $\Lambda_{1}=\Lambda_{2}$ on $H$ , then $a^{1}=a^{2}$ .
2. Proof of Lemma. Denote by $Q_{\tau}\equiv\Omega x(0, \tau)$ for any $\tau(0<\tau\leq T)$ . It is
easily seen that for any $\phi\in H^{2,1}(Q_{\tau})$ we have

$0=\int_{Q_{\tau}}(u_{t}-\Delta u+a(u))\phi dxdt$

$=\int_{\Omega}[u\phi]_{0}^{\tau}dx-\int_{\partial\Omega x(0,\tau)}(\phi\partial_{\nu}u-u\partial_{\nu}\phi)dSdt-\int_{Q_{\tau}}u(\phi_{t}+\Delta\phi)$ dxdt

$+\int_{Q_{\tau}}a(u)\phi dxdt$ .

This implies
(2.1)

$\int_{Q_{\tau}}a^{j}(u^{j})\phi dxdt=-\int_{\Omega}[u^{j}\phi]_{0}^{\tau}dx+\int_{\partial\Omega x(0,\tau)}(\phi\partial_{\nu}u^{j}-u^{j}\partial_{\nu}\phi)$ dSdt

$+\int_{Q_{\tau}}u^{j}(\phi_{t}+\Delta\phi)dxdt$ ,

where $u^{j}$ is a solution to the problem $(1.1)-(1.2)$ with $a=a^{j}(j=1,2)$ . By using
(2.1), if $\Lambda_{1}=\Lambda_{2}$ and $\phi(x,\tau)=0$ then we obtain

$\int_{Q_{\tau}}(a^{1}(u^{1})-a^{2}(u^{1}))\phi dxdt$

$=\int_{Q_{\tau}}(a^{1}(u^{1})-a^{2}(u^{2}))\phi dxdt+\int_{Q_{\tau}}(a^{2}(u^{2})-a^{2}(u^{1}))\phi dxdt$

$=-\int_{Q_{\tau}}[(u^{1}-u^{2})\phi]_{0}^{\tau}dx+\int_{\partial\Omega x(0,\tau)}(\partial_{\nu}(u^{1}-u^{2})\phi-(u^{1}-u^{2})\partial_{\nu}\phi)$ dSdt
(2.2)

$+\int_{Q_{\tau}}(u^{1}-u^{2})(\phi_{t}+\Delta\phi)dxdt+\int_{Q_{\tau}}(a^{2}(u^{2})-a^{2}(u^{1}))\phi dxdt$

$=\int_{Q_{\tau}}\{(u^{1}-u^{2})(\phi_{\ell}+\Delta\phi)-(a^{2}(u^{1})-a^{2}(u^{2}))\phi\}$ dxdt

$=\int_{Q_{\tau}}(u^{1}-u^{2})(\phi_{\ell}+\Delta\phi-p(x,t)\phi)dxdt$ ,
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here we have set
$ p(x, t)=\int_{0}^{1}a_{l}^{2}(u^{2}+\theta(u^{1}-u^{2}))d\theta$ .

Let us consider the following mixed problem to derive (1.5) from (2.2).

(2.3) $\psi_{t}+\Delta\psi-p(x, t)\psi=0$ in $Q_{\tau}$ ,
(2.4) $\psi(x, \tau)=0$ on $\Omega$ ,
(2.5) $\psi(x, t)=h(x, t)$ on $\partial\Omega x(0, \tau)$ ,

where $h(x, t)\in C^{2}(\partial\Omega\times[0, \tau])$ satisfies the condition $h(x,\tau)=0$ . From the as-
sumptions (1.3a) and (1.3b), we see that $p(x,$ $t$} $\geq 0$ is Lipschitz with respect to $x$

and $t$ . Hence there exists a unique solution $\psi\in H^{2,1}(Q_{\tau})$ to the problem $(2.3)-(2.5)$

(Theorem 9.1 in [3], p.341).
Substituting $\phi=\psi$ into (2.2), we obtain

(2.6) $ I_{\tau}\equiv\int_{Q_{\tau}}(a^{1}(u^{1})-a^{2}(u^{1}))\psi$ $dxdt=0$ .

If $a^{1}(0)\neq a^{2}(0)$ , then then there exist $\epsilon_{0},$
$\epsilon_{1}>0$ such that $a^{1}(s)-a^{2}(s)>\epsilon_{0}$ or

$a^{2}(s)-a^{1}(s)>\epsilon_{0}$ for $|s|\leq\epsilon_{1}$ . We can choose $h(x, t)$ so that $\psi>0$ in $Q_{\tau}$ by the
maximum principle. From (1.3a) and Lemma 1.1 in [1], we can easily seen that

(2.7) $\max Q_{\tau}|u^{1}|\leq\max Q_{\tau}|v|+C\tau$ ,

where $C$ is a positive constant and $v$ is a solution to the problem:

$v_{t}-\Delta v=0$ in $Q_{\tau}$ ,
$v=g\in H$ on $\partial Q_{\tau}\backslash \{t=\tau\}$ .

By (2.7) and the maximum principle, we will be able to take $g$ and $\tau$ such that
$|u^{1}|\leq\epsilon_{1}$ on $Q_{\tau}$ . Hence we have $I_{\tau}>0$ . This contradicts (2.6). Thus we may
conclude that $a^{1}(O)=a^{2}(0)$ . The proof is completed.

2. Proof of theorem. In the proof of Theorem I stated in Introduction, it was
proved that $a_{s}^{1}(s)=a^{2}.(s)$ if $\Lambda_{1}=\Lambda_{2}$ on $H$ ( $(1.13)$ in [2]). By integrating this
equality from $0$ to $s$ and using $a^{1}(O)=a^{2}(0)$ , we obtain $a^{1}=a^{2}$ .
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