ESTIMATING COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS BY STRONG CONVERGENCE

SAFEER HUSSAIN KHAN

ABSTRACT. In this paper, we introduce an iteration scheme defined by

$$x_0 = x \in C, \ x_{n+1} = \alpha_n x + (1 - \alpha_n) U_n x_n,$$

$$U_n = \gamma_n T(\beta_n S + (1 - \beta_n) I) + (1 - \gamma_n) I, \ n = 0, 1, 2, \dots,$$

where S and T are nonexpansive mappings from a closed convex subset of a Banach space into itself and $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ are in [0,1]. This scheme contains all four schemes given by Mann, Ishikawa, Das-Debata and Halpern. Using this scheme we approximate common fixed points of S and T.

1. Introduction

Let C be a closed convex subset of a Banach space E. A mapping $T:C\to C$ is called nonexpansive if $||Tx-Ty||\leq ||x-y||$ for all $x,y\in C$. A number of iteration schemes have been introduced to approximate the fixed points of nonexpansive mappings. Mann [6] introduced the following iteration scheme:

(1)
$$x_1 \in C, \ x_{n+1} = \alpha_n T x_n + (1 - \alpha_n) x_n,$$

for all n = 1, 2, ..., where $\{\alpha_n\}$ is in [0, 1]. Ishikawa [4] gave the following iteration scheme:

(2)
$$x_1 \in C$$
, $x_{n+1} = \alpha_n T(\beta_n T x_n + (1 - \beta_n) x_n) + (1 - \alpha_n) x_n$,

for all n = 1, 2, ..., where $\{\alpha_n\}$ and $\{\beta_n\}$ are in [0, 1]. Das and Debata [2] defined $\{x_n\}$ using two mappings S and T as follows:

(3)
$$x_1 \in C, \ x_{n+1} = \alpha_n S(\beta_n T x_n + (1 - \beta_n) x_n) + (1 - \alpha_n) x_n$$

¹⁹⁹¹ Mathematics Subject Classification. Primary: 47H09, 49M05.

Key words and phrases. Nonexpansive mapping, Banach limit, fixed point, strong convergence, iteration scheme.

for $n \geq 1$, where $\{\alpha_n\}$ and $\{\beta_n\}$ are sequences in [0,1]. Halpern's scheme is as under.

(4)
$$x_1 \in C, \ x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n,$$

for all n = 1, 2, ..., where $\{\alpha_n\}$ is in [0, 1]. Many authors including Reich [7], Wittmann [12], Tan and Xu [11], Takahashi and Tamura [10] and Shioji and Takahashi [8] have considered the convergence of these iteration schemes for approximating the fixed points of nonexpansive mappings. We introduce a new iteration scheme defined by:

(5)
$$\begin{cases} x_0 = x \in C, \\ x_{n+1} = \alpha_n x + (1 - \alpha_n) U_n x_n, \\ U_n = \gamma_n T(\beta_n S + (1 - \beta_n) I) + (1 - \gamma_n) I, \end{cases}$$

for all n = 0, 1, 2, ..., with $\{\alpha_n\}, \{\beta_n\}$ and $\{\gamma_n\}$ in [0, 1].

This scheme contains all the four schemes given above: for $\alpha_n = 0$, our scheme reduces to Das-Debata type (3), for $\alpha_n = 0$, S = T to Ishikawa-type (2), for $\alpha_n = 0$, S = I to Mann-type (1) and finally for $\gamma_n = 1$, S = I to Halpern-type (4). We shall use this scheme to prove a strong convergence theorem to approximate the common fixed points of the two nonexpansive mappings S and T.

2. Preliminaries And Notation

We shall use the following notations in this paper.

$$\mathbb{N} = \{1, 2, 3, \ldots\},\$$

 $\mathbb{N}_+ = \{0, 1, 2, \ldots\}.$

 \mathbb{R} will stand for set of real numbers. We only consider the real vector spaces. For a Banach space E, let E' be its topological dual. The value of $y \in E'$ at $x \in E$ will be denoted by $\langle x, y \rangle$. We reserve J for the duality mapping of E into $2^{E'}$, defined as:

$$Jx = \{y \in E' : \langle x, y \rangle = ||x||^2 = ||y||^2\}, \quad x \in E.$$

Let $U = \{x \in E : ||x|| = 1\}$. The norm of E is said to be uniformly Gâteaux differentiable if for each $y \in U$, the limit

(6)
$$\lim_{t \to 0} \frac{\|x + ty\| - \|x\|}{t}$$

exists uniformly for $x \in U$. E is termed as uniformly smooth if the limit in (6) exists uniformly for $x, y \in U$. The fact that if the norm of E is uniformly Gâteaux differentiable then the duality mapping is single-valued and norm to weak* uniformly continuous on each bounded subset of E is quite well-known. See, for instance, [1].

Suppose that μ is a continuous linear functional defined on l^{∞} and $(a_0, a_1, \ldots) \in l^{\infty}$. We write $\mu_n(a_n)$ instead of $\mu((a_0, a_1, \ldots))$. If μ satisfies $\|\mu\| = \mu_n(1) = 1$ and $\mu_n(a_{n+1}) = \mu_n(a_n)$ for all $(a_0, a_1, \ldots) \in l^{\infty}$ then μ is called a Banach limit. Finally, we denote by F(T) the set of fixed points of a mapping T.

We now state the following propositions obtained in [8].

Proposition 1. Let $a \in \mathbb{R}$ and $(a_0, a_1, \ldots) \in l^{\infty}$. Then $\mu_n(a_n) \leq a$ for all Banach limits μ if and only if for each $\epsilon > 0$, there exists $p_0 \in \mathbb{N}$ such that $\frac{a_n + a_{n+1} + \cdots + a_{n+p-1}}{p} < a + \epsilon$ for all $p \geq p_0$ and $n \in \mathbb{N}_+$.

Proposition 2. Let $a \in \mathbb{R}$ and $(a_0, a_1, \ldots) \in l^{\infty}$ such that $\mu_n(a_n) \leq a$ for all Banach limits μ . If $\overline{\lim}_{n\to\infty}(a_{n+1}-a_n) \leq 0$ then $\overline{\lim}_{n\to\infty}a_n \leq a$.

3. Main Theorem

We are now in a position to give our Main Theorem. For its proof, we shall mainly follow the technique used in [8].

Main Theorem. Let E be a uniformly convex Banach space with a uniformly Gâteaux differentiable norm and C a closed, convex subset of E. Let S and T be nonexpansive mappings from C into itself such that $F(T) \cap F(S) \neq \phi$. Further, let $\{x_n\}$ defined by (5) satisfy

$$\begin{cases} 0 \le \alpha_n \le 1, \ \alpha_n \to 0, \ \sum_{n=0}^{\infty} \alpha_n = \infty, \ \sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty, \\ 0 < \beta_n < 1, \ \sum_{n=0}^{\infty} |\beta_{n+1} - \beta_n| < \infty, \\ 0 < \gamma_n \le 1, \ \sum_{n=0}^{\infty} |\gamma_{n+1} - \gamma_n| < \infty \end{cases}$$

for all $n = 0, 1, 2, \ldots$ Then $\{x_n\}$ converges strongly to a common fixed point of S and T.

If C satisfies certain additional conditions then we can prove the following theorem on lines similar to those of [9].

Theorem 1. Let E be a Banach space with a uniformly Gâteaux differentiable norm and C a weakly compact, convex subset of E. Let $x \in C$ and suppose that z_t is a unique element of C for 0 < t < 1 satisfying $z_t = tx + (1-t)Tz_t$ where T is a nonexpansive mapping of C into itself. If each nonempty T-invariant, closed, convex subset of C contains a fixed point of T then $\{z_t\}$ converges to a fixed point of T.

In order to prove our Main Theorem, we first prove the following lemmas.

Lemma 1. Under the conditions of our Main Theorem,

$$\lim_{n\to\infty}||x_{n+1}-x_n||=0.$$

Proof. Note that $F(T) \cap F(S) \subset F(U_n)$ for all $n \in \mathbb{N}$. Also note that U_n is nonexpansive. Moreover, it can be verified that $\{x_n\}$, $\{U_nx_n\}$, $\{Tx_n\}$ and $\{Sx_n\}$ are bounded. Next, set $L = \sup\{\|x\| : x \in C\}$. Then $\|x_{n+1} - x_n\| \le 2L|\alpha_n - \alpha_{n-1}| + \|U_nx_n - U_{n-1}x_n\| + (1-\alpha_n)\|x_n - x_{n-1}\|$ for all $n \in \mathbb{N}$. Let $t_n = 2L(|\alpha_n - \alpha_{n-1}| + |\beta_n - \beta_{n-1}| + |\gamma_n - \gamma_{n-1}|)$ for all $n \in \mathbb{N}$. As $\|U_nx_n - U_{n-1}x_n\| \le 2L(|\beta_n - \beta_{n-1}| + |\gamma_n - \gamma_{n-1}|)$ can be shown to be true, we have $\|x_{n+1} - x_n\| \le t_n + (1-\alpha_n)\|x_n - x_{n-1}\|$ for all $n \in \mathbb{N}$. This gives

$$||x_{n+m+1} - x_{n+m}|| \le \sum_{k=m+1}^{n+m} t_k + \left(\prod_{k=m+1}^{n+m} (1 - \alpha_k)\right) ||x_{m+1} - x_m||$$

$$\le \sum_{k=m+1}^{n+m} t_k + \exp\left(-\sum_{k=m+1}^{n+m} \alpha_k\right) ||x_{m+1} - x_m||$$

for all $m, n \in \mathbb{N}$. Now using $\sum_{k=0}^{\infty} \alpha_k = \infty$, $\sum_{k=1}^{\infty} t_k < \infty$ and the boundedness of $\{x_n\}$, we conclude that

$$\lim_{n\to\infty}||x_{n+1}-x_n||=0.$$

Lemma 2. Under the conditions of our Main Theorem,

$$\overline{\lim}_{n\to\infty}\langle x-z,J(x_n-z)\rangle\leq 0.$$

Proof. Let $n \in \mathbb{N}$ and assume that $\{z_{nt}\}$ converges strongly to z in $F(U_n)$ as $t \to 0$ where z_{nt} is a unique element of C for 0 < t < 1 and satisfies $z_{nt} = tx + (1-t)U_nz_{nt}$. Let μ be a Banach limit. Then $\mu_n(\alpha_n) = 0$ and the nonexpansiveness of U_n gives

$$\mu_n \|x_n - U_n z_{nt}\|^2 \le \mu_n \|x_n - z_{nt}\|^2.$$
 Now $(1-t)(x_n - U_n z_{nt}) = (x_n - z_{nt}) - t(x_n - x)$ yields
$$(1-t)^2 \mu_n \|x_n - U_n z_{nt}\|^2 \ge (1-2t)\mu_n \|x_n - z_{nt}\|^2 + 2t\mu_n \langle x - z_{nt}, J(x_n - z_{nt}) \rangle.$$
 This implies that

$$\frac{t}{2}\mu_n\|x_n-z_{nt}\|^2 \geq \mu_n\langle x-z_{nt}, J(x_n-z_{nt})\rangle.$$

Let $t \to 0$. Then because E has uniformly Gâteaux differentiable norm, J is norm to weak* uniformly continuous and so we have

$$\mu_n\langle x-z,J(x_n-z)\rangle\leq 0.$$

On the other hand, by Lemma 1,

$$\lim_{n\to\infty} |\langle x-z, J(x_{n+1}-z)\rangle - \langle x-z, J(x_n-z)\rangle| = 0.$$

— 162 —

Hence by Proposition 2,

$$\overline{\lim}_{n\to\infty}\langle x-z,J(x_n-z)\rangle\leq 0.$$

We now give the proof of our Main Theorem.

Proof of Main Theorem. Let $z \in F(U_n)$. Since

$$(1 - \alpha_n)(U_n x_n - z) = (x_{n+1} - z) - \alpha_n(x - z),$$

we have

$$||(1-\alpha_n)(U_nx_n-z)||^2 \ge ||x_{n+1}-z||^2 - 2\alpha_n\langle x-z, J(x_{n+1}-z)\rangle$$

which implies

$$||x_{n+1} - z||^2 \le (1 - \alpha_n) ||x_n - z||^2 + 2(1 - (1 - \alpha_n)) \langle x - z, J(x_{n+1} - z) \rangle \text{ for all } n \in \mathbb{N}.$$

Let $\epsilon > 0$. By Lemma 2, there exists $m \in \mathbb{N}$ such that

$$\langle x-z, J(x_n-z)\rangle \le \epsilon/2 \text{ for all } n \ge m.$$

Then

$$||x_{n+m} - z||^{2} \le \left(\prod_{k=m}^{n+m-1} (1 - \alpha_{k})\right) ||x_{m} - z||^{2} + \left(1 - \prod_{k=m}^{n+m-1} (1 - \alpha_{k})\right) \epsilon$$

$$\le \exp\left(-\sum_{k=m}^{n+m-1} \alpha_{k}\right) ||x_{m} - z||^{2} + \epsilon.$$

Hence by $\sum_{k=0}^{\infty} \alpha_k = \infty$, we get

$$\overline{\lim_{n\to\infty}} \|x_n - z\|^2 = \overline{\lim_{n\to\infty}} \|x_{n+m} - z\|^2 \le \epsilon.$$

Since $\epsilon > 0$ is arbitrary so $\{x_n\}$ converges strongly to $z \in F(U_n)$.

Finally, since E is strictly convex, $0 < \beta_n < 1$ and $0 < \gamma_n \le 1$ therefore $z \in F(T) \cap F(S)$. For, let $z \in F(U_n)$ but $z \notin F(T) \cap F(S)$. Let $w \in F(T) \cap F(S)$, $w \ne z$. Now $z = U_n z$ gives $z = T(\beta_n Sz + (1 - \beta_n)z)$

$$||z - w|| = ||T(\beta_n Sz + (1 - \beta_n)z) - w||$$

$$\leq ||\beta_n Sz + (1 - \beta_n)z - w||$$

$$= ||\beta_n (Sz - w) + (1 - \beta_n)(z - w)||$$

$$\leq |\beta_n ||Sz - w|| + (1 - \beta_n)||z - w||$$

$$\leq |\beta_n ||z - w|| + (1 - \beta_n)||z - w||$$

$$= ||z - w||.$$

Also because S is nonexpansive, $||Sz - w|| \le ||z - w||$. Thus

$$||z - w|| = ||Sz - w|| = ||\beta_n(Sz - w) + (1 - \beta_n)(z - w)||.$$

Since E is strictly convex therefore z - w = Sz - w implies z = Sz. Then by $z = T(\beta_n Sz + (1-\beta_n)z)$, we also obtain z = Tz. Consequently, $\{x_n\}$ converges strongly to a common fixed point of S and T. Hence the proof.

Remark. Note that for $\beta_n = 0$ and $\gamma_n = 1$, (5) reduces to

$$x_0 = x$$
, $x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n$, $n = 0, 1, 2, ...$

and hence the "Theorem" of Shioji and Takahashi [8] can be deduced from our above Main Theorem as the following corollary.

Corollary. Let E be a Banach space with a uniformly Gâteaux differentiable norm and C a closed, convex subset of E. Let T be nonexpansive mapping from C into itself such that $F(T) \neq \phi$. Suppose that $\{x_n\}$ is defined by

$$x_0 = x$$
, $x_{n+1} = \alpha_n x + (1 - \alpha_n) T x_n$, $n = 0, 1, 2, ...$

where $0 \le \alpha_n \le 1$ for all $n = 0, 1, 2, ..., \alpha_n \to 0$, $\sum_{n=0}^{\infty} \alpha_n = \infty$ and $\sum_{n=0}^{\infty} |\alpha_{n+1} - \alpha_n| < \infty$. Moreover, assume that $\{z_t\}$ converges strongly to $z \in F(T)$ as $t \to 0$ where z_t is a unique element of C for 0 < t < 1 and satisfies $z_t = tx + (1-t)Tz_t$. Then $\{x_n\}$ converges strongly to $z \in F(T)$.

ACKNOWLEDGMENT

The author is greatly indebted to Professor Dr. Wataru Takahashi for his guidance and encouragement to write this paper.

REFERENCES

- [1] V. Barbu and Th. Precupanu, Convexity and Optimization in Banach Spaces, Ed. Acad. Rom.-Sijthoff & Noordhoff Intern. Publ. (1978).
- [2] G. Das and J.P. Debata, Fixed points of quasi-nonexpansive mappings, Indian J. Pure Appl. Math., 17 (1986), 1263-1269.

- [3] B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc., 73 (1967), 957-961.
- [4] S. Ishikawa, Fixed points by a new iteration method, Proc. Amer. Math. Soc., 44 (1974), 147–150.
- [5] G. G. Lorentz, A contribution to the theory of divergent series, Acta Math. 80 (1948), 167–190.
- [6] W.R. Mann, Mean value methods in iterations, Proc. Amer. Math. Soc., 4 (1953), 506-510.
- [7] S. Reich, Some problems and results in fixed point theory, Contemp. Math., 21 (1983), 179-187.
- [8] N. Shioji and W. Takahashi, Strong convergence of approximated sequences for nonexpansive mappings in Banach spaces, Proc. Amer. Math. Soc., 129 (1997), 3641-3645.
- [9] W. Takahashi and Y. Ueda, On Reich's strong convergence theorem for resolvents of accretive operators, J. Math. Anal. Appl., 104 (1984), 546-553.
- [10] W. Takahashi and T. Tamura, Convergence theorems for a pair of nonexpansive mappings, J. Convex Analysis, 5 (1995), 45-58.
- [11] K.K. Tan and H.K. Xu, Approximating fixed points of nonexpansive mappings by the Ishikawa iteration process, J. Math. Anal. Appl., 178 (1993), 301–308.
- [12] R. Wittmann, Approximation of fixed points of nonexpansive maps, Arch. Math., 58 (1992), 486-491.

CURRENT ADDRESS: DEPARTMENT OF MATHEMATICAL AND COMPUTING SCIENCES, TOKYO INSTITUTE OF TECHNOLOGY, O-OKAYAMA, MEGURO-KU, TOKYO 152–8552, JAPAN.

E-mail address, Safeer Hussain Khan: Safeer. Hussain. Khan@is.titech.ac.jp

Received July 21, 2000 Revised September 26, 2000