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ON SPACE-LIKE KAHLER SUBMANIFOLDS WITH RS =0
IN AN INDEFINITE COMPLEX SPACE FORM

YONG-S00 PYo AND KYOUNG-HWA SHIN

ABSTRACT. In this paper we give some characterizations of Kéhler manifolds and complete
space-like complex submanifolds with the Ryan condition RS = 0 in an indefinite complex
hyperbolic space.

§1. Introduction

As well known, Ryan [11] investigated complex hypersurfaces in a complex space form
satisfying the condition

(1.1) R(X,Y)S=0

for any vector fields X and Y tangent to the hypersurface M, where R denote the Rie-
mannian curvature tensor, S is the Ricci tensor on M and R(X,Y’) operates on the tensor
algebra as a derivation. The condition (1.1) is called the Ryan one. Relative to the Ryan
condition, Ryan [11] proved that these hypersurfaces are Einstein manifolds if the holo-
morphic sectional curvature of the ambient space does not vanish, which was generalized
from two distinct directions. One of them is due to Takahashi [12], who verified that
such hypersurfaces become cylindrical if the ambient space is complex Euclidean. An-
other extension is treated by Kon [7] in the case of complex submanifolds in a complex
space form of constant negative holomorphic sectional curvature. On the other hand,
independently of Kon’s work, Aiyama, Kwon and Nakagawa [1] researched about prop-
erties on space-like complex submanifolds satisfying the Ryan condition in an indefinite
complex space form. In the case of complex submanifolds in a complex space form of
constant positive holomorphic sectional curvature, these submamfolds were determined
by Nakagawa and Takagi [8].

On the other hand, Ki and Suh [4] observed the Ryan condition from the different
point of view and obtained a nice theorem about Kéhler manifolds whose totally real
bisectional curvature is bounded from below by a positive constant. Thus it seems to us
to be interesting to investigate the space-like Kahler submanifolds satisfying the Ryan
condition of an indefinite complex space form.
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So, this paper has two purposes, one of which is to give a more generalized prop-
erty than the theorems by Kon, and Aiyama and et. about the condition RS = 0 in
terms of totally real bisectional curvatures and another is to prove the theorem related
the Nakagawa and Takagi theorem. Namely, the purpose is to prove the following two
theorems.

Theorem 1. Let M be a Kéhler manifold whose totally real bisectional curvature is
bounded from above(resp. below) by a negative(resp. positive) constant. If it satisfies
the condition (1.1), then M is Einstein.

Theorem 2. Let M be an n(2 2)-dimensional complete space-like complex submanifold
in an (n + p)-dimensional indefinite complex hyperbolic space CHZ*?(c) of index 2p and
of constant holomorphic sectional curvature c. If M satisfies the condition (1.1) and if
the codimension p is less than n — 1, then M is Einstein.

§2. Semi-definite complex submanifolds

This section is concerned with semi-definite complex submanifolds of a semi-definite
Kéhler manifold (see O’Neill [10] for examples). First of all, some basic formulas for the
theory of semi-definite complex submanifolds are prepared.

Let M’ be an (n + p)-dimensional connected semi-definite Kéhler manifold of index
2(s+t) (0= s<n, 0=<tZ< p) with semi-definite Kihler structure (g’, J'). Let M
be an n-dimensional connected complex submanifold of M’ and let g be the induced
semi-definite Kahler metric tensor of index 2s on M from g’. We can choose a local field
{Ua} = {Ui,U;} = {Uh, -+ , Unyp} of unitary frames on a neighborhood of M’ in such
a way that, restricted to M, Ui, --- , U, are tangent to M and the others are normal
to M. Here and in the sequel, the following convention on the range of indices is used
throughout this paper, unless otherwise stated.

AB, ---=1, -, n,n+l, -, n+p,
% gy ooo=1, -, n, z, Yy r=n+l, -+, ntp.
With respect to the unitary frame field {Ua}, let {wa} = {wi, w;} be its dual frame
field. Then the Kahler metric tensor g’ of M’ is given by ¢’ = 2) 4 €aws ®4, where
{ea} = {ei, €;} satisfy '
€e=1or —1 accordingas 1SiSn—sorn—s+1<i<m,
€z=1or —1 accordingas n+1SzSn+p—torn+p—t+15Zz<n+p.

The canonical forms w4 and the connection forms w4p of the ambient space M’ satisfy
the structure equations

de+Z€BwAB Awpg =0, waB +@wap =0,
B

’ ’ ’ )
dwap + E ecwac Awcp =Sl Qup = E €cepRzp-pwe N@p,
C C,D

(2.1)
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where Q' = (R, 5) (resp. R:ch p) denotes the curvature form (resp. the components

of the semi-definite Riemannian curvature tensor R') of M’. Restricting these forms to
" the submanifold M, we have

(2.2) wg =0,

and the induced semi-definite Kahler metric tensor g of index 2s of M is given by g =
23 ;€jw; ® @;. Then {U;} is a local unitary frame field with respect to the induced
metric and {w;} its dual frame field, which consists of complex valued 1-forms of type
(1.0) on M. It follows from (2.2) and Cartan’s lemma that the exterior derivatives of
(2.2) give rise to

(2.3) Wy = Zejh%Wj, hf? = hf“

J
The quadratic form o = zi,j,z €i€jezh;w; ® wj ® U, with values in the normal bundle
NM on M in M’ is called the second fundamental form of the submanifold M. From

the structure equations of M’ it follows that the structure equations for M are similarly
given by

dw; + Zejw,-j Awj =0, wij + wj; = 0,
(2.4)

dw,-j + E ExWik N\ Wk = Q,‘j, Q,-j = E erzR;jkjwk Ny,
k k,l

where 2 = (2;5) (resp. Ryjr) denotes the curvature form (resp. the component of
the semi-definite Riemannian curvature tensor R) of M. Furthermore, the first Bianchi
identity }°,€;%; A w; = 0 is given by the exterior differential of the first equation of

(2.4). Na.mely, we get
Z GjEkEzR;jkl’w_j Awg Ao =0,
gkl

which implies the further symmetric relations
(2.5) Rijri = Ryt = Rigji = Riyjr:.
Moreover, the following relationships are obtained.

(2'6) dwqzy + Zezw:cz Nwzy = Q:cy, ZekelR sykiWk N\ Wi,

where (), is called the normal curvature form of M. For the Riemannian curvature
tensors R and R’ of M and M’, respectively, it follows from (2.1), (2.3) and (2.4) that
we have the Gauss equation

. — / T LT
Ryjir = Rijr — Y exhihf
T
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and by means of (2. 1) (2.3) and (2. 6) we have
Rzyri = ykl + Z € hkg 1.

The components S;; of the Ricci tensor S and the scalar curvature r of M are given by

(2.7) Sg=) xRy —hG r=200_ xRSz —ha),
k .k
where h Zk z erzh’kl_z’ and h, = ZJ othfJ

Now, the components h”k and h % of the covariant derivative of the second funda-
mental form o on M are given by

(2.8) Eek(hijkwk + hi;zwk) = dhj; — Z ex(hijwri + hiwr;) + Eeyh}’jwmy,
v
Then, substltutlng dhf; into the exterior denvatlve

dwzi =) €;(dhT; Awj + hEdwy;)
J

of (2.3) and using (2.1) ~ (2.4) and (2.7), we have

(2 9) hz ik = h‘th h::;k R:,Et]k

from the coefficients of wj A wy and wj; A @k, Similarly, the components A, and Rkt
(resp. hi; & and ki) of the covariant derivative of hj (resp. hZ ;&) can be defined by

Zez (ke + h,Jki‘Ul) = dh¥j — Zel(hljkwh + R + hwm) + Z €y qk“’zy,

ZQ(h'Jk,wl + h”,c,-w;) = dh E el(hlj,—cwu + hjzwi; + hiﬂd'zk) + Zeyh‘.j,-cwzy_
1 v
Ta.kmg the exterior derivative of (2.8) and using the equations (2.4), (2.6) ~ (2.9), the
Ricci formula for the second fundamental form on M are given by
hijee = R,  hirr = R,
h:,kl ;Jlk E em(-lez mJ + le]ﬁzhtm) Z éy yklhzg

In particular, let the ambient space be an (n + p)-dimensional semi-definite complex
space form M }F(c') of constant holomorphic sectional curvature ¢’ and of index 2(s+t)
(0=s=n, 0=t p). Thenweget

(2.10) Ry = —ejek(tsijtskt + 8ixdji1) — Zezh‘;kﬁf,,

(n+1)
S.,:3 2
Next, we introduce here a fundamental property for the generalized maximum principal
due to Omori [9] and Yau [13].

€di; —h% r=n(n+1)d — he,
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Theorem 2.1. Let M be a complete Riemannian manifold whose Ricci curvature is
bounded from below on M. If a C?-function f is bounded from above on M, then, for
any positive constant €, there exists a point p such that

Ivf(p)|<€a Af(p)<e, supf—€<f(p),
where sup f denotes the supremum of the function f.

Lastly, we consider the totally real bisectional curvature on a Kéhler manifold (M, g)
with almost complex structure J. A plane section P in the tangent space T, M of M
at any point = in M is said to be totally real if P is orthogonal to JP. For the non-
degenerate totally real plane P spanned by orthonormal vectors u and v, the totally real
bisectional curvature B(u,v) is defined by

B(u,v) = g(R(u, Ju)Jv,v).

Then, using the first Bianchi identity to the above equation and the fundamental prop-
erties of the Riemannian curvature tensor of Kéhler manifolds, we get

B(u, v) = g(R(u,v)v,u) + g(R(u, Jv)Jv,u) = K(u,v) + K(u, Jv),

where K (u,v) means the sectional curvature of the plane spanned by u and v.
Kim, Pyo and Shin [5] have proved the following lemma.

Lemma 2.2. Let M be an n(2 3)-dimensional Kéhler manifold. If the totally real
bisectional curvature is bounded from above (resp. below) by a constant, and if the scalar
curvature on M is bounded from below (resp. above), then the following statements hold

true ;
(1) the Ricci curvature on M is bounded.
(2) the totally real bisectional curvature is bounded.

§3. The Laplacian operator

In this section, we calculate the Laplacian of the squared norm of the Ricci tensor
S of an n-dimensional Kéhler manifold M. Let f be any smooth function on M. The
components f; and f; of the exterior derivative df of f are given by

(3.1) df = Z(f‘“’" + fi).

Moreover, the components f;; and f;; (resp. f;; and f;;) of the covariant derivative of
fi (resp. f;) can be defined by

> (fijwi + fgws) = dfs = Y fiwss,
i i

(3.2)
Z(ﬁj“’i + f3595) = dfs — Z f5@ji.
I J
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Taking the exterior derivative of (3.1) and using (3.2), we have

(3.3) fii+fii=0, f5+f=0, fj=f
Hence the Laplacian A f of the function f is given as
(3-4) Af=2)"f5.

J

Weput f=8=|52=3 j.k Si%Skj. The components S;3; and Sj;; of the covariant
derivative of the Ricci tensor S are obtained by

(3.5) E(S,-;kwk + S,-;,;le) = dSG - Z(Skgwk,- + S’,-,;E)kj).
k k

The components S;jx; and S (resp. S and S;557 ) of the covariant derivative of S;3;
(resp. S;x) are expressed as
Z(Siikzwl + Sizrien) = dSix — Z(Slj‘kwli + Sitktj + Siziwik),
l 1
(3.6)
E(Siikzwl + Sier) = dSgx — Z(Sljl‘ewli + Sim@i; + Sizi@k)-
1 1

Taking the exterior derivative of (3.5), we obtain

Skt = Sijies  Sizrt = Sijix,
(3.7) , Siat — Sizie = Z(Rmikismi — RjmiiSim),
m

where we have used (3.4) ~ (3.6).

Now, we are in a position to calculate the Laplacian AS? of the squared norm of the
Ricci tensor S on M. By (3.4) we have

ASy =2 {2554 + (SiiSqk + SiSjuk)}
i3,k
and hence we have

(3.8) AS, =2{|VSI* + > S;5(S;mk + Sime)}s
i,5,k

where |VS|? is the squared norm of the covariant derivative of the Ricci tensor S, i.e.,
|[VS|Z2 =2 i i,k SijeSjik. For the scalar curvature r on M the components r; and r; of
the exterior differential dr are given by

dr=") (rjwj + @),
i
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and the components 7 and r,; (resp. 75, and r;3;) of the covariant derivative of r;
(resp. r3) are given as

Z(rjkwk + T‘j,‘cd_)k) = drj - Zrkwkj,
k
Z( T5kWk + T55Wk) = dr; Zrku—!kj.
k
On the other hand, we ha.ve

(3.9) r=2) Ryu;5=2Y S;, mi=2> Sk T45=2 Sk
1,5 J k k

Summing up j = k in (3.7) and using (3.9) and the components of the covariant derivative
of the Riemannian curvature tensor R, we get

TiT— 2 Z Sikr =2 Z(Z RpikiSmk — SimSmi)-
Accordingly, we have by (2. 5)
(3.10) 2 Z SRk =15 +2 Z(s,ﬁ,smj Z ik Smik)-
Next, summing up ¢ = [ in (3.7), we obtain |

D (Siur — Sgik) = D _(RinikiSmi — RijmarSim),
l

from which it follows that we have similarly

(3.12) 2 Sk =75 +2 Y (SimSmj = O RjikmSmk)»
k m Tk
Substituting (3 10) and (3.11) into (3.8), we obtain
(3.12) =2IVS* +23_Sri+4 D Si(SimSmj — D RjskmSmk)»
i,J m,i,j k

where we have used (3.3). Since (S;;) is a Hermitian matrix, it can be diagonalized.
Thus S;3 = p;0;j, where u; is a real valued function. From this it follows that we have

(3.13) r=2) 8;3=2) u, S2=) S5Sz=) 4}
i j i,j J

_——= = C— )2,
(3.14) S2— == ZJ (ks — 15)
And, by (3.12) we get
(315) ASz 2 = 22 3737 + 22(”‘1 /1'.7) Rn_n,

i,J
~where the equality holds if and only if the Ricci tensor S is parallel.

The following theorem is originally proved by Ki and Suh [4]. Here, we will give the
simple proof of the theorem by using another technique.
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Theorem 3.1. Let M be an n(2 3)-dimensional complete Kihler manifold with constant
scalar curvature. If the totally real bisectional curvature is bounded from below by a
positive constant, then M is Einstein.

Proof. Suppose that the totally real bisectional curvature is bounded from below by a
positive constant a. So, we have

Ry;72a>0, i#j.
Accordingly, (3.15) can be reduced to
AS2 220 (mi— 1)
i,j

Let us consider a non-negative function f = Sp — %. Then, from (3.14) and the above
inequality it follows that we have

(3.16) Af 2 2naf,

where the equality holds if and only if the Ricci tensor § is parallel on M. Since the
totally real bisectional curvature is bounded from below and the scalar curvature is
constant, Lemma 2.2 implies that the Ricci curvature is bounded, where the restriction
of dimension is used. By the definition of the function f and (3.13), it implies that f is
also bounded from above, because the Ricci curvatures on M is bounded from above, and
hence we can apply Theorem 2.1 to the function f. For any positive sequence {€n,} in
such a way that it converges to zero as m tends to infinity, there exists a point sequence
{pm} in M which satisfies the following properties.

Vi)l < €m, Af(Pm) <ém, sup f—em < f(Om).
By (3.16) and the above property, we have
€m > Af(pm) 2 2naf(pm) > 2na(sup f — em),
which implies 0 = 2na sup f. It turns out to be sup f = 0. Since f is non-negative

by (3.14), we see that the function f vanishes identically on M. It means that M is
Einstein. It completes the proof. O

§4. The Ryan condition

This section is concerned with Kéhler manifolds with the condition RS = 0. Namely,
it satisfies

(4.1) R(X,Y)S =0

for any vector fields X and Y.
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Let M be a complex n-dimensional connected Kahler manifold equipped with Kahler
metric tensor g and almost complex structure J, and let {U;} be a local unitary frame

field on a neighborhood of M. For the canonical basis {Uj,U;-} the Ricci tensor S and
the Riemannian curvature tensor R are given by

SWU;)=>_SigUs, R(U:U;)Ux == Ryl
k l

where U;» = JU; and j* = n + j. Accordingly, we have

(R(U;,U;)S)Ux = R(U;,U;)(S(Ux)) — S(R(U;, U;)Us)
(4.2) = =Y (RijmiSkm — RijimSm)UL
m,l

On the other hand, we see by (3.7)
Skz‘ﬁ - Skz‘ij = Z(Rijkmsmz‘ - Rijmz'Skm)’
from which together with (4.2), it follows that we have

(4.3) . (R(U;,U;)S)U = Z(Sm’ﬂ ~ Skiz;j)UL.
1

Thus it is easily seen that the following conditions is equivalent to (4.1).
(4.4) Siiji — Serj = 0,
(4.5) > (RijkmSmi — RijmiSkm) = 0.

By the same argument as that the equation (3.15) is derived, we obtain

Z(Sj — Sk)*Ri41 = 0,
J.k

where S; denotes the Ricci curvature on M. It implies that if the totally real bisectional
curvature on M is bounded from above (resp. below) by a negative (resp. positive)
constant, then we have

Z(SJ' - Sk)* =0,

gk

which means that M is Einstein. Thus we can prove
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Theorem 4.1. Let M be a Kihler manifold. If the totally real bisectional curvature on
M is bounded from above (resp. below) by a negative (resp. positive) constant, then the
following are equivalent.

(1) M is Einstein.

(2) RS = 0.

(3) the Ricci tensor S is parallel.

Proof. The condition (2) is equivalent to the equation (4.4). This means that (3) implies
(2). It is trivial that (1) implies (2) and (3). Thus it is sufficient to prove that (2) implies
(1). This already showed. O

By this theorem, Theorem 1 in the introduction is verified.

Now, let (M’, g’) be an (n + p)-dimensional connected Kéhler manifold and let M be
an n-dimensional connected complex submanifold of M’ or let (M’',g’) be an (n + p)-
dimensional connected indefinite Kéhler manifold of index 2p(p > 0) and let M be an
n-dimensional connected space-like complex submanifold of M’. Then M is the Kahler
manifold endowed with the induced metric tensor g. Then, by (2.10) we have

c z LT : 2
(4-6) R:‘J:?‘ = -2' -_— Zezhijhij (‘& # J)-

It implies that if e, = —1 and if ¢ is positive, then the totally real bisectional curvature
is bounded from below by a positive constant. On the other hand, (4.6) implies that if
€z = 1 and if c is negative, then the totally real bisectional curvature is bounded from
above by a negative constant. So, as a direct consequence of Theorem 4.1, we can get

Corollary 4.2. Let M be a space-like complex submanifold of M;‘*'P(c). Ifc > 0, then
the following statements are equivalent.

(1) M is Einstein.

(2) RS =0.

(3) the Ricci tensor S is parallel.

Remark 4.1. This result is due to Aiyama, Kwon and Nakagawa [1].

Corollary 4.3. Let M be a complex submanifold of M™?(c). If c < 0, then the following
statements are equivalent.

(1) M is Einstein.

(2) RS =0.

(3) the Ricci tensor S is parallel.

Remark 4.2. This result is due to Kon [7].
Lastly, we shall prove the following '
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Theorem 4.4. Let M be an n(2 2)-dimensional space-like complex submanifold of an
(n + p)-dimensional indefinite complex hyperbolic space CH}*P(c) of index 2p. If M
satisfies the condition (4.1) and if the codimension p is less than n — 1, then M is
Einstein. '

Proof. From the Gauss equation (2.10) and (4.5), we have

(4.7) c(h%djk — hZ0) +2 ) (hSRER2; — hE, hZRE) = 0.
8,z
Since (hf;) is a negative semi-definite Hermitian matrix, the eigenvalues A\, --- , A\, are

non-positive real valued functions on M. Moreover we have

(4.8) h% = Aibij.

1)

From (4.8) the equation (4.7) is reformed as

c(/\,- - Aj)&'l&jk +2(\ — Aj) Z h‘fkilfl =0,
T

from which it follows that we have

. rTx c
(X = X) (kR + 5) =0,
x

(4.9) _
(A — A7) Y h5Hh% =Ounlessi=1, j=k.
T
We may assume that A;, --- , g are all distinct eigenvalues of the matrix (hf;) Let
ny, --- ,Ng be multiplicities of A;, --- ,Ag, respectively, where g is the function on M.

If ¢ = 1 everywhere on M, then M is Einstein. Suppose that there is a point z of M
at which ¢ 2 2. Then, at the point z there exist at least two distinct eigenvalues. For
eigenvalues ); and A; such that \; # \; it follows from (4.9) that we have

T C .
PR AAES —5 N # N,
(4.10) =
D A% =0if A # A; and (k,1) = (i, §) or (4, 9).

Let hi; be a vector in CP defined by h;; = (A --- , h;'P). Consider the subspace
{hijlA: # Aj} consisting of 37, n.n, vectors in CP. The equation (4.10) means that
they are linearly independent. Accordingly, because of 3 7_, n, = n, we have

q
P2 nm,2n-—1,
r<s ‘
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where the second equality holds if and only if g = 2 and n; = 1 or no = 1. In fact, the
first inequality follows from the fact that the vectors h;; are contained in C? and the
second inequality is derived from the following argument.

Let f be a function with variables n;, --- ,n4_; defined by Eg <srs With the
condition Y~?_, n, = n. Namely, f is given by

q-1 _
f(ny, --- yng_1) = anns + 1+ +ng1)(n—ng—-- —ng_1).
r<s

Then it is easily seen that f is monotonically increasing with respect to the first variable
n; and hence, because of n; 2 1, we have

f(nl’ Tt nq—l) gf(la ng, -, nq—l)s

where the equality holds if and only if n; = 1. Similarly, we have
f(lr ng, -, nq—-l) ;.f(]-, 1, ng, -, nq—l)

where the equality holds if and only if no = 1. Inductively, we have

f(nh ] nq—l)gf(ly Tty 1)

where the equality holds if and only if ny =--- =ng4_; = 1.
On the other hand, we obtain

fa, -, H)—-f1Q, -+, )=n—-r+1>0,

r—1 r—2

which implies that we have
.f(lv R | 1) g.f(l)a
where the equality holds if and only if ¢ = 2. Thus we obtain

q
f(nl’ Tty nq—l)_—_znrns gf(1)=n'_1)

r<s

where the equality holds if and only if ¢ = 2 and n; = 1. It completes the proof. O

Remark 4.3. It is shown that the product manifold of a 1-dimensional complex hyperbolic
space CH!(c) and an (n — 1)-dimensional complex hyperbolic space CH™!(c) is an n-
dimensional Kéhler manifold and it is isometrically imbedded in a (2n — 1)-dimensional
indefinite complex hyperbolic space CH2"7(c) of index 2(n — 1)(see [2] and [3]). Then
it satisfies the condition (1.1), but it is not Einstein if n = 3. This implies that the
estimate of the codimension is best possible.
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