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SUBMANIFOLDS OF CODIMENSION 3
ADMITTING ALMOST CONTACT METRIC
STRUCTURE IN A COMPLEX PROJECTIVE SPACE

U-HANG K1*, HYUNJUNG SONG AND RYOICHI TAKAGI

ABSTRACT. In this paper we prove the following : Let M be a semi-invariant
submanifold with almost contact metric structure (¢, €, g) of codimension 3 in
a complex projective space Pp4+1C. Suppose that the third fundamental form
n satisfies dn = 26w for a certain scalar 6(< ), where w(X,Y) = g(X, ¢Y)
for any vectors X and Y on M. Then M has constant eigenvalues correpond-
ing the shape operator A in the direction of the distinguished normal and the
structure vector ¢ is an eigenvector of A if and only if M is locally congruent
to a homogeneous real hypersurface of P,C.

0. Introduction

A submanifold M is called a CR submanifold of a Kaehlerian manifold
M with complex structure J if there exists a differentiable distribution 7 :
p — I, C M, on M such that T is J-invariant and the complementary
orthogonal d1str1but10n T+ is totally real, where M, denotes the tangent
space to M at each point p in M([1], [20]). In partlcular, M is said to be a
semi-tnvariant submanifold provided that dim T = 1. The unit normal
vector field in JT is called the distinguished normal to the semi-invariant -
submanifold ([18]). A semi-invariant submanifold admits an induced almost
contact metric structure, and many results are known by using this structure

([4], [10], [15], etc.).
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A typical example of a semi-invariant submanifold is real hypersurface.
When the ambient manifold M is a complex projective space P,C, real hy-
persurfaces were investigated by many geometers in connection with the
shape operator and the induced almost contact metric structure ([3], [7],
[9], [16], [17], etc.). One of them, the third named author asserts that the
following :

Theorem T([17]). Let M be a homogeneous real hyperspace of P,C. Then
M is locally congruent to one of the followings:

(A1) a geodesic hypersphere (that is, a tube over a hyperplane P,_;C),
(A2) a tube over a totally geodesic PrC(1 < k < n —2),

(B) a tube over a complex quadric Qpn_1,

(C) a tube over P,C x P(;,_1)/2C and n(=> 5) is odd,

(D) a tube over a complex Grassman G25C andn =9,

(E) a tube over a Hermitian symmetric space SO(10)/U(5) and n = 15.

Cecil-Ryan ([3]) and Kimura ([9]) extensively investigated a real hyper-
surface which is realized as a tube of constant radius r over a complex sub-
manifold of P,C on which £ is a principal curvature vector.

On the other hand, submanifolds of codimension 3 addmitting an almost
contact metric structure in a complex space form have been studied in ([8],
[19]) when the normal connection is L-flat or the distinguished normal is
parallel in the normal bundle.

The main purpose of the present paper is to extend Theorem T under
certain conditions on a semi-invariant submanifold of codimension 3 in a
complex projective space P,;1C, and to give new examples of nontrivial
semi-invariant submanifolds in P,4;C.

The first named author wishes to express his gratitude to Topology and

Geometry Research Center who gave him the oppertunity to study at Chiba
University.

1. Preliminaries

Let M be a real 2(n+1)-dimensional Kaehlerian manifold equipped with
parallel almost complex structure J and a Riemannian metric tensor G,
}vhjchAJ-Hermitia.n and covered by a system of coordinate neighborhoods

Wiy}

Let M be a real (2n-1)-dimensional Riemannian manifold covered by a
system of coordinate neighborhoods {V';z"} and immersed isometrically in
M by the immersion i : M — M.
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Throughout the present paper the following convention on the range of
indices are used, unless otherwise stated :

AB,---=1,2,---,2n+2; 4,§,---=1,2,--- ,2n — 1.

The summation convention will be used with respect to those system of
indices. When the argument is local, M need not to be distinguished from
i(M).Thus, for simplicity, a point p in M may be identified with i(p) and
a tangent vector X at p may also be identified with the tangent vector
i.(X) at i(p) via the differential i* of i. We represent the immersion 3
locally by y* = y“4(z") and B; = (B;*) are also (2n-1)-1inea.rly independent
local tangent vectors of M, where B;# = §;y* and §; = 8/0z7. Three
mutually orthogonal unit normals C, D and E may then be chosen. The
induced Riemannian metric tensor g with components gji on M is given by
9;5i = G(Bj, B;) because the immersion i is isometric.

Denoting by V; the operator of van der Waerden-Bortolotti covariant
differentiation W1th respect to the induced Riemannian metric, equations of
the Gauss for M of M is obtained :

(1.1) VjB,; = Aj,:C + KjiD -+ LjiEa

where Aj;, Kj; and Lj; are components of the second fundamental forms in
the direction of normals C, D and FE respectively.
Equations of the Weingarten are also given by

V;C=—A;"By + ;D +m,E,
(1.2) V;D=-K;*B), —1;C +n;E,
VjE = -—Lthh - ij’ - n_,-D

where A = (A4,;"),Aq) = (K;*) and A(3) (L; "), which are related by
A = A _q,r,KJt = K Gir and Lj; = L Gir respectlvely, and lj,m; and
n; bemg components of the third fundamental forms.

In the sequel, we denote the normal components of V;C by V; LC. The
normal vector field C is said to be parallel in the normal bundle 1f we have
V;+C =0, that is, I; and m; vanish identically.

On the other hand a submanifold M is called a CR submam fold of a
Kaehlerian manifold M if there exists a differentiable distribution T : p —
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T, C M, on M satisfying the following conditions, where M, denotes the
tangent space to M at each point p in M :

(1) T is invariant, that is, JT, = T, for each p in M, (2) the com-
plementary orthogonal distribution T+ : p — Tpl C M, is totally real,
that is, JTJD*L C MPJ- for each p in M, where Mp'L denotes the normal
space to M at p € M([1], [20], {21]). In particular M is said to be a
semi-invariant submanifold provided that dim T+ = 1. In this case the
unit normal vector field in JT is called a distinguished normal to the
semi-invariant submanifold and denoted this by C([2], [18]). More precisely,

we choose an orthonormal basis e;,--- ,en—_1,€, of M, in such a way that
€1, - ,en—1 € T. Then we see that
’ n—1
G(Jen,e;) = —G(en, Je;) = —G(en, Z Fixex) =0fori=1,--- ,n—1.
k=1

Also we have G(Je,, e,) = 0 because J is skew-symmetric. Therefore Je,, is
orthogonal to M,. We put C = —Je,. Then we can write

(1.3) JB;=¢,"Br+¢C, JC=-("B,, JD=-E, JE=D

in each coordinate neighborhood, where we have put ¢;; = G(JBj, B;), & =
G(JB;,C),£" being associated component of &,. By the property of the
almost Hermitian structure J, it is clear that ¢;; is skew-symmetric. A

tensor fied of type (1,1) with components ¢, will be denoted by ¢. By
properties of the almost complex structure J it follows that

¢:;"d =6+ &t ph=0, &¢,7=0,
&€ =1, grs¢jr¢is = gji — §;&.

Since J is parallel, by differentiating the first equation of (1.3) covariantly
along M and using (1.1), (1.2) and (1.3), and by comparing the tangential
and normal parts, we find (see [19])

(1.4) Vg " =—A;eh + AjRg,

(1.5) | Vi€ = —Ayd;"
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(1.6) Kj; = =Ljr¢; " — mj&;,

(1.7) Lj; = Kjrp; " + ;€5

The last two relations give

(1.8) K =—-mj, L& =1,

(1.9) me&t = —k, L =1
Whére k= TTA(Q),I = T,-A(3).

Here we may assume that [ = 0. In fact, for a normal vector v of M
we denote by A, the second fundamental tensor of M in the direction of v.
Then we have A_, = —A,. Hence there is a unit normal vector D’ of M

in the plane spanned by two vectors D and E such that T.Ap, = 0, which
proves our assertion. Therefore we have by (1.9)

(1.10) I.£t = 0.
Transforming (1.7) by ¢kj and using (1.6), we obtain

—Kix — mibx = Kot *dit + Eiprelt,
which implies

mi&i — Mg = &iPrel® — Expinl?,
or, using (1.9)

(1.11) | birlt = m; + kE;.

Simila,rly we have
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(1.12) ¢irmr = _ll
because of (1.10).

Transforming (1.6) and (1 7) by L,* and using (1.6), (1.7) and (1.8), we
have respectively

(1.13) K;rL;" + Kir L;™ = —(ljm; + lim;),

(1.14) L;? - K;? =l — mjm,.

The ambient Kaehlerian manifold M is assumed to be of constant holo-
morphic sectional curvature ¢, which is called a complex space form and
denoted by Mp1(c). Then equations of the Gauss and Codazzi are given by

c
Rijin =Z(gkhgji — 9jhGki + PknPji — OjnPri — 20k din)
(1.15) + AkpAji — AjpAri + KinKji — KjnKii
+ LgpLji — Ljp L,

VkAji - VjAki - leji + leki - kaji + ‘m.ij,-

C
(1.16) = 7 (&5 — &§ibni — 26idx;),
(1.17) ViKji — VK + g Aji — ljAgi — ngLj; + njLy; =0,
(1.18) ViLji — VjLg; + mgAji — mjAgi + ngKji — njKy; =0,

where Ry;jin is covariant components of the Riemann-Christoffel curvature
tensor of M, and those of the Ricci by
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(1.19) Vil; — Vil + Ak,-Kjr - AjTKkT +mgn; —ming =0,
(1.20) Vkm_.,- - ijk + Ak,-Lj"' — Aj,-Lkr + 'nklj — njlk =0,

c
(1.21) Vignj — Ving + Kir L;" — Kjr L™ + lgmy — Limy, = '2'¢kj-

In the following we need the following definition. The normal connection
of a semi-invariant submanifold M of codimension 3 in a complex space form
is said to be L- flat if it satisfies dn = sw, that is, Vjn;—V;n; = $¢;;, where
w(X,Y) = g(X,¢Y) for any vectors X and Y on M (p514, [13]).

Differentiating A{ = a€ covariantly along M, and using (1.5), we find

(1.22) §'ViAjr = AjrArsd™ — aAkr¢jr + (Vi@)§;,

which together with (1.8) and (1.16) yields

V C
(1.23) 241 Aked™ — (Akrd;" = Ajrd”) + 5 0ks
= fkvja —_ éjvka -+ 2(mklj - mjlk).

Transvecting £ to this and using A¢ = af , (1.8) and (1.10), we obtain
(1.24) Vjia — (£8V:)€; = 2kl;.

2. The third fundamental forms of semi-invariant submanifolds

In the rest of this paper we shall suppose that M is a real (2n — 1)-
dimensional semi-invariant submanifold of codimension 3 in a complex pro-
jective space P,41C and that the third fundamental form n satisfies dn = 20w
for a certain scalar # on M, that is, |
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(2.1) an,- - V,-nj = 20¢ji-
Then we have by (1.21)
c
Kj-,-L.ir - K,;,-Ljr + ljm; — lim; = —2(6 — Z)(}Sji,
or, using (1.13)

c
(2.2) KjrL;" + lym; = —(0 — Z)d’ji,
which together with (1.8), (1.9) and (1.10) yields

(23) Kjrlr = klj, L,-,-m" = 0.

Remark 2.1. To write our formulas in a convention form, in the sequel
we denote by hyy = Aj; A%, h = g7 Aj;, a = A;87¢, K() = K;;KI* and
L3y = Lj; L7*.

Multiplying (2.2) with ¢’* and summing for j and 4, and using (1.6), (1.8)
and (1.11), we find

K(z) - k2 = 2(1’1 - 1)(9 - 2),
which together with (1.8) implies that

c
(2.4 | Ky — kst 2= 2(n = 1)(6 - 5),
where || F ||2= g(F, F) for any tensor field F on M.
In the same way, we have from (1.7), (1.10), (1.12) and (2.2)
c

Differentiating (2.1) covariantly along M and using (1.4), we obtain

Vk(an,- — V,-nj) = Z(Vk9)¢ji + 29(.41“-{7- - Akjfi),
or, using the first Bianchi identity,

(Vi0)dji + (V0)pik + (Vif)gr; = 0,
which implies (n — 2)V6 = 0. Thus (> £) is constant if n > 2.
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Lemma 2.1. Let M be a semi-invariant submanifold of codimension & with
L-flat normal connection in a complez projective space Pp11C. If the struc-
ture vector £ is an eigenvector of the shape operator A in the direction of the
distinguished normal, then we have Ap) =A@ =0 and Vj‘C’ = 0.

Remark 2.2. This lemma was proved in [8]. But we give a simpler proof
of it here.

Proof. By the hypotheses we have § = £. Thus (2.4) and (2.5) are reduce
respectively to

|

Kji = k§;&i, Lji=0

and hence m; = —k¢; and I; = 0 because of (1.8). It sufficies to show that
k = 0. In this case (1.19) turns out to be

k(5 Akrl™ — EcAjr€T) = k(xnj — E5ni),
which together with A = of gives
k(n,- -_ :Efj) = 0,

where x = n;£t.
We also have by (1.18)

k{&(Aji + n;&) — & (Aki + ni&i)} =0,

which implies
k(h—a) =0.

Now, let £y be a set of points such that k # 0 on M and suppose that
be non void. Then we have

h—a=0, n;=z{
on §2g. Differentiating the last equation covariantly along €2y and using (1.5),

we find :
anj = (ka) §j - :I:Akrcbjr.

Since it is assumed to be Af = of and (2.1) with § = £, we verified that

C
5%k T T(Akrd; " — Ajréy ") =0,
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a contradiction because of h — a = 0. This completes the proof.

Transforming (2.2) by ¢,* and taking account of (1.6) and (1.12), we have

C
(2.6) K2+ &(Kerm™) + il = (6 — Z)(gjk — &5€k),
which enable us to obtain

&i(Kkrm'™) — &x(Kjrm™) = 0.

Therefore we have

(2.7) Kgrm™ = —(m m" )&,

because of (1.8). Thus it follows that

(2.8) K;? + 1l — (memT)Eli = (6 — ‘Z‘)(gji = &)

In the same way, we have from (2.2)

(2.9) L™ = kmj + (I.1* + k2)¢;.
Transvecting (2.2) with m* and making use of (1.11) and (2.3), we obtain
6 - 2 — mm")l; = 0.
Similary, we verify, using (2.2) and (2.9), that
6 — 2 — LI" — K?)(mym?® — k?) = 0.

Now, let Q be a set of points such that I,{* % 0 on M and suppose that 2
be non-empty. Then we have

(2.10) mem” =0 -2, LI +k* =6~ :

b
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on 2. From now on, we discuss our arguments on the open subset Q of M.
Then (2.8) turns out to be

c
(2.11) K;*=(0- Z)jS — 1l

Differentiating this covariantly along Q, we find

(2.12) K; "ViKir + K; "V Kjr + 1;Vili + Vil = 0,

from which, taking the skew-symmetric part with respect to indices k and j
and making use of (1.17) and (1.19),

Kj "ViKir — K, erKir + lekl,- - lijli + K| r(lek-,- — lkAjr
+ngLjr —njLi,) + li(Aj "Kir — A" Kjr + npmj — njmg) =0

for any indices k, j and i. Thus, interchanging indices k and i, we have

K,! "ViKir — K; "ViKie + Vil — iVl + AR K" — LA K"
+ 1Ky " Ljr — 0Ky " Lir + (K TAjr — K; T Air + nim; — njm;) = 0.

Hence, if we use (1.13), (1.17), (1.19) and (2.2), then we get

Kj rkair — Ki rkajr <+ l,-Vkl,- — l.,;Vklj
+ 2lekTKi T — 2liAerj T+ 2(0 - E)nk¢ji =0.

Adding this to (2.12), we obtain

(2.13) K; "ViKir +1i(Vili + Ak K, 7) — liAerj T+ (60— E)de)ji =0.

Since we have (1.7), (2.3) and (2.11), by transforming K, 7, we have
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(2.14)
(6 - '2)(VkKhi —ngLpi + nlnéi — LARk) — (" Ve Kir)
+ klh(Vkl,- + Ak K, r) + (Akrlr)lhli = 0.

On the other hand, differentiating the first equation of (2.3) covariantly
along 2, we find

lrkajr + Kj Vil = kvklj + (ka)lj,

which, transvecting I’ and using (2.10),
(ViK;)UlE = (6 — 2 — k%) Vik.
Thus, if we transvect I* to (2.14) and use (2.9) and (2.10), then we obtain
(2.15) (VkKj,-)lr = U;Vik —jAg " + (0 - -‘(I: - k2)Ajk
c
+ne{km; + (6 — )&}

because 6 — £ # 0 on Q, from which, taking the skew-symmetric part and
making use of (2.9),

(2.16) L(2Ak 0" — Vik) = (24,17 — V k).

Therefore it follows that

(2.17) 24;,I" — Vk = ol;

for some function o on 2. By means of (2.15) and (2.17), the equation (2.14)
turns out to be

C
(2.18) (0 - Z)(VkKji - nij,- - liAjk - leik) =+ O'lkljli
— kljngm; + k2L Ay + klj(Vil; + A K; 7) =0,
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from which, taking the skew-symmetric part with respect to j and 1,

klj(kAik —nrgm; + Vil; + AkT‘Ki T) = kli(kAjk — ngm; + Vklj + Aerj r).
If we transvect I to this and make use of (2.17), we get
k(1) (kA — ngm; + Vil + Ag K; 7) = k*olily.

From this and (2.18), we have

(2.19) VkKji = niji + liAjk + leik ~+ lelkli
for some function 7 on Q. Multiplying ¢’* to (2.19) and summing for j and
i, and using (2.17) we have
(2.20) (I )T = —0.

Differentiating the first equation of (1.8) covariantly and taking account
of (1.5), (1.6) and (2.19), we obtain
(2.21) Vkmj = —nkl_,- - Ak-,-LJ- .

Differentiating the first equation of (1.9) covariantly and using (1.11) and
(2.21), we find

(2.22) Vik = 24;.1",

which together with (2.17) implies that 712 = —¢. Thismeansthatc =7 =0
on {2 by virtue of (2.20). Therefore (2.19) reduces to

(2.23) VkKj,; = nij,- + liAjk -+ leik-

Substituting (2.23) into (2.13), we obtain

nkKerir + kleki + lj (Vklz + Ak"'Ki r) + (9 - -E)nkqui = 0,
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which transvect I/ and using (1.11), (2.9) and (2.10),

(2.24) Vil = ngm; — Aerj T —kAjk.

Differentiating (1.7) covariantly and using (1.4), (1.5), (1.11) and (2.24),
we also find

(2.27) ViLji = —ngKj; + mjAi + m;Aj.

Differentiating (2.22) covariantly along Q and taking account of (2.24),
we get

+ n;(2Ak,m" — knyg),

from which, taking the skew-symmetric part and making use of (1.11), (1.16),
(2.3) and (2.9),

(6~ 5)(mag; — m;€i) = 0.

Therefore it follows that (6 — §)(m; +4£;) = 0 and hence § = $ on 2 because
of (2.10). Thus we have by the first equation of (1.2)

Lemma 2.2. Let M be a semi-invariant submanifold of codimension 8 in
P, 11C satisfying (2.1). If 8 # 5, then we have V; 1C = —k&E on M.

3. Further properties of the third fundamental forms

We continue now, our arguments under the same hypotheses (2.1) as in
section 2. Furthermore suppose, throughout this section, that 6 # £ holds
and that the structure vector £ satisfies 4;,(" = af;. Then we have by
Lemma 2.2

(3.1) I =0

and hence
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(3.2) m; = —k§;

because of (1.2). Thus (1.6), (1.7), (1.8), (1.13) and (1.14) are recuded
respectively to

(3-3) Ljr¢;" = —Kj; + k&;&;,
(3.4) Kjr¢;7 = Lj;,

(3.5) K;r&" = k&, Ljr€™ =0,
(3.6) Ly K"+ Ly K,™ =0,
(3-7) Lji2 = Kji2 - k2§j€i-

From (3.2) we have

Vkm_.,- = —ijkk + kAkr¢jr’
from which, taking the skew-symmetric part and using (1.20), (3.1) and (3.2),

AkrL;" — Ajr L + k(Akrd;" — Ajrdy”) = €Vik — &V k.
Since we have A¢ = af, we then have

(3.8) Vik = Ak

because of (3.5), where \ = £tV k.
From the last two equations, it is clear that

(3.9) AerjT - AJ-,-Lkr = k(Ajr¢kr - Akr¢jr).
Similarly, we also have from (1.19), (3.1) and (3.2)

(3.10) k(n; — ;) = 0,

(3.11) A K;T — A K" =0,
where u = kn. £,

— 71 —



Lemma 3.1. Let M be a semi-invariant submanifold of codimension 8 in
P 11C satisfying dn = 20w, (8 # $). If it satisfies AL = af, then T, A3) = const.

Proof. Differentiating (3.8) covariantly and making use of (1.5), we find
ViEViA =& VA — Ak 57,

which together with A = a yields

(3.12) A(Asry™ — Ai") = 0.

On the other hand, by means of (3.1), the equation (1.24) becomes Vo =
(§*V:i)¢;. Hence (1.23) implies A(A;2¢," + $¢x;) = 0 because of (3.1) and
(3.12). By the properties of the almost contact metric structure, it follows
that

Mhe) — o + %(n ~1)} =0,

which means .
M4 — &l + E(n —-1)} =0.

Hence A = 0 by virtue of ¢ > 0 and thus k = const. because of (3.8). This
complete the proof of Lemma 3.1.

In the following we discuss our arguments the case where k 7% 0. Then by
(3.10) we have

nj = /.l.fj.

From this we have

anj = fjvkﬂ - #Akr¢jr,
which implies

200k; =& Vip — EVin — u(Arrd;" — Ajrdy 7).
& being an eigenvector with respect to A, it is seen that
(3.13) Akrd;™ — Ajrdi” = 2p¢%;,
where we have put pf = —u. Thus (3.9) turns out to be

(314) Aj,-Li r— AirLjr = 2pk¢-¢]
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Using (1.24), (3.1) and (3.13), the relationship (1.23) becomes
C,
(3.15) AjrAisd"™ = (po — - )kj-
Applying (3.13) by A7 and using (3.15), we obtain

' C T T
(pa - Z)d)ki = Air2¢k + 2pAir¢k .

Thus, it follows that
c c
(3.16) A’ +2pA5 = (pa — 2095 + (¥ + po+ 7)€

Lemma 3.2. p is nonzero constant if n > 2.

Proof. Since we have 8p = —pu, p does not vanish because we have § >
< and n; = pé;.

Differentiating (3.13) covariantly and taking account of (1.4) and (3.16),
we find

(Vidjr)¢:" — (ViAir)p;" — 2(Vip) s
= {adix + (por = 2)gik}es — {odse + (pa = 2)gu}és.

If we take the cyclic sum with respect to k, j and 4, and make use of (1.16),
then we have

(Vip)dji + (Vip)pik + (Vip)dij = 0.

Thus, p is constant for n > 2. This completes the proof of the lemma.

Lemma 3.3. « and h are constant if k # 0.

Proof. Since we have Vo = (€8Via)€; as is already seen, we can verify,
using the same method as in the proof of Lemma 3.1, that ¢£:V,a = 0 and
hence « is constant. From (3.13) we obtain

(3.17) a—h=2(n—-1)p.
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Thus h is constant because of Lemma 3.2. Therefore Lemma. 3.3 is proved.

Since (2.6) is valid by the assumption (2.1), it is , using (3.1), (3.2) and
(3.5), verify that

(3.18) Kji2 = (6 - g)gj,- + (k2 -0+ E)EJ&

Differentiating (3.18) covariantly and using (1.5), we have

(3.19) K; r(kajr) + Kj "(ViKir)
= (K = 0+ 2)(EArrd; " + EiArd; ")
because 6§ and k are both constant.

Using the same method as that used to (2.13) from (2.12), we can derive
from (3.19) the following :

(3.20) -
K;"ViK;r =— (6 — g)nk¢ji + p(k* — 6 + 2)(§k¢ji + &idjk + & dri)
= (K = 0+ )& Akrdy”,

where we have used (1.17), (3.13) and (3.14). Transvecting &7 to this, we get

KETViKsy = ~(K =0+ 2)(Akrd ™ — o).

On the other hand, differentiating the first equation of (3.5) covariantly
and taking account of (1.5) and (3.4), we obtain

(3.21) §'ViKir = —AprL;" — kAkr ;"

From the last two equations, it follows that

(3.22) —kAk ;™ = (6 — E)Akr¢ir +p(k* -0+ §)¢ki-

Transforming this by K;* and making of (2.2), (3.1) and (3.4), we find
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C C
(0 = Ak Ly" + kArrd;™) = p(k* =6+ 7),

which together with (3.22) yields
c c -
(3-23) (k* -6+ ) 1PkLsi — (0 = 7)(Ajré: ™ — pés)} = 0.

Transforming (3.20) by K’ and making use of (3.4), (3.5), (3.18) and
(3.21), we find

(9 - 2)(kali - ’nkin) = (k2 -0+ 2){6[ (Aeri T+ pkd’ki) - p(kau +€ile}’

from which, taking the skew-symmetric part with respect to indices { and 1,

c T
(k* -6+ Z){éz(Aeri "+ pkdki + pLki) — §i(Arr Ly " + pkdt + pLig)} = 0.
From the last two equations, it follows that

(3.24) ViKji = ngLj; — a(éxLj; + &Ljk + & Lki),

where we have put

(3.25) M9—§)=p%2—9+§)

Differentiating (3.4) covariantly and using (1.4) and (3.24), we can verify
that

(3.26)
ViLji = —neKji + a(§xKji + E5 Kii + EiKij) — k(&5 Aki + &iAxj)
+ k{nk + (2(1 - a)fk}éjfi.

If we differentiate (3.24) covariantly and substitute (1.5), we find
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ViViKji =(Vink)Lji + neViLj; + a{(Aird")Lji + (Aird; ") Ljk + (Aird; ") Lii}
— a(&kViLji + &V Ljg + &V L;).

Multiplying this with ¢** and summing for [ and k, and taking account of
(3.3), (3.4), (3.10), (3.11), (3.17) and (3.26), we obtain

¢”°V1VkK,-i = (qb”‘mG)Lj,- + a{2(n - l)pLj-,; — Aerir — AirLjr},

or, using (2.1) and the Ricci identity for Kj;,

1
—‘2‘¢lk(Rzkeri "+ Rikir K;7) = 2(n — 1)(0 — ap)Lj; — a(AjrL;" + Air L;7).
On the other hand we have from (1.15)
c
¢"* Rikji = {c(n + 1) — 46 — 2(pa — )19

where we have used (2.2) with /; = 0, (3.3), (3.4) and (3.15). Combining
with last two equations, it is seen that

{(n+1)(c — 26) — 2(po ~ g)}Lﬁ = 2(n — 1)apLj; — a(AjrL;" + AirL;").
Multiplying L7* to this and summing for j and i, and making use of (2.5),
(3.7) and (3.18), we have

(3.27) (n+1)(c—20) — 2(pa — 2) = 2npa.

Lemma 3.4. pa+60—3c=0ifk#0.
Proof. Suppose that k? = § — £. Then we have by (3.22)

AkTLi r + kAkT¢i r - 0,



which together with (3.16) implies that
c
(poe = 2)(Lji — kji) = 0.

Thus, it is seen that pa = §. Therefore (3.25) and (3.27) will produce a

contradiction because § = £ was assumed. Accordingly we have k2—6+£ = 0
and hence

(3.28) PkLji = (6 = 7)(Asrds™ = pdsi) = 0

by virtue of (3.23). If we take the usual norm of this and make use of (3.3),
(3.16) and (3.17), then we obtain
272 Cy(q2 ¢

(3-29) pok" = (6= 7)(p" + pa— ),
which together with (3.27) gives the required relationship. This completes
the proof of Lemma 3.4.

Multiplying (3.14) with ¢/* and summing for j and %, and taking account
of (3.3), we get
(3.30) Aj-,;Kji ={a+ (n— l)p}k.

Now, we are going to prove that the distinguished normal C is parallel in
the normal bundle. From (1.15) we verify that the Ricci tensor S of M with
components S;; is given by

C .
(3.31) Sy = 1@+ 1)gji — 3;&} + hAj — A;° + kK - K;2 — L2,

which together with (3.5), (3.17) and Lemma 3.4 implies that

(3.32) 8¢7¢' =2(n—1)(6 - 3).

If we multiply (3.31) with K7¢ and sum for j and i, then we obtain
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S;: K7 = 2(n - 1){8 — 2(n — 2)p*}k,

where we have used (3.6), (3.16), (3.17), (3.18), (3.30) and Lemma 3.4.
Transforming (3.31) by ¢,* and using (3.4), (3.7), (3.16), (3.17), (3.18)
and Lemma 3.4, we find

Sirdk” = {5(2n +1) — 6}ge; +{o — 2n — 2)p} Asedy” + kL.

Multiplying L7* to this and making use of (2.5), (3.3), (3.30), (3.32),
(3.33) and Lemma 3.4, we see that k(§ — $) = 0. Therefore we have 6 = £
Because of Lemma 2.1, it follows that k = 0, a contradiction. Thus we have

Proposition 3.5. Let M be a real (2n — 1)-dimensional (n > 2) semi-
invariant submanifold of codimension 8 in P,41C. If it satisfies dn = 20w
for 6 # 5 and A{ = of. Then V;+C =0, namely, the distinguished normal
1s parallel in the normal bundle.

4. Parallel distinguished normal vectors

In this section, we consider a semi-invariant submanifold of codimension
3 satisfying dn = 26w in a complex projective space.
Suppose that the distinguished normal C is parallel in the normal bundle.

‘Then we have l; = m; = 0. Thus, (1.16), (1.17), (1.19) and (1.20) turn out
respectively to

c
(4.1) ViAji — VjAg = Z(€k¢ji — &ibri — 2idk5),
(4.2) ViKji — VjKygi = ngLj; — njLg,

(4.3) Ajr KT — AirK;T =0, AjrLT — A LT =0.

Since we have dn = 26w, relationships (2.2) and (2.8) are reduced respec-
tively to
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(44) KjeLi™ = —(0 = 2)é5,

(4.5) K = (0 - )95 — §8).

Since we have K;-{" = 0, by differentiating covariantly along M and using
(1.7) with I; = 0, we find

(4.6) (ViKir )€ = —Lir A"

Differentiating (4.5) covariantly along M and using (1.5), we have

(4.7  K,;"(ViKi)+ K;"(ViKjr) = (6 — E)({jAk-rd’i "+ &iArrd;T).

Using the quaite same method as that used to (2.13) from (2.12), we can
derive from (4.7) the following :

(48)  2K;"ViKir = (0 — 2){2nidis + (Aird;” — Ajrdi7)E
+ (Aer®;" — Ajrdr" )i + (Akrd; ™ + Air i 7)Es 1

where we have used (4.2) and (4.4).

In the following, we are going to prove A2y = 0. By means of (4.5), we
may only consider the case where 6§ — 7 7 0 because it is already seen that
6 is constant. By (4.2) we can, using k = [ = 0, verify that V:K;" = Lj;n".
Thus, multiplying (4.8) with ¢g** and summing for & and i, we find

C
K;"Lrsn® = (6 — 7)($rin” + &0 Asrd;T),

which together with (4.4) implies that £°Asr¢;” = 0 and hence

(4.9) A€ = at.
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Therefore, if we transvect (4.8) with &/ and take account of (1.8) and (4.9),
then we obtain

(4.10) Ap = ¢A.

From this and (4.1) we can prove the followings (cf. [7], [11]) :

C
(4.11) A’ =aAj+ Z(g_,-,- — &;&),

c
(4.12) VidAji = =7 (&b + &idrj)-
By means of (4.10), the equation (4.8) can be written as
c T T
K;"ViKir = (6 - Z)(nk¢ij + &k Aird;" + i Akrd;T).

Transforming by K,’ and using (1.7), (4.3), (4.5) and (4.6), we obtain

(413) kaji = nij,- - §kAj,-Lir - giAk-,-Ljr - finrLkr,
Differentiating (1.7) with l; = 0 covariantly and using (1.4) and (4.13),

we have

(4.14) Viji = ‘—nkKji + kaj-,-Kir + §iAerjr + fin,-Kkr,

which together (1.8) with I; = 0 and (4.9) implies that

(4.15) T.(AA2) =0, T, (A%A(z) =0

because of (4.11).
On the other hand, we have A(;)§ = 0 and T:A(2) = 0 and (4.5), the shape

operator A(2) has at most three distinct constant eigenvalues 0, VO—5—-v/0—-%
with multiplicities 1, n — 1, n — 1 respectively.
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By (4.9), (4.10) and (4.11), we also see that A has at most three distinct
constant eigenvalues a, (a + v/D)/2, (o — v/D)/2 with multiplicities 1,7, s
respectively, where D = a? 4+ ¢, + s = 2n — 2.

Since we have AA@) = A4, it follows that A and A(2) are diagonalizable
at the same time. Because of (4.15), we have (6 — $)r(a? +c) = 0. Thus s =

2(n—1) and consequently A has two constant eigenvalues o and (a—vD)/2
with multiplicities 1, 2(n — 1) repectively. Accordingly the trace h of A is
given by

(4.16) h =na— (n—1)VD.

Differentiating (4.13) covariantly along M and using (1.5), (1.8), (4.11),
(4.12) and (4.13), we find

c
ViaViKj; =(Vpng)Lj; — Z(Kki§j€h + K;jn€k&i + 2K;n€i€k) + Bhijs
— a(&i€nArr K; T + Ex&iAjr KT + 266k Air K3, T)
+ (Ane®;°)(AkrL; ") + (Ans@i®)(Air L") + (Ans; *) (Ar Li7),
where Bprj; is a certain tensor with Brrji = Bkhji, from which, taking the

skew-symmetric part with respect to & and k, and making use of (2.1), (4.10)
and the Ricci identity for Kj;,

(4.17)
RrnjrK; " + Ripir K"

= 20¢nrLj; — g{ﬁj (ExKin — EnKik) + &i(€xKjn — EnKjk)}
— o{&i(ErAir Ky " — EnAir Ky 7) + &i(ExAjr Ky — Endir KT}
+ (Ane®;°) (AkrL; ") — (Ake®;°)(AnrL; ™) + (Ansd; *)(AkrL;7)
— (Aks®; °)(AnrL;7) + 2(Ans0®) (A L; 7).
Multiplying (4.17) with ¢** and summing for k and h, and using (1.6),
(1.7), (2-1), (4.10) and (4.11), we find

(4.18) ¢kh(Rkheri T4 RkhirKj r) = {C - 4(11. - 1)9}Lji + 2(h + a)AJ-,.L,- .
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On the other hand, we have from (1.15)
¢* Riin = (en + ';:')¢hi — 20 Aprd;” +4Kn L;",
where we have used (1.7), (1.8), (4.10) and (4.11), which together with (1.7)
and (4.5) gives '
™ (Riiir K;™ + RitjrK;7) = {86 — (2n + 3)c} Lj; — 4aAjr L™

From this and (4.18), it is seen that

(4.19) (h+3a)A;rL;" = {2(n+1)0 — (n + 2)c}Lj;,
which implies
(h +3a)(Aji — ;&) = {2(n + 1)8 — (n + 2)c}(gj: — &5&:)-
If we take the trace of this, then we obtain
(4.20) (h+3a)(h—a)=2(n—-1){2(n+1)8 — (n + 2)c}-

In the same way, multiplying A7* to (4.17) and summing for j and k, and
taking account of (1.6), (1.8), (4.3), (4.9) ~ (4.11), we also have

; 3
(Rijir K™ + RijnrK; T)Azk = (3a2 — 20+ C)AhrKjr + anth.

On the other hand, we have from. (1.15)
(Rrjir K™ + RijnrK; T)A™
c c
= (26 — 2c — h(g))AhrKjr + {(0 - -é')(h - a) - Za}th,

where we have used (1.6), (1.7), (4.3), (4.4), (4.5) and (4.11).
From the last two equations, it follows that

(4.21) (40 —3c— h() —302)A; K, " = {ca— (6 — -;-)(h — a)}Kji,
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which implies

(4.22) (40 —3c— hp) —302)(h—a) = 2(n — 1){ca — (6 - %)(h —a)).

If we take account of (4.11), then (4.22) can be written as

2(n + 1)(0 — %c)(h — ) — a(h+3a)(h - a) = 2(n — 1)ca,
or use (4.20),

(4.23) 6 - %c)(h ~a)=2(n )6 - 7).
By the way, we have from (4.16) and (4.20)

3
a(a— VD) =2(6 — Zc).
Combining (4.16), (4.23) and the last equation, we see that

32 o c
(6 — Zc) = a*(0 2).
From this, (2.5) and (4.5) we have

Lemma 4.1. Let M be a real (2n-1)-dimensional (n > 2) semi-invariant
submanifold of codimension 8 satisfying dn = 20w for a certain scalar 6 < s
in a complex projective space P, 1C. If the distinguished normal is parallel
in the normal bundle, then we have A@) =A@ =0.

Let No(p) = {n € T, (M) | A, = 0} and Hy(p) the maximal J-invariant
subspace of Ny(p). As a consequence of Lemma 4.1, we have A(g) = Ay =0,
the orthogonal complement of H, (p) is invariant under parallel translation
with respect to the normal connection because of V; +C = 0. Thus, by the

reduction theorem in (5], [14] and by Lemma 2.2 and Proposition 3.5 we have

Theorem 4.2. Let M be a real (2n-1)-dimensional (n > 2) semi-invariant
submanfold of codimension 8 in a complex projective space P,,1C. If the
structure vector £ is an eigenvector for the shape operator in the direction of
the distinguished normal and the third fundamental tensor n satisfies dn =
20w for a certain scalar 6(< £), then M is a real hypersurface in a complex
projective space P, C.

Owing to Theorem T and Theorem 4.2, we have
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Theorem 4.3. Let M be a real (2n—1)-dimensional (n > 2) semi-invariant
submanfold of codimension 3 in a complex projective space Pp4+1C such that
the third fundamental tensor satisfies dn = 20w for a certain scalar 6(< %),
where w(X,Y) = g(X,¢Y) for any vectors X andY on M. Then M has
constant eigenvalues corresponding the shape operator A in the direction of
distinguished normal and the structure vector £ is an eigenvector of A if and
only if M is locally congruent to a homogeneous real hypersurfaces of P,C.

5. Examples of a nontrivial semi-invariant submanifold

In this section, we shall give an example of a nontrivial semi-invariant
submanifold in P,C.

Let p,q(3 < p < q) be integers. We denote by M, ,C the space of p x ¢
matrices over C, which can be considered as a complex Euclidean space CP4
with the standard Hermitian inner product. Let denote the unitary group

of degree p by U(p). Then the Lie group G := S(U(p) x U(q)) acts on
CP? = M, ,C as follows :

(0,7)X =oXT171, (0,7) € G, X € CPI,

Thus we can consider G as a unitary subgroup of U(pg). Remark that
this action is nothing but the linear isotropic representation of the compact
Hermitian symmetric space SU(p+q)/S(U(p) x U(q)) of type AITI(cf. [6]).

Let 7 be the canonical projection of C*?— {0} onto Pp,—;C , and S2P9-1(7)
the hypersphere in CP? of radius r centered at the origin.
Then, for any element A of CP9 — {0}, the orbit G(A) of A under G is a com-
pact homogeneous submanifold in S?79~1(| A |), and the space 7(G(A)) is
a compact homogeneous submanifolds in P,,_;C. Moreover, for any normal
vector N of G(A) in §?P¢~1(|A|), the mean curvature of G(A) in the direc-
tion NV is equal to the one of 7(G(A4)) in the direction 7. N in P,,_;C.(see
e.g. [12] ). In particular, G(A) is minimal in $?P?-1(| A |) if and only if
7(G(A)) is minimal in P,,_;C.

Here, fori=1,--- ,pand a=1,---,q, we denote by E;s the element of

Mp,qC whose (i, a)-entry is 1 and other entries are all 0. In the sequel we
shall show

(5.1) If A= ayEq+azFE»; satisfies a1a2 # 0,a,2 # a,2, and a,2+a,2 = r?,

then m(G(A)) is a (4p+4g —11)-dimensional semi-invariant submanifold
in qu_]_C.
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By the definition, the tangent space T4 (G(A)) of the orbit of A under G
is generated by the vectors

X A and AY,

where X (resp.Y’) ranges over all skew-Hermitian matrices of degree p(degree q).

Hence the space T4(G(A)) are spanned over R by the following vectors :

a1V —1E11 +asv—1Es2, a1V —1E1; — axvV—1Es,,
E12,V—1E12, E21,V—1E21, Eia,V—1E;a, Ejg,V/—1E;g,

where 1 <7<2,3<a<q3<j<pandl<pgB<2
Thus the intersection of the vector space /—1T4(G(A)) and the normal
space of G(A) at A in S?P9~1(r) is spanned by the vector

a2V —1FE1; — a1V —1Ey,,

which shows that m(G(A)) is semi-invariant in Pp,_1C. Since the space
SU(p + q)/S(U(p) x U(q)) is irreducible as a symmetric space, our space
m(G(A)) is not trivially semi-invariant, i.e., it satisfies Ay #0and Az #0
in the previous notation.

Remark 5.1. In the case p = g = 3, the space 7(G(A)) is a submanifold of
codimension 3 in P;C.

Remark 5.2. We can see that, among the spaces 7(G(A)) satisfying the
conditions 0 < a; < a2 and a;2 + a,2 = 72, there is uniqully a minimal one.
About this we shall work out in a forthcoming paper. '
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