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Abstract

The purpose of this paper is to show some spectral mapping theorems for
p-hyponormal operators, using the concept of spectral homotopy property.

1 Introduction

Let # be a complex separable Hilbert space and B(#) be the algebra of all bounded
linear operators on . An operator means a bounded linear operator on H. An operator
T is said to be a p-hyponormal operator if (T*T)? — (TT*)? > O(see [1]). f p=1,T
is called hyponormal and if p = 1/2, T is called semi-hyponormal. The set of all p-
hyponormal operators in B(#) is denoted by p-H(#)(or p-H). Let p-HU(H)(or p-HU)
denote the set of all operators in p-H(H) with equal defect and nullity. Hence for T' €
p-HU(#) we may assume that the operator U in a polar decomposition T = U|T| is
unitary. The set of all hyponormal operators, all semi-hyponormal operators and all
semi-hyponormal operators with unitary U in B(*) is denoted by HN, SH and SHU,
respectively. Throughout this paper, let 0 < p. .< 1/2. For an operator T, we
denote the spectrum, the approximate point spectrum and the residual spectrum by
o(T), 04(T) and o,(T), respectively. A point z € C is in the normal approximate

_point spectrum o,,(T") if there exists a sequence {z,} of unit vectors in # such that
(T - 2)z, > 0and (T — 2)*z, — 0.
D. Xia(cf. [6] or chapter VI of [7]) studied spectral mapping theorem under a class
of functional transformation @(U|T|) = &£(U)%(|T|). For a p-hyponormal operator
we define as follows: Let T = U|T| € B(H) (the polar decomposition of T) be p-
hyponormal. Let £ and v be Baire functions on o(U) and o(|T|), respectively. Then
we define the functional transformation ¢y 4} by

oreny (T) = EU)W(ITI))%.
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Also we define a mapping ¢ 4} (+) in the complex plane by @(¢ 4 (0e®) = 6(619)(2/}(p2”))$.
Under the functional transformation ¢ 4}, we study the following formulae:

Ona(Pie}(T)) = 0a(piey(T)), (1)

U*((p{fﬂli} (T)) = Plew) (U* (T)), (2)

where o, = 0,, o0, or 0.
In this paper, we show the following theorem:

Theorem. Let T = U|T| € p—HU. & € Ay(c(U)), t € [0, 1], such that &(z) is a
continuous function of t € [0,1] for each z € o(U) and &(z) = 2, &(2) = £(2). Let

Y € To(o(|T)), ﬂ%ﬁl—i be monotone decreasing and denote @. = ¢ y3-
If & satisfies the following condition:

8¢, < m((ITIE) 2 ITIE, (1T I%,) %), (3)
then (1) and (2) hold.

2 Proof.

To show the theorem, we prepare for some notations. Let E be a bounded closed
set on the real line R, M(E) be the class of all bounded real Baire functions on E and
Ky be the singular integral operator defined on L?(E) by

(Kyf)(z) =s— el—i>%1+ 51; E th(f)(;fgg))

f(y)dy.

Put S(E) = {¢|¢ € M(F),K, > 0}. Let T(E) be the class of all strictly monotone
increasing continuous function on E. Let

My(E) = {¢ € M(E),¥(x) > Oand = € E and %(0) = 0}.

Also, we let So(E) = Mo(E)NS(E) and To(E) = My(E)NT(E). If v is a closed set in
the unit circle T, then the class of all complex Baire functions on -, whose values are
in T, is denoted by My(). In case of v C T, let K¢ be the singular integral operator
defined on L?(y) by

(Kef)(e) = 5= tim L [ LZEEDEED 1y,

L0+ 21 Jy 1 — efe(1 — ¢)
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Denote Sy(v) = {£|€ € Mo(7y), K¢ > 0}. Let v C T and £ : v — 7 be a homeomor-
phism preserving the derection. Denote the set of all these functions & by To(7y). Let
v C T be a closed set . Suppose that & € Ty(~y). If there exists a nonnegative number
q such that

I(P(€9),9) + a(€g, 9)| < qllgll® + IPgll?, g € L*(v),

then we say £ € Ao(7y). In this case, by 8¢ we denote the minimum of ¢(1 + ¢)7!,
when ¢ varies over all possible nonnegative numbers satisfying above inequality. For a
self-adjoint operator T € B(#), let us denote

m(T) = inf (T2,3) and [T[(2, = SF(T)

where S (T') denote the polar symbols of T (cf. Chapter II of [7]).

Proof of Theorem. Let S = U|T|*. Since S €SHU, from condition (3) and
Theorem VI. 3. 4 ([7]), we have

Re((|S| — w|S|&(U)")f, f) 2 0,
for f € H and |w| = 1. Hence,
Re((IT*? — w|T*&,U)*)f, f) 2 0 (4)

for f € H and |w| = 1. Consider a fixed t € [0,1]. Put B, = &(U)|T|* and
by = &(e”)p*. Then we have [|(B; — b.J) f|I* = ||(&(U)|TI™ — &(e)p% 1) f|?

= [l(IT* — p* D) fII* + 20 Re((IT?? — &(e*)IT1P&(U)") £, f))- (5)

It follows, from (4) and (5), that
I(B: = be) fII? = (1T — o 1) £ (6)
Let spectral decomposition of |T'| be |T| = / - sdQ(s). Let m = m(|T|) and M =

|T||. Then obviously o(|T|) C [m, M]. Put @,(T) = &(U) - 1,[1(|T|2”)%(E e} (T))-
By (6), if p # 0 then

1(e(T) — e(pe®) D) £l = (&(U) - B(IT??) % — &u(e) - p(p*)HI) f|

&(U) {w(u"l?f’)E - Mf’,’,’——w} A,
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Let
A= ||(IT)*® - pI) f|| +

2wt )
((p) Y(|T17)% - |T|

and

=i ) -  (252) 25)

By (6) we have

e =poen 1 2 LE2 e o - |eaw) {w(ITPP)f%—MWI”}f"

o I
=M TI2? — p2P]) flI2 ,( i T|?P 2r——T2”) ’
A {II(I |7 — p*I) fII* — P ~P(IT*)% — |T|*} f
— w s2p _ A2p|2 P2 s2p 2, _ S ’ s
- psz a(|T)) {I P I Lb(pz ) P ¢( ) }d(Q( )f7 f)
2p al; . n2p
VDT T [ (s, @), F)- ™

A o(IT1)

Since 1(p) is a monotone increasing function of p and ﬂ%’g—l is a monotone decreasing
function of p, for 0 < s% < p? -,

o - (455)) o

2p %
ui(s, p) > {("‘;’( )T - 1} < >0

Hence for any positive number § < p??, there exists a positive number & such that

and for s > p?? + 4,
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inf  w(s,p) >e. (8)

|s2P—p?P|>6

. Then

On the other hand, let ¢ = |||T|?* — p*"I +” LA sz;—,,_lep
NT|* — p*1|| m (IT]*%)> —|

A < c|lfll. (9)

Hence, from (8),

I — 2D fI = [ (67 = ) A, f)

= /,,,,_p,,,, 87 = PPIAQ) S, f) + ]l (s — p%)%d(Q(s)f, f)

§2P—p2P| >4

<&+ (s — p*)2d(Q(s)f, f)-

[s?P—p2P| 24

3 R TGy U GOV

£

<o+ 2 us(s, )AQS)f, f), (10)

e Jiszo—prr>6
for || f|| = 1, where L = sup,¢,(ry |s** — p*?|. From (7),
L? A-L?

e Jiir_pinins (S PVHQ)S, ) < ) l(@e(T) — e(pe®) D) £

Hence, from (9) and (10),

L oT) — welpe®) D (11)
ep?Pip(p?P) %

If :(pei®) € o.(p(T)) and p # 0, then there exists a sequence of unit vectors {f,} in
‘H such that

14T — PP D) fI? < 6% +

lim ||(:(T) — ¢e(pe®) ) full = 0. (12)
By (11), we have limsup||(|T|* — p*I)fa|| < 6. Letting § — 0, we have (|T* -
n—o0
1) f, — 0 as n — co. It follows that
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(IT| = pI)fn — 0 as n — oo, (13)

and 1 1
W(T|*)% — $(p*)% 1) fr — 0 as n — oo. (14)

Since p # 0, by (12) and (13), we have
(&(U) — &(e®)) fn — 0 as n — oo. (15)
Since &; is a homeomorphism, it follows that
(U-¢€®I)f, = 0 as n — oo. (16)
Hence, by (13) and (16), we have
pe® € 0,,(T) (17)

and also, by Theorem 8 of [2], pe®® € 0,4(T). Furthermore, by (14) and (15), we have

<pt(pei9) € Ona(p:(T)). (18)
Hence 04(9:(T')) C 0na(:(T)). In general, o4(¢¢(T)) D 0na(:(T)). So we have
0a(¢t(T)) = ona(p:(T)). (19)

Hence, (1) holds for ¢ € [0,1]. By (17) and (18), we have

Ina(02(T)) = @e(ona(T))- (20)
Hence, from Theorem 8 of [2], (19) and (20), it follows that
9a(pe(T)) = pr(0a(T)). (21)

Hence, the case of 0, = o, of (2) holds for ¢ € [0,1]. From (21) and Lemma 1.3.1 of
[7], (1) and the remainder of (2) hold. This completes the proof.

Corollary. Let T = U|T| € p—HU, & € So(a(U)) N To(a(V)), ¢ € To(a(|T|)) and
()%
Proof. Since £ € So(c(U)), from Theorem 3 of [5], we have £(U)|T| € p—HU.
And since £ € Ty(o(U)) we have ¢ = 0. Hence we can take &(z) = £(z) in the above
Theorem. Thus, this corollary is the case of §¢, = 0 for any ¢ € [0, 1], in the above

be monotone decreasing function. Then (1) and (2) hold.
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Theorem. Therefore, it is clear that (1) and (2) hold.
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