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ON PSEUDO-UMBILICAL SURFACES WITH NONZERO
PARALLEL MEAN CURVATURE VECTOR IN $\mathbb{C}P^{3}(\tilde{c})$ II

NORIAKI SATO

Abstract. In this paper, we classify pseudo-umbilical surfaces in a complex 3-
dimensional complex projective space under some additional condition.

1. INTRODUCTIO

Let $\mathbb{C}P^{m}(\tilde{c})$ be a complex m-dimensional complex projective space with the
Fubini-Study metric of constant holomorphic sectional curvature $\tilde{c}$ . The class of
totally umbilical submanifolds in $\mathbb{C}P^{m}(\tilde{c})$ was completely classified by Chen and
Ogiue [1]. However, it is well known that the class of pseudo-umbilical submanifolds
in $\mathbb{C}P^{m}(\tilde{c})$ is too wide to classify. Thus, it is reasonable to study pseudo-umbilical
submanifolds in $\mathbb{C}P^{m}(\tilde{c})$ under some additional condition.

Recently, the author [5] proved the following Theorem.

Theorem A. Let $M$ be an $n(\geq 2)$ -dimensional pseudo-umbilical submanifold with
nonzero parallel mean curvature vector in $\mathbb{C}P^{m}(\tilde{c})$ . If $2m-n\geq 2$ , then $m>n$
and $M^{\mathfrak{n}}$ is immersed in $\mathbb{C}P^{m}(\tilde{c})$ as a totdly real submanifold.

Immediately, we see that $\mathbb{C}P^{2}(\tilde{c})$ admits no pseudo-umbilical surfaces with
nonzero parallel mean curvature vector. The aim of this paper is to classify pseudo-
umbilical surfaces with nonzero parallel mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ . Now we
get the following Theorem.

Theorem 1.1. Let $M(K)$ be a complete pseudo-umbilical surface of constant
Gauss curuature $K$ with nonzero parallel mean $cu$rvature vector $\zeta$ in $\mathbb{C}P^{3}(\tilde{c})$ . Then
$M(K)$ is one of the following:

(1) $M(K)$ is an extrinsic hypersphere in a 3-dimensional real projective space
$RP^{3}(\tilde{c}/4)of\mathbb{C}P^{3}(\tilde{c})$ .

(2) $M(K)$ is a constant isotropic totally real surface in $\mathbb{C}P^{3}(\tilde{c})$ and the co-
variant derivative Va of the second fundamental $ fo7m\sigma$ is proportional to
$ J\zeta$ .

Remark 1.1. By Proposition 4.1, we can descrive the covariant derivative Va of
the second fundamental form $\sigma$ of the surface (2) in Theorem 1.1 explicitly.
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2. PRELIMINARIES

Let $M$ be an n-dimensional submanifold of a complex m-dimensional Kaehler
manifold $\tilde{M}$ with complex structure $J$ and Kaehler metric $g$ . A submanifold $M$

of a Kaehler manifold $\tilde{M}$ is said to be totally red if each tangent space of $M$ is
mapped into the normal space by the complex structure of $\tilde{M}$ .

Let V(resp.V) be the covariant differentiation on $M(resp.\overline{M})$ . We denote by
$\sigma$ the second fundamental form of $J/\prime I$ in $\tilde{M}$ . Then the Gauss formula and the
Weigarten formula are given respectively by

$\sigma(X, Y)=\tilde{\nabla}_{X}Y-\nabla_{X}Y,\overline{\nabla}_{X}\xi=-A_{\xi}X+D_{X}\xi$

for vector fields $X,$ $Y$ tangent to $M$ and a vector field $\xi$ normal to $M$ , where
$-A_{\zeta}X(resp.D_{X}\xi)$ denotes the tangential(resp. normal) component of $\tilde{\nabla}_{X}\xi$ . A
normal vector field $\xi$ is said to be parallel if $D_{X}\xi=0$ for any vector field $X$

tangent to $M$ . The covariant derivative Va of the second fundamental form $\sigma$ is
defined by

(2.1) $(\overline{\nabla}_{X}\sigma)(Y, Z)=D_{X}(\sigma(Y, Z))-\sigma(\nabla_{X}Y, Z)-\sigma(Y, \nabla_{X}Z)$

for all vector fields $X,$ $Y$ and $Z$ tangent to $M$ . The second fundamental form $\sigma$ is
said to be parallel if V$x\sigma=0$ .

Let $\zeta=(1/n)trace\sigma$ and $H=|\zeta|$ denote the mean curvature vector and the
mean curvature of $M$ in $\overline{M}$ , respectively. If the second fundamental form $\sigma$ satisfies
$\sigma(X, Y)=g(X, Y)\zeta$ , then $M$ is said to be totally umbilical submanifold in $\tilde{M}$ . By
extrinsic sphere, we mean a totally umbilical submanifold with nonzero parallel
mean curvature vector. If the second fundamental form $\sigma$ satisfies $g(\sigma(X, Y),$ $\zeta$) $=$

$g(X, Y)g(\zeta, \zeta)$ , then $M$ is said to be pseudo-umbilical submanifold in $\tilde{M}$ .
The submanifold $M$ of $\tilde{M}$ is said to be a $\lambda$ -isotropic submanifold if $|\sigma(X,X)|=\lambda$

for all unit tangent vectors $X$ at each point. In particular, if the function is
constant, then $M$ is said to be a constant isotropic submanifold in $\tilde{M}$ . The first
normal space at $x,$ $N_{x}^{1}(M)$ is defined to be the vector space spanned by all vectors
$\sigma(X, Y)$ .

Let $R(raep.\tilde{R})$ be the Riemannian curvature for $\nabla(r\propto p.\overline{\nabla})$ . Then the Gauss
equation is given by

$g(\overline{R}(X, Y)Z,$ $W$) $=g(R(X, Y)Z,$ $W$) $+g(\sigma(X, Z),$ $\sigma(Y, W))$

(2.2) $-g(\sigma(Y, Z),$ $\sigma(X, 1V))$

for all vector fields $X,$ $Y,$ $Z$ and $W$ tangent to $M$ . The Codazzi equation is given
by

(2.3) $(\tilde{R}(X, Y)Z)^{\perp}=(\overline{\nabla}_{X}\sigma)(Y, Z)-(\overline{\nabla}_{Y}\sigma)(X, Z)$

for all vector fields $X,$ $Y$ and $Z$ tangent to $M$ .
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3. LEM.$\backslash 1AS$

Let $M$ be a pseudo-umbilical surface with nonzero parallel mean curvature vector
$\zeta$ in $\mathbb{C}P^{m}(\tilde{c})$ . By Theorem $A$ , we see that $M$ is a totally real submanifold in
$\mathbb{C}P^{m}(\overline{c})$ . Thus the normal space $T_{x}^{\perp}(M)$ is decomposed in the following way;
$T_{x}^{\perp}(M)=JT_{x}(M)\oplus\nu_{x}$ at each point $x$ of.Vf, where $\nu_{x}$ denotes the orthogonal
complement of $JT_{x}(M)$ in $T_{x}^{\perp}(M)$ . We prepare the following Lemma.

Lemma 3.1. Let $M$ be a pseudo-umbilical submanifold with nonzero parallel mean
curvature vector $\zeta$ in $\mathbb{C}P^{m}(\tilde{c})$ . Then we have

(1) $\zeta\in\nu_{x}$

(2) $g(\sigma(X, Y),$ $ J\zeta$ ) $=0$

(3) $g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $\zeta$ ) $=0$

(4) $g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $ J\zeta$) $=H^{2}g(\sigma(Y, Z),$ $JX$ )

for all vector fields $X,$ $Y$ and $Z$ tangent to $J/f$ .

Proof. Lemma 3.1(1),(2) and (3) has been proved in [7]. By Lemma 3.1(2), we get

$g((\overline{\nabla}_{X}\sigma)(Y, Z),$ $ J\zeta$) $=g(D_{X}(\sigma(Y, Z)),$ $ J\zeta$ )
$=9(\tilde{\nabla}_{X}(\sigma(Y, Z)),$ $ J\zeta$)
$=g(J\sigma(Y, Z),\tilde{\nabla}_{X}\zeta)$

$=g(J\sigma(Y, Z),$ $-A_{\zeta}X$ )

$=g(J\sigma(Y, Z),$ $-H^{2}X$ )
$=H^{2}g(\sigma(Y, Z),$ $JX$ )

for all vector fields $X,$ $Y$ and $Z$ tangent to M. $\square $

Let $M$ be a pseudo-umbilical surface with nonzero parallel mean curvature vector
$\zeta$ in $\mathbb{C}P^{3}(\tilde{c})$ . We choose a local orthonormal frame field

$e_{1},$ $e_{2},$ $e_{3},$ $e_{4}=Je_{1},$ $e_{5}=Je_{2},$ $e_{6}=Je_{3}$

of $\mathbb{C}P^{3}(\tilde{c})$ such that $e_{1},$ $e_{2}$ are tangent to $M$ . By Lemma 3.1(1), we choose $e_{3}$ in
such a way that its dIrection coincides with that of the mean curvature vector $\zeta$ .
Since $M$ is a pseudo-umbilical surface, it is umbilic with respect to the direction of
the mean curvature vector $\zeta$ . In [6], we showed the followings

Proposition 3.1. Let $M$ be a pseudo-umbaical surface unth nonzero parallel mean
curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ . Then the surface satisfies

$\left\{\begin{array}{ll}\sigma(e_{1}, e_{1})=He_{3} & ae_{4}+be_{5}\\\sigma(e_{1}, e_{2})= & be 4^{-aes}\\\sigma(e_{2}, e_{2})=He_{3} & ae_{4}-be_{5}\end{array}\right.$

for some functions $a,$
$b$ unth respect to the orthonormal local fiame field $\{e_{i}\}$ .

Proposition 3.2. Let $M$ be a pseudo-umbilical surface with nonzero parallel mean
curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ . Then $M$ is an isotropic totally real surface in $\mathbb{C}P^{3}(\tilde{c})$ .
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Proposition 3.3. Let $M$ be a complete pseudo-umbilical surface with nonzero
parallel mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ . If $M$ is not totally umbilical, then the
surface is an isotropic totally real surface in $\mathbb{C}P^{3}(\tilde{c})$ whose second fundamental
form is not parallel.

4. PROOF $oP$ THEOREM 1. 1

The following is a key Lemma for Theorem 1.1. By the similar calculation as in
Maeda [2], we obtain

Lemma 4.1. Let $M(K)$ be a pseudo-umbilical surface of constant Gauss $cu$rvature
$K$ unth nonzero parallel mean curvature vector in $\mathbb{C}P^{3}(\tilde{c})$ . Then we have

(4.1) $g((\overline{\nabla}_{X}\sigma)(Y, Z),\sigma(S, T))=0$

for $dl$ vector fields $X,$ $Y,$ $Z,$ $S$ and $T$ tangent to $M$ .

Proof. By (2.2) and Proposition 3.1, we get the Gauss curvature $K=\tilde{c}/4+H^{2}-$

$2a^{2}-2b^{2}$ . By assumption, both the Gauss curvature $K$ and the mean curvature $H$

are constant. So we see that $a^{2}+b^{2}$ is constant. By Proposition 3.1 and Proposition
3.2, we get $\lambda^{2}=H^{2}+a^{2}+b^{2}$ . Immediately, we see that the surface is a constant
$\lambda$-isotropic surface in $\mathbb{C}P^{3}(\tilde{c})$ . Now we have (see [3]).

$g(\sigma(X, X),$ $\sigma(X, X))=\lambda^{2}g(X, X)g(X, X)$

which is equivalent to

$g(\sigma(X, Y),\sigma(Z, W))+g(\sigma(X, Z),\sigma(Y, W))+g(\sigma(x, \nu V),$ $\sigma(Y, Z))$

(4.2)
$=\lambda^{2}(g(X, Y)g(Z, W)+g(X, Z)g(Y, W)+g(X, W)g(Y, Z))$

By Theorem $A$ , we see that the surface is immersed in $\mathbb{C}P^{3}(\tilde{c})$ as a totally real
submanifold. Thus, the equations (2.2) and (2.3) are reduced to (4.3) and (4.4),
respectively.

$g(\sigma(X, Y),\sigma(Z, W))-g(\sigma(Z, Y),$ $\sigma(X, W))$

(4.3) $=(K-\tilde{c}/4)(g(X, Y)g(Z, W)-g(Z, Y)g(X, W))$

(4.4) $(\tilde{\nabla}_{X}\sigma)(Y, Z)=(\overline{\nabla}_{Y}\sigma)(X, Z)$

Exchanging $X$ and $Y$ in (4.3), we get

$g(\sigma(Y, X),$ $\sigma(z, \nu V))-g(\sigma(Z, X),$ $\sigma(Y, W))$

(4.5) $=(K-\tilde{c}/4)(g(Y, X)g(z, \nu V)-g(Z, X)g(Y, W))$

Summing up (4.2),(4.3) and (4.5), we have

$3g(\sigma(X, Y),$ $\sigma(Z, lV))$

$=(\lambda^{2}+2(K-\overline{c}/4))g(X, Y)g(z, \nu V)$

(4.6) $+(\lambda^{2}-(K-\tilde{c}/4))(g(X, Z)g(Y, W)+g(x, \nu V)g(Y, Z))$
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Differentiating (4.6) with respect to any tangent vector field $T$ , we get
(4.7) $g((\overline{\nabla}_{T}\sigma)(X, Y),$ $\sigma(Z, W))=-9(\sigma(X, Y),$ $(\overline{\nabla}_{T}\sigma)(z, \nu V))$

By (4.4) and (4.7) we have

$g((\overline{\nabla}_{T}\sigma)(X, Y),$ $\sigma(z, \nu V))=-g(\sigma(X, Y),$ $(\overline{\nabla}_{Z}\sigma)(\tau, \nu V))$

$=g((\overline{\nabla}_{X}\sigma)(Z, Y),$ $\sigma(\tau, \nu V))$

$=-g(\sigma(Z, Y),$ $(\overline{\nabla}_{W}\sigma)(X, T))$

$=g((\overline{\nabla}_{Y}\sigma)(Z, \dagger V),$ $\sigma(X, T))$

$=-g(\sigma(Z, W),$ $(\overline{\nabla}_{T}\sigma)(X, Y))$

for all vector fields $X,$ $Y,$ $Z,$ $W$ and $T$ tangent to M. $\square $

If $a^{2}+b^{2}=0$ in Proposition 3.1 (i.e.. $M$ is totally umbilical), then we have the
case (1) by Naitoh’s work $[4]$ ( $for$ details. see [6]). If $a^{2}+b^{2}\neq 0$ in Proposition 3.1
(i.e., $11I$ is not totally umbilical), then we get Va $\neq 0$ by proposition 3.3. Thus
immediately by Lemma 3.1(3), Lemma 4.1 and Proposition 3.1, we get
(4.8) $(\overline{\nabla}_{X}\sigma)(Y, Z)=fJ\zeta$

for some function $f\neq 0$ with respect to orthonormal local frame field $\{e_{i}\}$ . This
completes the proof of Theorem 1.1.

Immediately, by Lemma 3.1(4), Proposition 3.1 and (4.8), we have
Proposition 4.1. Let $M(K)$ be a complete pseudo-umbilical surface of constant
Gauss curwature $K$ with nonzero parallel mean curvature vector $\zeta$ in $\mathbb{C}P^{3}(\tilde{c})$ . Then
the surface satisfies

$\left\{\begin{array}{l}(\overline{\nabla}_{e_{1}}\sigma)(e_{1}, e_{1})=aJ\zeta\\(\overline{\nabla}_{e_{1}}\sigma)(e_{1}, e_{2})=(\overline{\nabla}_{e_{2}}\sigma)(e_{1}, e_{1})=bJ\zeta\\(\overline{\nabla}_{e_{2}}\sigma)(e_{1}, e_{2})=(\overline{\nabla}_{e_{1}}\sigma)(e_{2}, e_{2})=-aJ\zeta\\(\overline{\nabla}_{e_{2}}\sigma)(e_{2}, e_{2})=-bJ\zeta\end{array}\right.$

for some functions $a,$
$b$ in Proposition 3.1.
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