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Cartan hypersurfaces and reflections

F.Tricerri and L.Vanhecke

Abstract

0ne gives a characterization of the Cartan hypersurfaces in sphcres by means of
volume-preserving local reflections.

1. Introduction and statement of the results

In this short note we will treat some geometrical properties of a special class of
minimal hypersurfaces $M$ embedded in a sphere $S^{n+1}(c)$ of curvature $c$ . We always
suppose $M$ to be connected and compact.

We start with the definition of this class.

Deflnition. A Cartan hypersurface in a sphere $S^{n+1}(c)$ is a compact hypersurface
with principal $curvatures-(3c)^{1/2},0,$ $(3c)^{1/2}$ with the same multiplicity.

These hypersurfaces were discovered by E.Cartan in his work about isoparametric
hypersurfaces in real space forms [2], [3]. First, he discovered the socalled classical
Cartan hypersurface in $S^{4}(1)$ . It is the only complete hypersurface, up to congruence,
with three distinct constant principal curvatures. Ftirther, it is an “algebraic” manifold
defined by a polynomial of order three. It is minimaly embedded and moreover, it is a
homogeneous space $SO(3)/Z_{2}\times Z_{2}which$ may be viewed as a tube of radius $\pi/2$ about a
Veronese surface. (See also [6] for a description.) Next, E.Cartan also proved that these
hypersurfaces only exist when $n=3,6,12,24$ and that the compact ones are always
homogeneous.

Many authors studied isoparametric hypersurfaces, i.e. hypersurfaces with constant
principal curvatures, in real space forms. Every family of isoparametric hypersurfaces
contains a unique minimal one and the Cartan hypersurfaces are tilc compact ones
where there are exactly three distinct principal curvatures. In the reference list we give

1980 Mathematics Subject Classification (1985 Rcvision): $53C40,53C25$ , 53C22

–203–



a number of references about the general theory of isoparametric families and also about
the characterization of the Cartan hypersurfaces using one or other special property of
their geometry. In particular, see $[1]-[3],$ $[6],$ $[8],$ $[9],$ $[12],$ $[14]-[19],$ $[27]$ .

Here we shall concentrate on another aspect of $tl\iota cir$ rich geometry. Let $(M,g)$ be
a Riemannian manifold and let $P$ be an cmbcddcd submanifold with compact closure.
Then we may define tlxe socalled local reflcction $\varphi\tau^{j}$ with respect to $P$. In [4], [5], [7],
$[20]-[22]$ we studicd the properties of thesc reflections in rclation with the propcrties
of the curvature of the ambient space $(M, g)$ and the extrinsic and intrinsic geometry
of the submanifold $P$. See [24], [25], [26] for a survey and for more references. In this
paper we shall use the local reflections with respect to embedded compact hypersurfaces
to give a characterisation of the Cartan hypersurfaces by means of volume-preserving
reflections. This is a quite natural direction since volume-preserving reflections $\varphi_{P}$ lead
at once to minimal submanifolds $P[20]$ . Note that an isometnc reflection $\varphi_{P}$ leads to
a totally geodesic submanifold $P$, as is well-known (see for example [20]).

More precisely, we shall prove the following theorems.

Theorem 1. The Cartan hypersurface in $S^{4}(c)$ is, up to congrucnc$e$ , determined
by the following property: it is the only compact hypersurface $P$ in $S^{4}(c)$ with con-
stant scalar curva $t$ure and such that the local reflection $\varphi_{P}$ is a $n$on-isometric volume-
preserving diffeomorphism.

Theorem 2. Let $P$ be a compact hypersurface in $S^{\mathfrak{n}+1}(c)$ with constant $s$calar
curva $t$ure and such that the $sh$ape operator has exactly three different eigenval$ues$ .
Then $P$ is a Cartan hypersurface if and only if $\varphi_{P}$ is a volume-preserving non-isometric
local reflection.

Note that we cannot delete the constant scalar curvature condition. See [1] for an
example of a hypersurface $P$ in $S^{4}(1)$ with nonconstant scalar curvature and volume-
preserving reflection $\varphi_{P}$ .

2. Preliminaries

Before giving the $pr\infty fs$ of these theorems we recall some facts about the geometry
in a tubular $neighborh\infty d$ of a submanifold. We refer to [10], [11], [26] for more details.

Let $(M,g)$ be an n-dimensional Riemannian manifold and let $P$ be a q-dimensional
(connected) embedded submanifold which is relatively compact. Further, let $\mathcal{U}_{P}(r)$

denote a tubular neighborhood about $P$, i.e.

$\mathcal{U}_{P}(r)=\{m\in M|$ there exists a geodesic $\gamma$ with length $L(\gamma)\leq r$

from $m$ to $P$ meeting $P$ orthogonally}.

We always suppose that $r$ is smaller than the distance from $P$ to its nearest focal point.
To describe this $neighborh\infty d$ we use Fermi coordinates. Therefore, let $m\in P$

and let $\{E_{1}, \ldots, E_{n}\}$ be a local orthonormal frame field of $(M, g)$ defined along $P$ in a
$neighborh\infty d$ of $m$ . We specialize the moving frame such that $E_{1},$

$\ldots$ , $E_{q}$ are tangent
vector flelds and $E_{q+1},$

$\ldots$ , $E_{\mathfrak{n}}$ normal vector fields of $P$. Further, lct $(y_{1}$ , ... , $y_{g})$ be
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a system of $c\infty rdinates$ in a $neighborh\infty d$ of $m$ in $P$ such that $\frac{\partial}{\partial yj}(m)=E_{i}(m)$ ,
$i=1,$ $\ldots$ , $q$ . Then the Fermi coordinates $(x_{1}, \ldots , x_{\mathfrak{n}})$ with rcspect to $m,$ $(y_{1}, \ldots,y_{q})$

and $E_{q+1},$ $\ldots$ , $E_{\mathfrak{n}}$ are defined in an $0$pen neighborhood $\mathcal{U}_{n\iota}$ of $n$ in $Af$ by

$x_{i}(\exp_{\nu}\sum_{q+1}^{\mathfrak{n}}t\rho E_{\beta})=y_{i}$ , $i=1,$ $\ldots,q$ ,

$x_{a}(\exp_{\nu}\sum_{q+1}^{\mathfrak{n}}t\rho E_{\beta})=t_{a}$ , $a=q+1,$ $\ldots,$
$n$

where $\exp_{\nu}$ is the restriction of the exponential map to the normal bundle $\nu=T^{\perp}P$ of
$P$.

Now, consider the local diffeomorphism

$\varphi_{P}$ : $p\mapsto\varphi_{P}(p),$ $p=\exp_{m}(ru)\mapsto\varphi_{P}(p)=\exp_{m}(-ru)$

for $u\in T_{m}^{\perp}P,$ $||u||=1$ . $\varphi_{P}$ is called the local reflection with respect to the submanifold
$P$. Using the previously defined Fermi coordinates, $\varphi_{P}$ is locally given by

$\varphi_{P}$ : $(x_{1}, \ldots,x_{q}, x_{q+1}, \ldots,x_{n})\leftrightarrow(x_{1}, \ldots, x_{q}, -x_{q+1}, \ldots, -x_{\mathfrak{n}})$ .

Next, let $\theta_{P}$ denote the volume density function defined by

$\theta_{P}=(\det(g_{ij}))^{1/2},$ $i,j=1,$ $\ldots,$
$n$ .

Then we have
Lemma 3. The local reflection $\varphi_{P}$ is volume-preserving up to sign if and only if

$\theta_{P}(\exp_{m}(ru))=\theta_{P}(\exp_{m}(-ru))$

for all normal unit vecors $u\in T_{m}^{\perp}P$, all $m\in P$ and all sufficiently small $r$ .
The determination of $\theta_{P}$ is closely related to the study of the Jacobi differential

equation. A nice formula for $\theta_{P}$ is obtained in [13] (see also [23]) using the notion of
the Wronskian of two solutions of the Jacobi equation. The remarkable feature of this
formula is that $\theta_{P}$ is expressed completely by quantities relating only to the extrinsic
geometry of $P$ and the geodesic spheres of the ambient space which are tangent to $P$.
In fact we have
Lemma 4.

$\theta_{P}(p)=r^{q}\theta_{m}(p)\det(T(u)+B_{u}(r))$

where $\theta_{m}$ is the volume density $fu$nction of $\exp_{m}$ in $(M,g),$ $T(u)$ the shape operator of
$P$ with respec $t$ to the unit vector $u$ and

$B_{u}(r)_{ij}=g(T_{p}(m)E_{i}, E_{j})(m)$ , $i,j=1,$ $\ldots$ , $q$ .

Here $T_{p}(m)$ is the $sh$ape operator at $m$ of thc geodesic sphcre $G_{p}(r)$ with centcr $p$ and
radius $r$ .
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To prove our $th\infty rems$ we will need the explicit expression when $M=S^{n+1}(c)$ and
$q=n$ . Then, the solution of the Jacobi equation becomes extremely casy and we get
[10], [11], [26]
Lemma 5. Let $P$ be a 11ypcrsurfa$cc$ in $S^{\mathfrak{n}+1}(c)$ . Thcn $wc$ havc

$\theta_{P}(p)=(\frac{\sin\sqrt{c}r}{\sqrt{c}})^{1}\det$ ( $T(u)+\sqrt{c}$ cot $\sqrt{c}rI$).

From this we get the basic

Proposition 6. The local reflection $\varphi_{P}$ with respect to the hypersurface $P$ in $S^{\mathfrak{n}+1}(c)$

is volume-preserving if an $d$ only if all the odd elementary symmetric functions of the
principal $c$urva $t$ures vanish.

This proposition is a special case of a more general theorem [20] for a class of subman-
ifolds in locally symmetric spaces. We note again that when $\varphi_{P}$ is an isometry, then
$T(u)=0$ , i.e. $P$ is totally geodesic.

3. Proof of the results

To prove our results we shall need two properties for isoparametric hypersurfaces
in $S^{\mathfrak{n}+1}(c)$ which we recall first.

Proposition 7 [3], [14]. Let $P$ be an isoparametric hypersurface in $S^{n+1}(c)$ with
exactly three different principal curva $t$ ures. Then these curvatures have the sam $e$ mul-
tiplici $ty$.

Proposition 8 [16]. Let $P$ be a minimal isop$aJame\ell ric$ hypersurface in $S^{\mathfrak{n}+1}(c)$ with
$p$ distin $ct$ princip$al$ curva $t$ ures. Then the square $||T||^{2}$ of the length of the secon $d$

fundament$al$ form satisfies
$||T||^{2}=(p-1)nc$ .

Now we are ready to give the $pr\infty fs$ .

Proof of Theorem 1.
First, let $P$ be a compact hypersurface in $S^{4}(c)$ with constant scalar curvature and

suppose that $\varphi_{P}$ is volume-preserving but not isometric. Then Proposition 6 implies
that $P$ is minimal and the principal curvatures are $-\lambda,$ $0,$ $\lambda$ with $\lambda\neq 0$ . Further, the
scalar curvature $\tau$ of $P$ is related to $\lambda$ by the formula

$\tau=6c-2\lambda^{2}$ .
This is an easy consequence of the Gauss equation. It shows that $\lambda$ is constant and then
Proposition 8 implies $\lambda^{2}=3c$ (i.e. $\tau=0[17]$ ) and the result follows.
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Conversely, let $P$ be a Cartan hypersurface in $S^{4}(c)$ . Then it follows from the defi-
nition that the conditions in Proposition 6 are fulfilled and so, $\varphi p$ is $vol\iota lme$-preserving.

Proof of Theorem 2.
Let $P$ be a Cartan $1ly$ [)$ersuI\{acc$ in $S^{n+1}(c)$ . Then the principal curvatures are

$-(3c)^{1/2},0,$ $(3c)^{1/2}$ witll multiplicity $n/3$ . Hence, the results follow again from Propo-
sition 6.

Conversely, let $P$ be a hypersurface in $S^{\mathfrak{n}+1}(c)$ with only three distinct principal
curvatures and suppose that $\varphi_{P}$ is volume-preserving but not isometric. Since the odd
elementary symmetric functions of the principal curvatures vanish, we can only have
$-\lambda,0,$ $\lambda$ with $\lambda\neq 0$ . Further, the constancy of the scalar curvature implies again that $\lambda$

is constant. Then Proposition 7 yields that they have the same multiplicity and finally,
from Proposition 8 we get $\lambda^{2}=3c$ , which proves the required result.
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