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TOTALLY REAL SUBMANIFOLDS OF S®
SHARIEF DESHMUKH

ABSTRACT: We obtain an estimate for the index of a 3-
dimensional compact totally real submanifold of the nearly

Kaehler six dimensional sphere S°.

A six dimensional unit sphere S® has an almost complex
structure J defined by the vector cross product in the space
of purely imaginary cayley numbers. This almost complex

structure is not integrable and satisfies (VS_(J )(X) = 0 for any

vector field X Qri S®, where V is the Riemannian connection' on
S6 (and hence S® is a nearly Kaehler manifold) (cf.[2]). It is
also known that there does not exist a 4-dimensional almost
complex submanifold of S® (cf.[2]). However there are
3-dimensional totally real submanifolds of S6 (cf.[1]).
3-dimensional totally real submaﬁnifolds of S® are minimal
and orientable ([1]). -

Let M be a 3-dimensional totally real submanifold of S®
with the tangent bundle ™ and the normal bundle v. We denote
by the same letter g the Riemannian metric on S® as well as
that induced on M. The Riemannian connection v induces the
Riemannian oonnebtion V on M and the connection Vl in the
normal bundle v and we have the following Gauss and
Weingarten formulae
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(1) VXY = VxY + h(X,Y)
- 1 )
VXN = —ANX + VXN , X,Y ex(M), Nev,

where h is the second fundamental form and the tangential
component ANX of —VXN is related to the second fundamental
form h by g(h(X,Y),N) = g(ANX,Y), X,Y ex(M))x(M) is the Lie-
algebra of smooth vector fields on M. Since M is totally
real, for each normal vector field N there exists Xex(M) such
that JX = N. Define a tensor field G of type (1,2) on S® by

G(X,Y) = (VXJ)(Y), X,¥ ex(S®). Tmen using (1) and (¥ J)(%) =0,
)¢

it is easy to get the following (cf.[1]):

(2) h(X,Y) = JAJYX, V)‘EJY = JVXY + G(X,Y), and G(X,Y)ev, for
X,Yex(M).

It is also observed that if {ei} = {el,ez,es‘} is an

orthonormal basis of the tangent space TpM of M at peM, then

JG(ez,ez) =e,, JG(ez,eB) = el, JG(eS,el) =e,.

In the present note, we assume that 3-dimensional totally
real submanifold M of S® is without boundary and f£:M+S® is the
totally real immersion. Let ftbe the normal variation of f
induced from a normal vector field N € v. Then, since M is

" minimal, we have the following second variation formula

(cf.[3]).

a"(N) = [ {ulenz- R(N) - lAle}dV,
M

—194 —



3
where R(N) = )} R(N,e.; e; ,N), R being the curvature tensor
i

of S® and {ei } is any oriented orthonormal basis

le) 1ep.eg
of TpM at any peM. It is well-known that every compact minimal
submanifold without boundary in a sphere is not stable. In
fact, J.Simons has proved the following

PROPOSITION: Let M be a compact closed m—dimensional

minimal submanifold immersed in S". Then the index of M is

greater than or equal to (n-m) and equality holds only wheq M
is Sm The mullity of M is greater than or equal to (m+l)(n-m),

and equality holds only when M is g".

The object of the present note is to improve the above
result in the special case where M is a 3-dimensional compact
totally real submanifold of S®. Namely, we shall prove the
following

THEOREM. Let M be a 3-dimensional compact totally real
submanifold of S®. Then the index of M is greater- than or

equal to 3+b,, where b, is the first Betti number of. M.

1’ 1

In order to prove the above Theorem, we shall prepare a
second variation formula for a 3-dimensional compact totally
real submanifold. Let M be a 3-dimensional compact totally
real submanifold of S®. If R is the curvature tensor of M,

from Gauss equation we have

R(X,Y;Z,W) = g(Y,2)g(X,W) - g(X,2)e(Y,¥W)

+ g(h(Y,2),h(X,W)) - g(h(X,2),h(Y,¥W)),
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from which using the minimality of M, we obtain the following

expression for the Ricci tensor of M
" 5 3 2
Ric (X,X) = 21ix1° - ¥ h(X,e; )1,
i=1

at each point peM, where {ei} = {el,ez,eS} is an oriented
orthonormal basis of TpM. Using (2) in the above equation, we

get for any Xex(M), that

3) - IIANuz = Ric (X,X) - 20X12, N = JX.

Now let {xi} = {X.,X,,X.] be the local orthonormal frame field

1’72’ 3}

on a neighborhood U of p such that Xi-—-e.l, i=1,2,3 and Ve X;j= 0
i

(i,j=1,2,3) at p. For any Xex(M), we denote by n the dual 1-

3
form to X. We may write X = | a,X, on U. Then taking accouat
i=1

of (1) and the definition of the tensor field G, we get

(4) Vé.N v;. (%)

J J .

3 1
Y Vo (a,JX,)
(=1 eJ. i1

3
= ..a.)JX.+ G(e_., X), (j=1,2,
§=1<eJ a;)JK;+ G(e . X), (J 3)

at p. By the direct calculation, we get
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3
(5) 2.z.~'g((e‘jai).}ei , JG(e,X))
1,J=1

g(v, X, JG(e X))
=1 ej J

’k=lg(Ver.ek) g(JG(e %), &)

dn(ey.ey) g(Gley.ey), JX)

]
|
R V)

k=1

at p. We define a snooth function FX on M by

3

(6) Fx(p) = .%: k:ldn(e-j oek)g(c(ej vek)o JX), pEM'

Then by (4), (5), (6), we get

@ w'n? = avtxe® = ave® o2’ F.

Using the expression for the curvature tensor R of S®, we get
R(N) = 31x12. Hence, using (3) and (7), the formula for the
second variation becomes

2}

(8) a"(X) = o"(JX) = [ {1vR1® + Ric(X,X) - F-31X1°}av.

M
On one hand, computing the divergence of the vector field
W=9VX + (divX)X (where divX is the divergence of X), and

X
using [ (divW)dV = 0, we obtain (cf.[4])
M

— 197 —



@) [ {1vx1® + Ric(X,X) - —é— dni? - (5n)2} av = 0.
M

From (8) and (9), we then obtain

(10) o"(X) = o"(JX) = | {—;— ddnt2+ (<sn)2 - Fx-auxnz}dv,
M

for any X € x(M), where n is the 1-form dual to X.

Now we are in a crucial position of the proof of the
Theorem. We recall the proof of the proposition by J.Simons. We
adopt the same notational convention as in the proof. We denote
by Z the induced vector field on S® induced by a constant
vector field on a 7-dimensional Euclidean space R7. Restricting
Z to M, and projecting onto normal and tangential components,

N

gives cross sections Z and ZT in v and ™ respectively. Then

we get (cf.[3], p.85)

an vzt = ax,zh,

for any tangent vector XeTpM, peM. Then we have

a"(ZN) =-3] 12814y

M

(cf. [3], Lemma 5.1.4, p.86). Hence we see that the index of M
is greater than or equal to 6-3=3. It is easily observed that

the 1-form dual to the vector field JZNex(M) is harmonic if and

only if
3 N
(12) ] &V, (JZ), e;) =0, (i=1,2,3),
i=1 i
and

(13) gcvei(JzN>. e;) - g(vgj<JZN), e;) =0
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(i,j=1,2,3) at each point peM.
First we show that (12) holds. Since M is minimal, by (2)

and (11), we get

3

I av, (32, e)
i=1 i

3

I @, z').ep)
i=1 i

N 5 N
=lg(G(ei.Z ) + JVeiZ ,ey)

]
e~ WD

|
M W
0]
7~~~
=3
~~
)
’.J.
[N
3
N’
ey
o
'-l.
o’

Y gJA e., Jde.)
f=1 gzt ¥ 1 .

3
) g(A T

i’ ei)
i=1 JZ

i
H e W

g(h(e,; ,e.), JZT) =0
=1 i*7i

at p € M. Thus it follows that (12) holds. Next by (2) and

(11), we get
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N N

- N - N
g(Vei(JZ )o e5) - 8(7y;(920), ;)

N = N = N
_Zg(G(ei,eJ.),Z ) + g(JVeiZ ,ej) - g(JVejZ ;)

N T T
=—2g(G(ei,ej), Z') + g(h(ei,Z ),Jej )—g(h(eJ..,Z ‘),Jei]

-2g(G(e; e ), 2Ny + B(IAL,T e;,Je;) —g(IAyTe., Je;)

N T T
= —Zg(G(ei,ej), 2 )+ g(h(ei,ej),JZ ) —g(h(ei,ej), Jz")

= -2g(G(e;,e), 2'), (1,371,2,3), at peM.

Thus (13) holds if and only if ZN = 0 Hence the 1-form dual to
the vector field JZNex(M) is harmonic if and only if 'ZN=O along
M. We assume that the first Betti number b, of M is greater
than or equal to 1. Let n' be a non-zero harmonic¢ 1-form on M
and X'ex(M) be the vector field dual to the 1-form n'. Then
since dn'=0, én'=0, for N'=JX', from (10), we have

a"(N') = a"(JX') = -3[1X"* 2av < 0.

M

Summing up the above arguments, we have the Theorem.
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