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1. Introduction

Let (M,g,%) be a p+q dimensional Riemannian manifold
with a foliation % of codimension q and a Riemannian
metric g which is bundle-1like with respect to ZF ([7], [81]).
Let At(M) ( resp. Ar’s(M) ) be the space of all t-forms
( resp. (r,s)-forms ) on M . Then we have a decomposition

(%) : At(M) = X AY’5(M) and a projection = : At(M)

r+s=t r,s

—_— Ar’S(M) (r+s = t ). Let d be the exterior derivative
and & be the formal adjoint operator of d . Then the
decomposition (#) implies the following decompositions: d

=d'" +d" + d"" and & = &' + &" + &"' ([4]), [8], [11], [12]).
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An operator O = 8d + d§ acting on At(M) is called the

Laplace-Beltrami operator. Moreover, we can consider two

operators: Q' = §'d' + 4'8' and @o" = §"d" + 4d"s"
First, we consider three operators o , @' and 0O"

acting on C~(M) = A%(M) , that is, o = 8d , o' = &§'d' and

o" = 8"d" . It is trivial that o = n0' + Oa" . Next, we
consider the operators 0O and 0O" acting on Al(M) = { @
e A1 (M) | d'¢ = 0} . Then we have that @ = ( &"'d"

+.d'8" ) + ( 8"d" + d4"6" ) = ( &"'d" + d'8" ) + O"

Let H be the mean curvature vector field of & that
is a vector field on M ([8], [9], [10], [13]).

The purpose of this note is as follows:
(i) To show the decompositions of the operator " ( Theorems
A and B below ) and to prove those statements ( sections 3
and 5 ). |
(ii) To show concrete forms of the decompositions of the
Laplace-Beltrami operators on foliated Lie groups ( Examples
2 and 3 in section 4 ).
(iii) To give an application of Theorems A and B — the non-

existence of harmonic basic 1-forms ( Theorem C in section 6 ).

Theorem A. Let (M,g,¥ ) be a p+q dimensional

Riemannian manifold with a foliation &% of codimension gq

and a bundle-like metric g with respect to % . Then the

Laplace-Beltrami operator O acting on c”(M) has a

decomposition:
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Moreover, if # 1is minimal ( or, totally geodesic ) then

ob=0' + O
o

In the above theorem, if % 1s regular and p : M
— B = M/¥ 1is a Riemannian submersion, then it holds that
o5(uep) =‘(DBu)op for any u € C*(B) , where - denotes the
composition of mappings and UB is the Laplace-Beltrami

operator acting on CQ(B) . The definition of Dg is

precisely given in section 3.

Remark 1. We can consider that the operator O" = ug
+ H 1is the normal part ([5]) or the radial part ([1], [2])
of the Laplace-Beltrami operator O acting on Cm(M) ( see

Example 1 in section 3 ).

Theorem B. Let (M,g,%) be as Theorem A. Then the

Laplace-Beltrami operator @O acting on Al(M) has

Jso

decomposition:

D = ( 5"ld" + d' 6" ) + D"

o * n0,1°L

H b

where L denotes the Lie differentiation with respect to

H
H

The definition of ng is precisely given in section 5.
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Remark 2. It holds that L,¢ € Al’O(M) + Ao’l(M) for

H
any ¢ € Al(M) . Thus we have that (no loLH)m = 7, l(LHcp)

e A% L

Remark 3. If H 1s an infinitesimal automorphism of &%
([31), then Lyo € aAS(M) and 8"¢ € 2571 (M) for any o

€ Al(M) . This fact was pointed out by the referee.

Remark 4. Let (M,g,%) be as Theorem A. If % is a
Clairaut foliation, then H 1is an infinitesimal automorphism
of # ([13, Propositions 6.1 and 6.2]). Thus the operator n
acting on Al(M) has a decomposition: o = ( &"'d" ) + ng + LH
Remark 5. For the Laplace-Beltrami operator 0O acting

on AS(M) ( s 22 ), we have

a
n

( 6"'d" + d!&" + d"a"' ) + ( d'&"' )

+ Dg + + d"'a"'

nO,s°LH
This decomposition was given by J. H. Park[6] too.

We shall be in C -category. Manifolds are connected
and orientable, and foliations are transversally orientable
([10]). We agree on the following ranges of indices: 1 < i,
J, k, .+ <p, ptl £, B, ¥, *** £ p+q unless otherwise

stated. The authors thanks the referee for his suggestions.



2. Foliated manifold

Let (M,g,¥) be a p+q dimensional Riemannian manifold
with a foliation &% of codimension gq and a Riemannian
metric g which is bundle-like with respect to % . Let
{ U, (xi,xa) } be a flat coordinate neighborhood system, that
is, in U , the foliation & 1is defined by ax% = o (71,
[8]). Let { Xi’ Xa } be the basic adapted frame to % and
{ Gi, 6% } be the dual frame to { Xi’ X, } ([138]). Here we

o

notice that X is tangent to the leaves of % 1in U and

i

g(Xi’Xa) = 0 ([13]). We set that gij = g(Xi,XJ) and I

= g(Xa’XB) . Then the metric g 1is locally expressed in the
. - k vy gl 6 aJ Yy o%.aB

form: gIU = Zij gij(x ,X7) 87--8Y + o8 gaB(X ) 6787 ([7]).

If a form ¢ on M has a local expression:

i i (04 (04
@l 1 2 @ (x¥,x¥) o LA--A8 TAO IA--AQ S,
U r!'s! i 1 o,
il-°i 1 r-il S
r
alo ‘ds
then we call ¢ an (r,s)-form. Hereafter we omit " IU " for

simplicity. Let At(M) ( resp. Ar’s(M) ) be the space of all
t-forms ( resp. (r,s)-forms ) on M ([11], [12]). Then the
following decomposition holds:

Aty = 3 AT S (M)

r+s=t

Then, for each r and s satisfying r+s = t , we have a

projection S At(M) o Ar’s(M) . The above decomposition
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induces decompositions of the exterior derivative d and the

its formal adjoint operator &
d = d' + d" + d"' and 5 = 6' + 6" + 6"'

([4]1, (8], [11], [12]). We notice that d" : Al’'S(M) —
Ar,s+l

1"

(M) and & =g #» d" * , where g = #1 and #* denotes
the Hodge star operator ([4], [11]).

An operator O = dé + 8d acting on At(M) is elliptic.
But two operators O' = d'8§' + &§'d' and a" = d"s" + §"4d"
acting on Ar’s(M) are not elliptic ({11]), nevertheless
both o' and 0" are interesting operators which are studyed
by many people. The operator O acting onh At(M) is called
the Laplace-Beltrami operator. If ¢ € At(M) satisfies 0Ogp
= 0 then we call ¢ a harmonic t-form.

Let C%(M) be the space of all functions on M , that
is, ¢ = A%%m) = A°M) . Let aS(M) be the space of all
basic s-forms on M , that is, AS(M) = { ¢ € AO’S(M) | d'e
= 0 } . The three operators O , ' and 0" acting on

c®(M) 1is given by

i}
1]
[
o))

u'! = 6"d'l .

8]
]

od ’

and we have that o = no' + A" on Cw(M) . Next, the operator

O acting on Al(M) has a decomposition:

D = ( 6"'d" + d'a" ) + n"
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Here, for any ¢ € Al(M) , (8" 'd" + d'8" Yo € Al’O(M) and
O"¢ = ( &"d" + 4d"8" )¢ € Ao’l(M) . We notice that mD'¢ = 0
for any ¢ € AS(M)

Now we introduce the mean curvature vector field H of
% , that is, H 1is a vector field on M which has a local
expression:

oB

. _ ij
X i HT = ZB g g ( Zij g (vX XJ), X

)
i B

where v denotes the Levi-Civita connection with respect to
g , and the restriction of H to a leaf ¢ of # 1is the
mean curvature vector field on the submanifold ¢ of M
([81, (91, [10]). If H =0, then % 1is called minimal,
that is, all leaves of F are minimal submanifolds of M

(r8l, [91).

3. Proof of Theorem A

For any f € Cm(M) , we have

el ar( v, x

of )
Xi J

"
|
M

1]
g (X (df(Xy) )) + I

iJ J

oB oB
w8 & (Xa( df(XB) )) o+ zaB g daf ( VXaXB )

1j : 1 4
1y 87 XCAEED )+ Ty e ATEC (% Xy )

13 go
13 &7 d"f( (inXj)N )
e (X, arr(xp) ) v B, 8% arr( (v Xp)p )

oB o

— 95 —



+ 2 gaB d"f( (VX X

6 RIIREE

B

where ( )T ( resp. ( )N ) denotes the component of ( )

tangent ( resp. normal ) to the leaves of % . For example,
- k - 14

(VX.XJ)T = Zk rij Xk and (V¥ J)N = Z rij X . On the

i
other hand, A'f and o"f are given by

=]
b
i}

8'd'f
= 8d'f

- - Ey e xgcarx) )+ g et are (v X

ij
D"f - 6"d"f

ij J)T

= 84"f

- -5 gb (X, ( d"f(X

B .
8 ) )) + X g d"f( (vX X

In )
oB o N

B B

+ 2 gij d"f( (

1j JN)

= naf + Hf

Here ng is an operator given by

" - _ aB ”" aB "
osf = ZaB g (X, ( d f(xB) )) + ZaB g~ d"f( (VXaXB)N )
Since the metric g 1is bundle-like with respect to % , we

have that X gaB (V X

o8

we have that npnf = o'f + Dgf + Hf

B)T = 0 ([13, Lemma 5.1]). Therefore,

Example 1. Let O(n) be the orthogonal group acting on
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the Euclidean space (Rn.go) . Then we have a foliated
n

Riemannian manifold (M,g,%) , where M = R~ - {the origin} ,
g = gO|M and each leaf of F 1is an orbit of O0O(n) . It is
clear that g 1s bundle-1like with respect to % . By direct
calculation ( using the polar coordinates on RD ), we have

(#) o'+ H=- 25 - 0= &

According to S. Helgason[l, 2], the right hand side of (#)
is the radial part of the Laplace-Beltrami operator LRn on

n

R™ ([2, p.266]), that is, A(LRn) = - =—F - —= — . Here we

notice that our definition of the Laplace-Beltrami operator

has the opposite sign from that in [1, 2].

4. Concrete form of the decomposition

Our discussion in this section is due to [9].

Let G be a p+q dimensional Lie group and g be the
associated Lie algebra consisting of all vector fields on G
that are invariant under left translations. We take a Lie
subalgebra bh of g , then we have a foliated manifold

(G,¥(b)) as follows: We denote by Lx the left translation

of G by x € G. Let H be a connected subgroup of G
whose Lie algebra is b . Regard a submanifold LX( H ) as
a leaf through x , we have a foliation %(h) on G . If

we take a left invariant metric < , > on G , we have a
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foliated Riemannian manifold (G,< , >,F(bh)) . We assume
that the foliation &#(bh) 1is of codimension q

Let { €ir €y } be an orthonormal adapted frame field
on (G,< , >,%(bh)) , that is, | ey, e, } 1is an orthonormal
basis for g such that {ei} is a basis for b . Let CRB
be the structure constants of g with respect to {eA} , that
is. [ey.epl = X Cpp e

Now, let g be a non-compact simple Lie algebra and <t
be an involutive automorphism of g . We set | = { X € g
t(X) =X}, p={Xe€g; t(X) = -X1}, then it holds that
g =1+p with [, 1 1 et , [, pPplcp., [P Plcl
The Killing form B of g 1induces a left invariant metric
(,) on G, that is, (X,Y) = - B(X,t(Y)) , and, for any X
€ p, ad(X) 1is a symmetric linear transformation of g with
respect to the metric. Let a be a maximal abelian subspace
of p and a" be the dual space of a . For A € a* . we set
8, = { X € g ; [A,X] = 2(A)X for A €a} . If 8, * 0 then

X 1s called a root, and let A be the set of all roots.

Then we have

8 = Z,ep 8, » €8y [g,,8,] cg,,, for 2, nea

We take an ordering in o* . We denote by A+ the set of
positive roots.

We take two subspaces A and A of A+ satisfying

1 2

(i) A, D A , (1i1) x, u € Ar , A+l € At implies a+a

1 2
€ Ar (r =1, 2 ) , and we also take two subspaces

°1 and

Qa, of a such that 01 2 a5 - We set
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m. = a. ¢ ExeAr %1

then n is an algebra and 1, is a subalgebra of n

1
Let Nl ( resp. Nz ) be a connected Lie subgroup of G with

the Lie algebra “1 ( resp. “2 ). Thus we have a foliated
manifold (Nl,?(nz)) . Here we use the following ranges of
indices:
l1 £a, b £ dim aQ, dim a, *+ 1 <1i, j £ dim N2
dim N2 + 1 <o, B £ dim N2 + dim a; - dim a,
dim N2 + dim Q; - dim a, *+ 1 <&, n <dim Nl
We set
{ e, €y } : basis for n, { e, ey } : basis for a;
{ e e& } : basis for ZAGA 8, -

1

where we may take ey ( resp. eg ) in the root space N
i

( resp. ) , and it may happen that Ay = Xy for s # t

8

A
When we take a left invariant metric < , > on N1 so that
{ e, ei, ea, eE } 1s orthonormal, we have a foliated

Riemannian manifold (N1’< , >,?(n2)) . Then it holds

0d

- g _
H” = Zi Ai(ea) , H® =0

Thus we have

Lemma([9]). Let (N1'< , >,?(n2)) be as above. Then

the metric < , > 1is bundle-like with respect to ?(nz) if
and only if Ag(ea) = 0 and Xy+hy £ A Na, for all a, i,

and &
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Example 2. We consider the following case: Al = A

=4 , 0 =a, a, = {0} . Then (Nl’< , >.?(n2)) is a

2

foliated Riemannian manifold whose metric < , > 1is bundle-

like with respect to ?(nz) . We have

H=2, 6 (2 x(e) e
« 1€A+ « «

Thus the Laplace-Beltrami operator O acting on Cm(Nl) has:

a following decomposition:

(##) o= - 21 ejrey - T e_ce_ + Zu( z

o o o )‘(ed) )e(!

aeat

where (Ei ei'ei)f = Zi ei( ei(f) )

In [2, Proposition 3.8, p.267], we can find an expression
corresponding to the second and third terms of the right hand

of (##). Here we have to notice a formula (49) in [2, p.265].

Example 3. We consider the following case: a = sl(4,R) ,

t

8(X) - "X (X € g ) ([9, Example 4.2]). In this case, we

have

cso(4) , p={Xegl(4,R) ; X=X, Tr(X) =0} ,

—
L}

o]
"

H

1 0 ) _

.. ; Hy + H, + Hyg + H, = 0 ,
0 H,
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H
A= | g - Aj i1l <1, j <4 ) ; Al > X, > 13 > A4 ,
At = | Ag s Ay i lEl<j<a),
Al = { *1 = Xgs Ay T Xgs Xy T Ay, Ay T Ag, Xo = Xy } o,
Az = { X1 T Rgs Ay T Xgs Xy T Xy, Ay T Ag } o,
( 2 0
a; = a- —2l a € R ,oQy = {o} ,
0 -1
\
r 2 0
®u "21 » e P Ejp  Eyg s Ejy s Egg
e -1
eg E24
Here Eab denotes a square matrix with entry 1 where the

a-th row and b-th column meet, all other entries being O
Then we have a foliated Riemannian manifold (N1,< , >,?(n2))
and, by Lemma, < , > 1s bundle-like with respect to ?(nz)
We have that H = 5-e, . Thus the Laplace-Beltrami operator

o
O acting on Cw(Nl) has a following decomposition:

5. Proof of Theorem B

For any ¢ € Al(M) , we have
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6Hd" X
@ ( Y)

= ad"¢(XY)
- - % gldv, ey (x..x) - =, g®B(v, d"e)(X,.X )
ij Xy J'7y oB Xa B’y
= d"e(H,X,) - =, g*®(v, d"e)(x,,X )
Ty oB Xa B’y
and
d 6‘¢(Xy)
= dé"w(Xy)
= X?(a"w)
= X?(6¢) |
- ij . of
Xv{zij g (VX1¢)(XJ) + Zas g (vxam)(XB)}
- a oB
= Xy(w(H)) XV{ZQB g (VXaw)(XB)}
Thus we have
D"(p(xv) = 5"d"(p(XY) + d"é"cp(XY)
- _ oB "
oB

If we set

DO¢(XY)

- o " _ oB
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then we have that 0O ¢(X?) = (LHw)(XY) + nom(Xy) , which
completes the proof of Theorem B.

We notice that if % 1is regular, p : M — B = M/F 1is
Riemannian submersion, and ¢ € Al(M) is given by ¢ = p*w

for ¢ € Al(B) , then ng¢ = p*DB¢ ({s81).

6. Non-existence of harmonic basic 1-forms

Let (M,g,%) be as section 2. Let Q be the normal
bundle of # and n : (TM) — T(Q) be the natural
projection, where TM 1s the tangent bundle over M and
'( ) denotes the set of all sections of a bundle ([3], [10]).

on Q ([3]1, [10]). Then
)aB

The metric g induces a metric gQ
we notice that gQ(n(Xa),n(XB)) = g(Xd,XB) = gaB and (gQ
= gaB ([14]). We denote by D the transverse Riemannian

be the Ricci operator of & ,

connection on Q , and let Pp
. _ B
that is, pD(n(Xy)) = ZaB g RD(n(Xy),n(Xa))n(XB) , where RD
is the curvature of D ([3], [10]). We notice that DX n(XB)
o

= 7t(VX XB) and DX n(X,) = 0 ([3], [10], [14]). The Ricci

o i
operator Py of # 1is non-negative ( resp. positive ) at a

B

point x of M |if gQ(pD(v),v)X 2 0 ( resp. > 0 ) for any

v € T(Q) satisfying v(x) = 0

Theorem C. Let (M,g,¥%) be as Theorem A. Suppose that

M 1is compact and without boundary. If % 1is minimal and -

the Ricci operator of ¥ 1s non-negative everywhere and

Pp
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positive for at least one point of M , then every harmonic

basic 1-form on M vanishes identically.

N _ oB
We set that op (Xy) = ZaB g {VX (VX XBJN]N

- [vxa(vaXB)NJN - [V(VXYXaJNXB]N + [V(VXQXY)NXB]N . Since

it holds that (vy Xp)y = (9 X )y ([12]) and n((vy X

)n)
o B o B°N

- DXan(XB) , we have that n(pN(XY)) = pp(R(X,))

Let < , > be the local scalar product on Ar’s(M) ,
and let ¢ be a basic 1-form on M , that is, ¢ € Al(M)

We have, by Theorems A and B,

" - Yt ”" *
< 0"p,p > = zYt g’ a @(XY) @(X.)

rT 3 _ogd
th g (LH¢)(X?) @(Xt) H(2< @, >)

+ B(3< 0,0 >)

o8 vt
g (an¢)(xv)'(VXB¢)(Xr)

+

zaByt

. 14 N .
e 80 0P (X)) (X))

Here we notice that u'(%< ®,¢ >) = 0 . Since ¢ € Al(M)
and O¢p = 0 , we have that 0"¢ = 0 . And we have that H

= 0 because ¥ 1s minimal. By the condition for we

Pp

have that ZYt th 0(pN(Xy))~Q(Xt) 2 0 . Thus, by the

standard method, we can complete the proof of Theorem C.
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