A class of homogeneous Riemannian manifolds

By

Hitoshi TAKAGI

(Received Nov. 30, 1970)

1. Introduction

R. L. Bishop and B. O'Neill [1] constructed a wide class of Riemannian manifolds of negative curvature by warped product using convex functions. For two Riemannian manifolds B and F, a warped product is denoted by $B \times {}_f F$ where f is a positive C^{∞} function on B. The purpose of this paper is to prove

THEOREM. Let (F, g) be a Riemannian manifold of constant curvature $K \leq 0$. Let E^n be an n-dimensional Euclidean space and let f be a positive C^{∞} function on E^n . If either $E^n \times {}_f F$ is homogeneous (Riemannian) or the Ricci tensor of $E^n \times {}_f F$ is parallel, then $E^n \times {}_f F$ is locally symmetric.

The proof of the last theorem is motivated by [2], in which S. Tanno deals with some related problems.

2. The curvature tensor of $\mathbf{E}^{\mathbf{n}} \times_{\mathbf{f}} \mathbf{F}$

Let (F, g) be a Riemannian manifold and let E^n be a Euclidean *n*-space. We consider the product manifold $E^n \times F$. For vector fields A, B, C, etc. on E^n , we denote vector fields (A, 0), (B, 0), (C, 0), etc. on $E^n \times F$ by also A, B, C, etc. Likewise, for vector fields X, Y, etc. on F, we denote vector fields $(0, X), (0, Y_1)$, etc. on $E^n \times F$ by X, Y, etc.

We denote the inner product of A and B on E^n by $\langle A, B \rangle$. Let f be a positive C^{∞} -function on E^n . Then the (Riemannian) inner product \langle , \rangle for A+X and B+Y on the warped product $E^n \times {}_fF$ at (a, x) is given by (cf. [1].)

$$\langle A+X, B+Y \rangle_{(a,x)} = \langle A, B \rangle_{(a)} + f^2(a)g_x(X, Y).$$

We extend the function f on E^n to that on $E^n \times {}_fF$ by f(a,x)=f(a). The Riemannian connections defined by <, > on E^n and $E^n \times {}_fE$ are denoted by ∇^o and ∇ , respectively. The Riemannian connection defined by g on F is denoted by D. Then we have the identities (cf. Lemma 7.3, [1].)

H. Takagi

(2. 1) $\nabla_A B = \nabla^o_A B$,

$$\nabla_A X = \nabla_X A = (Af/f)X,$$

(2. 2)
$$\nabla_X Y = D_X Y - (\langle X, Y \rangle / f) \text{ grad } f.$$

By (2. 1) we identify ∇^{o} with ∇ in the sequel. In (2. 2) grad f on E^{n} is identified with grad f on $E^{n} \times_{f} F$ and we have

$$\langle grad f, A \rangle = df(A) = Af.$$

The Riemannian curvature tensors defined by ∇ and D are denoted by R and S respectively. We use both notations R(X, Y) and R_{XY} , etc. :

$$R(X,Y) = R_{XY} = \nabla_{[X, Y]} - [\nabla_X, \nabla_Y]$$
, etc.

Then, noticing that E^n is flat, we have (cf. Lemma 4.4, [1])

$$R_{AB}C=0,$$

$$R_{AX}B=+(1/f) < \nabla_A grad f, B > X,$$

$$R_{AB}X=R_{XY}A=0,$$

$$R_{AX}Y=(1/f) < X, Y > \nabla_A grad f,$$

(2. 3)

From now on we assume that (F, g) is of constant curvature $K \leq 0$. Then we have

 $R_{XY}Z = S_{XY}Z_{-}(\langle grad f, grad f \rangle / f^2)(\langle X, Z \rangle Y - \langle Y, Z \rangle X).$

$$S_{XY}Z = K(g(X, Z)Y - g(Y, Z)X) = (K/f^2)(\langle X, Z \rangle Y - \langle Y, Z \rangle X).$$

In this case, (2.3) is written as

$$R_{XY}Z = P(\langle X, Z \rangle Y - \langle Y, Z \rangle X)$$

where we have put

(2. 4)
$$P = (K - \langle grad f, grad f \rangle)/f^2 \leq 0.$$

Then we have the following

LEMMA 2.1. (cf. Lemma 4.1, [2]) On
$$E^n \times {}_fF$$
, $\nabla R = 0$ if and only if

(2. 5) $fP \operatorname{grad} f + \nabla_{\operatorname{grad}} f \operatorname{grad} f = 0,$

(2. 6)
$$f \nabla_A \nabla_B \operatorname{grad} f - f \nabla_T \operatorname{grad} f - Af \nabla_B \operatorname{grad} f = 0, \ T = \nabla_A B$$

and

$$(2. 7) \qquad Bf \nabla_A \operatorname{grad} f - \langle \nabla_A \operatorname{grad} f, B \rangle \operatorname{grad} f = 0.$$

Let $A_{\alpha}(\alpha=1, 2, \dots, n)$ be unit vector fields on some open set on $E^n \times {}_fF$ such that they are mutually orthogonal and are tangent to E^n at each point of the open set. We denote by R_1 the Ricci curvature tensor. Then we have (cf. §5, [2])

14

(2.8)
$$\begin{cases} R_1(Y, Z) = [(r-1)P - (1/f) \sum_{\alpha} \langle \nabla_{A\alpha} \text{ grad } f, A_{\alpha} \rangle] \langle Y, Z \rangle \\ R_1(B, Y) = 0 \\ R_1(B, C) = -(r/f) \langle \nabla_B \text{ grad } f, C \rangle, r = dim. F. \end{cases}$$

3. Lemmas

LEMMA 3.1. Let R_1 be the Ricci tensor field of a Riemennian manifold (M, g). Let R^1 be a field of symmetric endomorphism which corresponds to R_1 , that is, $g(R^1 X, Y) = R_1(X, Y)$ for all vector fields X and Y on M. If either

a) M is homogeneous (Riemannian)

or

b) the Ricci tensor of M is parallel,

then the characteristic roots of R^1 are constant in value and multiplicity on M.

PROOF. a) Since $R_1(\varphi_*X, \varphi_*Y) = R_1(X, Y)$ for every isometry φ of M, it follows that $\varphi_*^{-1} R^1 \varphi_* = R^1$ on M. Since M is homogeneous, this proves the first of the lemma.

b) In this case R^1 is also parallel and the result is immediate. q. e. d.

Returning to an argument of $E^n \times {}_f F$, we have

LEMMA 3.2. (cf. Lemma 6.1, [2]) On $E^n \times {}_fF$, (2.5) is equivalent to P = constant.

PROOF. By (2, 4) and (2, 5) we have

 $(1/f)(K - \langle grad f, grad f \rangle)$ grad $f + \nabla_{grad} f$ grad f = 0.

Since this equation is an equation on E^n , we introduce the natural coordinate system $(x^{\alpha}; \alpha=1, \dots, n)$ on E^n . Then the last equation is nothing but

$$(K-\sum_{\alpha}\frac{\partial f}{\partial x^{\alpha}},\frac{\partial f}{\partial x^{\alpha}},\frac{\partial f}{\partial x^{\alpha}},\frac{\partial f}{\partial x^{\beta}}+f\sum_{\alpha}\frac{\partial^{2}f}{\partial x^{\alpha}\partial x^{\beta}},\frac{\partial f}{\partial x^{\alpha}}=0.$$

The last equation multiplied by 2f is

$$(K-\sum_{\alpha}(\frac{\partial f}{\partial x^{\alpha}})^2)\frac{\partial f^2}{\partial x^{\beta}}-f^2\frac{\partial}{\partial x^{\beta}}(K-\sum_{\alpha}(\frac{\partial f}{\partial x^{\alpha}})^2)=0,$$

which implies that each partial derivative of

(3. 1)
$$P = (K - \sum_{\alpha} (\frac{\partial f}{\partial x^{\alpha}})^2) / f^2$$

vanishes. Thus, P is constant. The converse is clear.

q. e. d.

15

4. Proof of theorem

In (2.8), we may put $A_{\alpha} = \frac{\partial}{\partial x^{\alpha}}$, where $x^{\alpha}(\alpha = 1, \dots, n)$ are natural coordinates of E^n . Then the characteristic roots of \mathbb{R}^1 at a point $(a, x) \in E^n \times {}_fF$ consist of

$$(r-1)P(a) - (1/f(a))\sum_{\alpha} \frac{\partial^2 f}{\partial x^{\alpha} \partial x^{\alpha}}(a)$$
 (*n*-multiplicity)

and the roots $\lambda_1(a)$, $\lambda_2(a)$, ..., ... $\lambda_r(a)$ of

$$det \ (-(r/f(a)) \frac{\partial^2 f}{\partial x^{\beta} \partial x^{\alpha}}(a) - \lambda \delta_{\beta \alpha}) = 0.$$

Since $E^n \times {}_f F$ is homogeneous, we have

$$(r-1)P-(1/f)\sum_{\alpha} \frac{\partial^2 f}{\partial x^{\alpha} \partial x^{\alpha}} = constant$$

and

$$\lambda_1 + \cdots + \lambda_n = -(r/f) \sum_{\alpha} \frac{\partial^2 f}{\partial x^{\alpha} \partial x^{\alpha}} = constant$$

by lemma 3. 1 and by the continuity of the characteristic roots of R^1 . Therefore P is constant and (2. 5) is satisfied by lemma 3. 2.

Now, we solve (3. 1) with P = constant and show that f satisfies (2. 6) and (2. 7). Then $E^n \times_f F$ is locally symmetric. (3. 1) is

$$K - \sum_{\alpha} (\frac{\partial f}{\partial x^{\alpha}})^2 - P f^2 = 0.$$

S. Tanno [2] solved the last partial differential equation by Lagrange-Charpit method to get a solution

$$f = (\frac{1}{2\sqrt{-P}})((K/b) \exp(c_{\beta}x^{\beta}) - b \exp(-c_{\beta}x^{\beta}))$$

where b and c_1, \dots, c_n are some constant. Consequently, we see that f satisfies (2.6) and (2.7) which are written as

$$f \frac{\partial^3 f}{\partial x^{\alpha} \partial x^{\beta} \partial x^{\gamma}} - \frac{\partial f}{\partial x^{\alpha}} \frac{\partial^2 f}{\partial x^{\beta} \partial x^{\gamma}} = 0$$
$$\frac{\partial f}{\partial x^{\beta}} \frac{\partial^2 f}{\partial x^{\alpha} \partial x^{\gamma}} - \frac{\partial^2 f}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial f}{\partial x^{\gamma}} = 0$$

NIIGATA UNIVERSITY

References

- 1. R. L. BISHOP and B. ONEILL: Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49
- 2. S. TANNO: A class of Riemannian manifolds satisfying $R(X, Y) \cdot R = 0$, to appear.