A class of homogeneous Riemannian manifolds

By
Hitoshi TAKagi

(Received Nov. 30, 1970)

1. Introduction

R. L. Bishop and B. O'Neill [1] constructed a wide class of Riemannian manifolds of negative curvature by warped product using convex functions. For two Riemannian manifolds B and F, a warped product is denoted by $B \times{ }_{f} F$ where f is a positive C^{∞} function on B. The purpose of this paper is to prove

Theorem. Let (F, g) be a Riemannian manifold of constant curvature $K \leqq 0$. Let E^{n} be an n-dimensional Euclidean space and let f be a positive C^{∞} function on E^{n}. If either $E^{n} \times{ }_{f} F$ is homogeneous (Riemannian) or the Ricci tensor of $E^{n} \times{ }_{f} F$ is parallel, then $E^{n} \times{ }_{f} F$ is locally symmetric.

The proof of the last theorem is motivated by [2], in which S. Tanno deals with some related problems.

2. The curvature tensor of $\mathbf{E}^{\mathbf{n}} \times{ }_{\mathbf{f}} \mathbf{F}$

Let (F, g) be a Riemannian manifold and let E^{n} be a Euclidean n-space. We consider the product manifold $E^{n} \times F$. For vector fields A, B, C, etc. on E^{n}, we denote vector fields $(A, 0),(B, 0),(C, 0)$, etc. on $E^{n} \times F$ by also A, B, C, etc. Likewise, for vector fields X, Y, etc. on F, we denote vector fields $(0, X),\left(0, Y_{1}\right)$, etc. on $E^{n} \times F$ by X, Y, etc.

We denote the inner product of A and B on $E^{\boldsymbol{n}}$ by $\langle A, B\rangle$. Let f be a positive C^{∞}-function on E^{n}. Then the (Riemannian) inner product $<,>$ for $A+X$ and $B+Y$ on the warped product $E^{n} \times{ }_{f} F$ at (a, x) is given by (cf. [1].)

$$
<A+X, B+Y>{ }_{(a, x)}=<A, B>_{(a)}+f^{2}(a) g_{x}(X, Y)
$$

We extend the function f on E^{n} to that on $E^{n} \times{ }_{f} F$ by $f(a, x)=f(a)$. The Riemannian connections defined by $<,>$ on E^{n} and $E^{n} \times{ }_{f} E$ are denoted by ∇^{o} and ∇, respectively. The Riemannian connection defined by g on ' F is denoted by D. Then we have the identities (cf. Lemma 7.3, [1].)
(2. 1)

$$
\begin{aligned}
& \nabla_{A} B=\nabla^{o}{ }_{A} B, \\
& \nabla_{A} X=\nabla_{X} A=(A f / f) X,
\end{aligned}
$$

$$
\begin{equation*}
\nabla_{X} Y=D_{X} Y-(<X, Y>/ f) \operatorname{grad} f \tag{2.2}
\end{equation*}
$$

By (2.1) we identify ∇^{0} with ∇ in the sequel. In (2.2) grad f on E^{n} is identified with grad f on $E^{n} \times{ }_{f} F$ and we have

$$
<g r a d f, A>=d f(A)=A f .
$$

The Riemannian curvature tensors defined by ∇ and D are denoted by R and S respectively. We use both notations $R(X, Y)$ and $R_{X Y}$, etc. :

$$
\left.R(X, Y)=R_{X Y}=\nabla_{[X}, Y\right]-\left[\nabla_{X}, \nabla_{Y}\right], \text { etc. }
$$

Then, noticing that E^{n} is flat, we have (cf. Lemma 4.4, [1])

$$
\begin{aligned}
& R_{A B} C=0, \\
& R_{A X} B=+(1 / f)<\nabla_{A} \text { grad } f, B>X, \\
& R_{A B} X=R_{X Y} A=0, \\
& R_{A X} Y=(1 / f)<X, Y>\nabla_{A} g r a d f, \\
& R_{X Y} Z=S_{X Y} Z-\left(<\text { grad } f, \text { grad } f>/ f^{2}\right)(<X, Z>Y-<Y, Z>X) .
\end{aligned}
$$

From now on we assume that (F, g) is of constant curvature $K \leqq 0$. Then we have

$$
S_{X Y} Z=K(g(X, Z) Y-g(Y, Z) X)=\left(K / f^{2}\right)(<X, Z>Y-<Y, Z>X)
$$

In this case, (2.3) is written as

$$
R_{X Y} Z=P(<X, Z>Y-<Y, Z>X)
$$

where we have put

$$
\begin{equation*}
P=(K-<g r a d f, g r a d f>) / f^{2} \leqq 0 . \tag{2.4}
\end{equation*}
$$

Then we have the following
Lemma 2.1. (cf. Lemma 4. 1, [2]) On $E^{n} \times{ }_{f} F, \nabla R=0$ if and only if
$f P \operatorname{grad} f+\nabla \operatorname{grad} f \operatorname{grad} f=0$,
(2. 6) $\quad f \nabla_{A} \nabla_{B} g r a d f-f \nabla_{T} g r a d f-A f \nabla_{B} g r a d f=0, T=\nabla_{A} B$
and
(2. 7) $\quad B f \nabla_{A} \operatorname{grad} f-<\nabla_{A}$ grad $f, B>\operatorname{grad} f=0$.

Let $A_{\alpha}(\alpha=1,2, \cdots, n)$ be unit vector fields on some open set on $E^{n} \times{ }_{f} F$ such that they are mutually orthogonal and are tangent to E^{n} at each point of the open set. We denote by R_{1} the Ricci curvature tensor. Then we have (cf. §5, [2])

$$
\left\{\begin{array}{l}
R_{1}(Y, Z)=\left[(r-1) P-(1 / f) \sum_{\alpha}<\nabla_{A \alpha} g r a d f, A_{\alpha}>\right]<Y, Z> \tag{2.8}\\
R_{1}(B, Y)=0 \\
R_{1}(B, C)=-(r / f)<\nabla_{B} \text { grad } f, C>, \quad r=\operatorname{dim} . F .
\end{array}\right.
$$

3. Lemmas

Lemma 3. 1. Let R_{1} be the Ricci tensor field of a Riemennian manifold (M, g). Let R^{1} be a field of symmetric endomorphism which corresponds to R_{1}, that is, $g\left(R^{1} X, Y\right)=R_{1}(X$, Y) for all vector fields X and Y on M. If either
a) M is homogeneous (Riemannian)
or
b) the Ricci tensor of M is parallel,
then the characteristic roots of R^{1} are constant in value and multiplicity on M.
Proof. a) Since $R_{1}\left(\varphi_{*} X, \varphi_{*} Y\right)=R_{1}(X, Y)$ for every isometry φ of M, it follows that $\varphi_{*}^{-1} R^{1} \varphi_{*}=R^{1}$ on M. Since M is homogeneous, this proves the first of the lemma.
b) In this case R^{1} is also parallel and the result is immediate.
q. e. d.

Returning to an argument of $E^{n} \times{ }_{f} F$, we have
Lemma 3. 2. (cf. Lemma 6. 1, [2]) On $E^{n} \times{ }_{f} F$, (2.5) is equivalent to $P=$ constant.
Proof. By (2.4) and (2.5) we have

$$
(1 / f)(K-<g r a d f, \operatorname{grad} f>) \operatorname{grad} f+\nabla_{g r a d} f g r a d f=0 .
$$

Since this equation is an equation on E^{n}, we introduce the natural coordinate system ($x^{\alpha} ; \alpha=1, \cdots, n$) on E^{n}. Then the last equation is nothing but

$$
\left(K-\sum_{\alpha} \frac{\partial f}{\partial x^{\alpha}} \frac{\partial f}{\partial x^{\alpha}}\right) \frac{\partial f}{\partial x^{\beta}}+f \sum_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial f}{\partial x^{\alpha}}=0 .
$$

The last equation multiplied by $2 f$ is

$$
\left(K-\sum_{\alpha}\left(\frac{\partial f}{\partial x^{\alpha}}\right)^{2}\right) \frac{\partial f^{2}}{\partial x^{\beta}}-f^{2} \frac{\partial}{\partial x^{\beta}}\left(K-\sum_{\alpha}\left(\frac{\partial f}{\partial x^{\alpha}}\right)^{2}\right)=0,
$$

which implies that each partial derivative of

$$
\begin{equation*}
P=\left(K-\sum_{\alpha}\left(\frac{\partial f}{\partial x^{\alpha}}\right)^{2}\right) / f^{2} \tag{3.1}
\end{equation*}
$$

vanishes. Thus, P is constant. The converse is clear.
q. e. d.

4. Proof of theorem

In (2.8), we may put $A_{\alpha}=\frac{\partial}{\partial x^{\alpha}}$, where $x^{\alpha}(\alpha=1, \cdots, n)$ are natural coordinates of E^{n}. Then the characteristic roots of R^{1} at a point $(a, x) \in E^{n} \times{ }_{f} F$ consist of

$$
(r-1) P(a)-(1 / f(a)) \sum_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\alpha}}(a) \quad \text { (} n \text {-multiplicity) }
$$

and the roots $\lambda_{1}(a), \lambda_{2}(a), \cdots, \cdots \lambda_{r}(a)$ of

$$
\operatorname{det}\left(-(r / f(a)) \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{\alpha}}(a)-\lambda \delta_{\beta \alpha}\right)=0 .
$$

Since $E^{n} \times{ }_{f} F$ is homogeneous, we have

$$
(r-1) P-(1 / f) \sum_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\alpha}}=\text { constant }
$$

and

$$
\lambda_{1}+\cdots+\lambda_{n}=-(r / f) \sum_{\alpha} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\alpha}}=\text { constant }
$$

by lemma 3.1 and by the continuity of the characteristic roots of R^{1}. Therefore P is constant and (2.5) is satisfied by lemma 3.2.

Now, we solve (3.1) with $P=$ constant and show that f satisfies (2.6) and (2.7). Then $E^{n} \times{ }_{f} F$ is locally symmetric. (3.1) is

$$
K-\sum_{\alpha}\left(\frac{\partial f}{\partial x^{\alpha}}\right)^{2}-P f^{2}=0 .
$$

S. Tanno [2] solved the last partial differential equation by Lagrange-Charpit method to get a solution

$$
f=\left(\frac{1}{2 \sqrt{-P}}\right)\left((K / b) \exp \left(c_{\beta} x^{\beta}\right)-b \exp \left(-c_{\beta} x^{\beta}\right)\right)
$$

where b and c_{1}, \cdots, c_{n} are some constant. Consequently, we see that f satisfies (2.6) and (2.7) which are written as

$$
\begin{aligned}
& f \frac{\partial^{3} f}{\partial x^{\alpha} \partial x^{\beta} \partial x^{r}}-\frac{\partial f}{\partial x^{\alpha}} \frac{\partial^{2} f}{\partial x^{\beta} \partial x^{r}}=0 \\
& \frac{\partial f}{\partial x^{\beta}} \frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{r}}-\frac{\partial^{2} f}{\partial x^{\alpha} \partial x^{\beta}} \frac{\partial f}{\partial x^{r}}=0 .
\end{aligned}
$$

Nigata University

References

1. R. L. Bishop and B. Oneill: Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1-49
2. S. Tanno: A class of Riemannian manifolds satisfying $R(X, Y) \cdot R=0$, to appear.
