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1. Preliminaries

When, in a 2n-dimensional real differentiable manifold M2» with local coordinates
{x?}, there is given a mixed tensor field F,* satisfying F,F.*=-—4d,4, we say that
the manifold admits an almost complex structure F,2 and we call such a manifold
an almost complex manifold. Throughout the present paper the Greek indices take
the values 1,2, ...... ,2n. If an almost complex manifold has a positive definite Rie-
mannian metric tensor G satisfying Fu*F#Gow=Gum, then the manifold is called an
almost Hermitian manifold. In this case it is easily seen that Fu=-—Fi, where
Fu=F#G..

Next, we shall give the definitions of various almost Hermitian manifolds [2].
If, in an almost Hermitian manifold, its structure tensor F,? satisfies

a.n VuF#=0,

1.2) VeFa=—FpFat VoF s (. €. VoFu is pure in v and 4),
.3) ViFu+t VaFu+ ViFuu=0,

a.4 VoF pat VuF =0,

then the manifold is called an almost semi-Kéhlerian manifold, an *O-manifold, an
almost Kihlerian manifold (an H-manifold) or an almost Tachibana manifold (a
K-manifold) respectively.

If the Nijenhuis tensor N, defined by

Nyp2=Fy¢< VGF[IZ— VﬂFal)—'Fp’l( Vdsz- Vde’I)

vanishes identically, the almost Hermitian manifold, the almost semi-K&hlerian
manifold and the *O-manifold are called an Hermitian manifold, a semi-Kéhlerian
manifold and a Kihlerian manifold respectively [6]. A necessary and sufficient
condition for an almost Hermitian manifold to be a Kihlerian manifold is given by

d.s) V. F2=0.

And it is well-known that in an *O-manifold the two conditions V.F.A=0 and
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Nuw2=0 are equivalent to each other [2].

Next, in a (2n—1)-dimensional real differentiable manifold M?2#-1 with local
coordinates {xi}, if there exist a mixed tensor field ¢;i, a contravariant vector field
& and a covariant vector field 7; satisfying the conditions §i%; =1, ¢;f opi=—3dri +&i%,
then such a manifold is said to have an almost contact structure (¢j, &, 7;) and
we call the manifold an almost contact manifold. Throughout the present paper
the Latin indices run over the 1, 2,......, 2n-1. It is well-known that in a manifold
with an almost contact structure (¢j, &, 7;), there exists a positive definite Rieman-
nian metric gji, which is called a Riemannian metric associated with the almost
contact structure, such that Vi =gij&i, giion o =gre—ThTr. We call the set (pji, &,
%j, gii) an almost contact metric structure and a manifold with an almost contact
metric struture is called an almost contact metric (or Riemannian) manifold.

In a (2n-1)-dimensional differentiable manifold with an almost contact structure
(oji, &, 7;), the following relations hold true;

§i0i=1, ojiori=—01i+Eik,
.6) 9iiéi=0, ¢iti=0,
rank (pj)=2n-—2.

Furthermore, if this manifold has an associated metric and ¢j;i is defined as ¢;k
ghi, then in addition to the above relations the following are satisfied

vjii=—eij, rank (gji)=2n—2,
an Ni=gij&i, giioh ori=gnk—Thk.

If, in a (2n—1)-dimensional differentiable manifold M2#—1, there exists a differ-
entiable 1-form 7 such that 7A(d7)*~1+#0 everywhere, then such a manifold is
called to have a contact structure 7 and we call the manifold a contact manifold
[4]. It is well-known that in any contact manifold with a contact structure 7 there
exists always an almost contact metric structure (¢ji, &, 7;, gji) such that ¢jkgni
=¢jig% (@;%:—9i7;) where, in terms of a local coordinate system xf, 7 is expres-
sed as 7=7;dx’ and 9; denotes 9/9xi. Such an almost contact (metric) structure is
simply called a contact (metric) structure.

If a (2n—1)-dimensional differentiable manifold has a contact metric structure
(ejsi, &, 7j, gii) in the above sense, then the following relations hold true.

¢i"ghi=¢jiE-—12— (0 7i—9i77),
Vioji+ Vigir+ Vieri=0,
.8 §iViNi=0, ¢iiVipi=0, V;&i=0,
Vigji=(2n—2)7;,
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where V; denotes the covariant differentiation with respect to the Riemannian
connection.

Next, in a (an almost) contact manifold, the following four tensors are funda-
mental and called Nijenhuis tensors of the (almost) contact structure [4].
NJ =77r( Vi — Vjvr))
Nji=0jr (Vs li— Vilr) —oi* (Vr1j— Vily),
a9 Nji=% (Vroii— VierD)—ei VT,
Njit=0jr (Vroih— Viprh) —oir (Vroit— Viorh) +7; ViTh—7; Vj7h,
where we use a notation 7 instead of & because of dealing with metric manifolds
only in this paper.
The following theorem is well-known [4].
THEOREM. If any one of Njr and Nji vanishes, then Nj vanishes. If Nji vanishes,
then all the other temsors Nj, Njr and Nj vanish.

The (almost) contact structure whose torsion tensor Nji vanishes identically is
called a normal (almost) contact structure and the manifold with such a structure

.~ as a normal (almost) contact manifold. The contact metric structure whose tensor

Nji vanishes identically is called to be a K-contact metric structure. In this paper,
we shall call the almost contact metric structure whose tensor N, vanishes identically
as a K-almost contact metric structure, too.

2. Almost contact metric hypersurfaces in an
almost Hermitian manifold

Let M2» be a 2n-dimensional almost Hermitian manifold (F.*, Gw) with local
coordinate system X:. We now consider a (2n—1)-dimensional orientable submani-
fold M?»-1 differentiably immersed in M?». Let the submanifold M?»-! be expressed
by the equation X?=X2(xi), where xi is a system of local coordinates in M2»-1, If
we put BjA=9;X2(9j=0/ox/), then they are tangent to M?#—! and linearly independent
at each point of M2»-1, And the induced Riemannian metric gji in M2»-1 is given
by

Q.1 gii=BjAGuBi#.

Because of assuming the hypersurface to be orientable, we choose the unit normal
vector C+ to the hypersurface and put

(2. 2) §0ji=Bj2F2#Bip:
(2. 3) vj=Bj2F1”Cg=leF2pcﬂ’
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where we have put B/;=GiBi#gii, Ca=C*Ge and Faiu =FGep.
Then we have the relations
Bj*Biy=4ji, Bj*C:=0, B;C*=0,
@9 CiCi=1 and Bj»Bit4CeCi=Gm,
And further it is easily verified that the following conditions hold true:

7iNi=1, ¢ji%=0, ¢ji0i=0, @jipri=—0r+M%, g;i%=7; and rank (¢;)=2(n-—1),
where we have put 7i=gii7;. Therefore the set (p;i, 7, 7;, gji) defines an almost
contact metric structure in the hypersurface M2»-1 [5].

In the following we shall call an orientable hypersurface with the induced
almost contact structure an almost contact hypersurface. We shall first recall the
following formulas [1]

@25 ViBii=H;iC* (formula of Gauss),
(2.6) V;jCi=—HjiBi; (formula of Weingarten),

where Hj; is the second fundamental tensor of the hypersurface, and the left hand
sides of these equations are so-called Bortolotti-van der Waerden covariant deriva-
tives. .

By making use of the formulas of Gauss and Weingarten, we have

Q.7 Vili=—¢ir Hrj+Bj* Bi* CAV, F
.8 Viein="; Hjn—"7n H ji+Bj* Bit B Vv F .

Now, we introduce the following four tensor fields in an almost contact hyper-
surface:

6jir=B;*Bi* B Vy F 1,
60ji=C>Bj# BAVyF u,
Q.9 6'ji=BjBi*CAV,F ,
6;j=CvCeBjAVyFp,
By virtue of the skew-symmetry of F.u we have
.10 Ojint+6ni=0,
@.1D) 68;i+6;;=0.
And the equations (2.7) and (2.8) are rewritten as
2.12) Vili=—¢i Hrj+ 6'ji,
@.13) Vigin= 1 Hjn— T H ji + Ojin.



Almost contact hypersurfaces in almost Hermitian manifolds 27

Since 7 is a unit vector, multiplying % to (2.12) and contracting, we have
0="V;i=%(— o Hrj +6"ji) S e =0,
Again multiplying ¢s to (2.12) and contracting we have

ok Vil =@ni (— @i Hrj + i) =@ —ThI)Hrj+ori @i
=Hnj— T Hrj + oni©’ji.
On the other hand, by using (2.13) we have
On Villi =—71; Vo =7 Vjpin =1l Hjn— Tn H ji + 6jin)
=Hjn— "% H ji + 7 Ojin.
Therefore, since we get 776’;, =0 and ¢ 6'jr =7 Ojrs, it follows that
Q.19 O0'ji=0OjpapibMa.
Next, multiplying ¢i* to (2.13) and contracting we have
@ik 7 pin =@ih(; H jh — Tn H ji + 6jin) = ¢ Ojin.
On the other hand, since ¢itgir=2(n—1), we have ¢i*V;pir=0.
Therefore we have
.15 Bjpapba =0.

.Lastly, with respect to the frame (Bj3, C?), the components of the tensor V.F
are expressible as follows [1];

V.F pi=Tji Bi, Biy B+ TSP BJ, Biy C2 +T$P Bi, Cu B2+ T{PC, Bip Bl
+ TPC, Cu By +T@C, Biy C2+ T¥PBi,CuC2+TC. CCa.
From this equation it is easily to be seen that
Tiin=6jin, T =—TP=6"ji, T'V=64i,
T{P=-TP=6; and TP=0=T.
Thus we have
(2.16) V. Fu2=8jis Bi, Biy B +6' ji Bi, (Biy C;—Cpu Bi))
+8;i C, Biy Biz+6; Co (Cu Biz—Biy C2).
Therefore we have the

TueoREM 2.1. For an almost contact hypersurface in an almost Hermitian mani-
fold, the relations

2.17) 6';i=86jba pit 12, Ojin+6jhi=0,
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0;i+6ij=0, Bjpagbe=0, °
hold good.

THEOREM 2.2. In order that an almost Hermitian manifold be a Kahlerian mani-
fold, it is necessary and sufficient that

2.18) 6jin=0, 6;i=0, 6;=0
hold true in its every almost contact hypersurface.

Case 1. Almost semi-Kihlerian manifolds.

In an almost semi-Kihlerian manifold, by definition (1.1) we have V.F,=0.
Transvecting (2.16) with G4, we have

G2V, Fua= (Obja g3—6;) Biy—6'va ghe Cy.

Therefore, in an almost semi-Kihlerian manifold, by definition (1.1), we have
6j=—6sajgbs and 6's.gba=0 which reduces to Gcrat72=0.
Thus we have the

THEOREM 2.3. For an almost contact hypersurface in an almost semi-Kahlerian
manifold, the relations

6’ ji=6jpa pi® 13, Oj=—6bajgbs, 6jin+6jni=0,
2.19)
0ii+6i;j=0, Ojraeba=0, Opagbe=0 (0or Ocsq b 73=0)

hold good.

THEOREM 2.4. In order that an almost semi-Kahlerian manifold, it is mecessary
and sufficient that

@.20) Ojin=0, Oji=0
hold true in its every almost contact hypersurface.

THEOREM 2.5. In order that an almost Hermitian manifold be almost semi-Kahl-
erian, it is necessary and sufficient that

.21 0= —B0aj gbs, ©'pagba=0 (Or Ocba b6 =0)

hold true in its every almost contact hypersuface.

Case II. *O-manifolds.

In an *O-manifold, by definition (1.2), we have Vg Fai+Fp* Fo# Vo Fra=0.
Substituting (2.16) into this equation, we have

(1)  Obah~+bi Pai Ojih— i Ma 6 jh+Tb @ai Oin+MMa O =0,
) O'vatopi 0ai €' ji—Tp pai 8; =0,
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@) O'bhtopi M Bjin+1i 150" i1 =0,
) 6an—7i 9ai Ojin+1i 1, 0 j =0,
B) 6r+7i%Ojin=0,

(6) 6a+7i p,i65i=0,

(D % 6j—ppi % 6'ji =0,

@® 796;;=0,

where the left hand sides of these equations are coefficients of Bbs Bs. Bk;, Bbg Be.C;,
—BbgCuBh, CpBaxBh;, CsCaBh, —CpB2:Ci, BbsBaCi and CsCaCi in VeFart+Fp'Fat
V.F .1 respectively.

Transvecting (1) with gbe and using (5), we have 6;=—6%ka; gbs.

Transvecting (2) with gbe and using 6';i=6jsa ¢i® 72 in (2.17), we have 6’sagbe
=0. Thus an *O-manifold is necessarily almost semi-Kihlerian. (Of course the
fact is already known [2].)

The equation (8) is satisfied by 6’ji =6jss ¢ 7 in (2.17). The equation (7) .is
satisfied by (6) and 6';i=B6js. @* 72 in (2.17). The equation (6) is satisfied by
6jir+6;ri=0 and O'j;i=6jpepi®%a in (2.17).

Multiplying (1) by %« ¢;* and contracting, we get

Obah 12 prh—ppi o1k 6’ jn+Mp ik On = 0.

And making use of 6;ix+6;ri=0 and 6’ji=6jsa@:i®%= in (2.17), we have the equation
@).
Substituting 6’ji = 6jss i® 7« into the equation (2) and using 6jir + 6ni=0, we
have 6'sa+s7 Tk Ojng—"0p @ai 0 =0. |
On the other hand transvecting (4) with 72 and using 6';i=6jss ¢i® 72 and the
equation (5), we have 72 8,5 =—gpi® 6.
Therefore we have 6'sa-+-¢si 7h Ojna+" 7 6o =0, that is, the equation (3).
Accordingly the system of equations (1)~(8) are equivalent to

) Bvan+¢bi ot Bjin—psi Na 6 jh+7b Pai Ojh+1s 13 On =0,

Q) Oan—7 0ai Ojin+1i 12 6’ jh = (),

(®) 6w+1%6jin=0.
Moreover, by using (4) we have 75¢ai O +75%aOh=—"576jan.
Thus we have

THEOREM 2.6. For an almost contact hypersurface in an *O-manifold, the rela-
tions

6’ ji=BOjpapi®M3, Oj=—60pqjgba,
6;i=¢@jeM6pa; — 1106 4i,
.22 Ojin+6jri=0, 6ji+6;;=0, Ojsapba=0,
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O pagba=0 (or Bcpapct?a=0),

Obajgha = Opaj M7,

Ojin + @b i3 Opan = a7 0’ an + 172 Oain
hold good.

THEOREM 2.7. In order that an O*—manifold be a Kihlerian manifold, it is neces-

sary and sufficient that
2.23) Bjin=0
hold true in its every almost contact hypersurface.

THEOREM 2.8. In order that an almost Hermitian manifold be an *O-manifold,

it is necessary and sufficient that

6j=—6saj g3,

Oji =378 Opai — 1786’ 4i,
.29 O'pagba=0,

6bajghs = Bpaj M0 7a,

6jin + 9% i3 Osan = 9870’ ah + 173 Oaih
hold true in its every almost contact hypersurface.

THEOREM 2.9. In order that an almost semi-Kihlerian manifold be an *O-manifold,

it is necessary and sufficient that

6ji = ¢i2 1 Opai —1;726 4i,
2.25) 6bajgb3=60a; b7,

Bjik + ¢ i Opak = ¢37;60’ an + 173 Bain
hold true in its every almost contact hypersurface.

Case III. Almost Tachibana manifolds.

By definition (1.4), in an almost Tachibana manifold we have V.Fu+V.Fu=0.
Substituting (2.16) into this equation, we have

6jin +6ijn =0, 6';;+6'i;;j=0, 6;;=6"i, 6;=0.
Thus we have the

THEOREM 2.10. In order that an almost Hermitian manifold be an almost Tachi-
bana manifold, it is necessary and sufficient that

2. 26) Ojin is a skew-symmetric tensor,
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0ji=6"ji, 6;=0
hold true in its every almost contact hypersurface.

TueOREM 2.11. In order that an almost semi-Kahlerian or an *O-manifold be an
almost Tachibana manifold, it is necessary and sufficient that

Ojin is a skew-symmetric tensor,

0i=6';;

@.27

hold true in its every almost contact hypersurface.
For an almost contact hypersurface, in an almost Tachibana manifold, we get
05976’ ah+7;1864ih = ;a7 Oan + 7; Oika 14
=702 e T O1pn + 1 Oina 8
=7jOsiha — i Ojna) 7a.
Therefore we have the

THEOREM 2.12. For an almost contact hypersuface in an almost Tachibana manifold,
the relations

O ji=6jpapi®Ta, 0;=0, Oji=¢ija76Opai,

©j30aipM = ¢iaOjap M0 (or Oji=6'j)),
(2.28) Bjin is a shew-symmetric tensor,

6ii+6:;j=0, Ojrapta=0,

6jin -+ @jb i Opah = (1;Oina—1iOjha) 18
hold good.

Case IV. Almost Kihlerian manifolds.

By definition (1.3), in an almost Kihlerian manifold we have V. Fu+V,.Fa +
ViF,,=0. Substituting (2.16) into this equation, we have easily 6jir+6in;j-+6nji=0,
0;i=6"i; —6'j;.

Thus we have

THEOREM 2.13. In order that an almost Hermitian manifold be an almost Kihl-
erian manifold, it is necessary and sufficient that
. 29) 6jin +6inj +6hji=0, 6;i=6"i;—6'ji
hold true in its every almost conmtact hypersurface.

THEOREM 2.14. For an almost contact hypersurface in an almost Kihlerian mani-
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fold, the relations
6’ ji =Bjba pit e,
6j=—6pajgba=—B6pa; 1073,
Bji =3 Opai — 7126 ai,
.30 6jin +6jni =0, Ojin+ 6inj+ 6Onjii=0,
6;i+6ij=0, 6;i=6"i;—6ji,
Ojbapba =0, Oparpba=0,
6jin + @j° 0i® Opan = 210 an +77% Buain
hold good.

3. Hypersurfaces in an *O-manifold

In order to express the Nijenhuis tensors of the (almost) contact structure in
terms of 6jir, 6ji, 6';;i and 6;, substituting (2.12) and (2.13) into the right hand
sides of the equations (1.9), we get the following expressions for an almost contact
hypersurface in an almost Hermitian manifold.

Nj=—¢j*Hpa"2 41264,

Nji="Hig"— 1 HjaM8 + ¢;ja(6'ai — 6'ia) — it (0'a; —6'ja),
G.D Njlgii=7jHias — Hji + ¢i® ¢id Hoa + 79 64ji + 746jiqa — 26’ ai,
Njil gin="; (pja Han + ¢n2 Haj) — 1; (¢i® Han + @49 Hai)
4+¢i8 (Bjah — Bajn) + ¢34 (Oain — Bian) — 16" jh +7;6'in.

Let us consider an almost contact hypersurface M22-1 in an almost Tachibana
manifold M?». In this case, by using (2.28) we can see easily that the equations
3. 1) reduce to

Nj=—¢;®Hpa"a,
Nji=%Hia%8 — % Hjs "2 — 473 6,ji,
3.2 Njilgii="7;Hia"8 — Hji + ¢;® ¢i® Hoa + 372 84ji,
Njil gin="i (pjs Han + on3 Haj) — i (pi¢ Hah + pr3 Hai)
42 (@iaOjan + ¢i3Bain) + 10" in— 16 jn.
At first we shall prove the following

LemMa 3.1. In an almost contact hypersurface of an almost Tachibana manifold,
the following conditions are equivalent each other:
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3.3 N;j=0,
3.9 HjaMa=on;(i. e. W defines a principal direction of Hji), where «a is a
scalar.

Proor. It follows from Nj=—¢8Hp12 and ¢jaNa= Hja3— (Hpa 1 72) ;.

LemMa 3.2. In an almost conmtact hypersurface of an almost Tachibana manifold,
the temnsor Nji vanishes if and only if

(3.5 76045 =0, Nj=0.
Proor. It follows from the fact that Nj=0 if Nji=0.

LemMa 3.3. In an almost contact hypersurface of en almost Tachibana manifold,
the following conditions are equivalent one another:

3.6) Vi%i+Vi7i=0 (i e. % is a Killing vector),
B.D ¢i?Hai 4 ¢i¢Hja =0,
@G. 8 Hji —¢j? i Hpa =a%;7%;,

where a is a scalar.
Proor. By 6';i+6';;=0 in (2.28) and (2.12), we have
Vi%i+ Vilj=— (¢i Hyj + 0" Hri),

which shows that the conditions (3.6) and (3.7) are equivalent.

Multiplying (3.7) by %, we have @2 Hqi%=0 and so Hj.72=a%;j. Multiplying
(3.8) by 7%, we have Hj.%2 =a’; too.

The equivalence between (3.7) and (3.8) is deduced from

¢50 (9i% Hoa + ¢p2 Hai) = @it @i¢ Hoa — Hji + a7
and ¢ (Hai — ¢a® ¢i¢ Hoe — a%a i) = ¢j2 Hai + @i H ja .

LemMma 3.4, In an almost contact hypersurface of an almost Tachibana manifold,
it is necessary and sufficient for the hypersurface to be K-almost contact (i. e. Nji=0)
that the conditions

G.9 ©ji¢Hai+ ¢icHja=0, 7264i=0,
are satisfied. And if the tensor Nji vanishes, then the temsor N ji vanishes.
Proor. It is evident that if (3.9) hold true, then Nji=0.
Conversely if Nji=0, then we have
7jHia8 — Hji + ¢ ¢i¢ Hya = — 374 6aji.
However, noting that if Nji=0, then N;j=0, the left hand side of the above equation
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is symmetric in j and i, but the right hand side is shew-symmetric in j and i.

Therefore the both sides vanish separately.
The latter part of the lemma follows from the lemma 3.2.
Thus we have the

THEOREM 3.1. For a K-almost contact hypersurface in an almost Tachibana mani-
Jold, we have

0';i=0, 6;;=0, 6;=0,
Ojir is a skew-symmetric tensor,
G.10) 40,5 =0,
Ojin+ ¢t 9iaOan =0 (or ¢j460aih= ¢i?Ojan),
Njil gin=4¢i36ain.

THeOREM 3.2. If every hypersurface in an almost Tachibana manifold admits a
normal almost contact structure, then the almost Tachibana manifold reduces to a Kih-
lerian manifold.

Proor. If every hypersurface in an almost Tachibana manifold admits a normal
almost contact structure, then from (3.10) we have 8;i»=0.
Next we shall prove the following

TueoreM 3.3. If every hypersurface in an *O-manifold admits a contact structure,
then the *O-manifold reduces necessarily to an almost Kihlerian manifold.

Proor. Suppose that every hypersurface in an *O-manifold admits a contact
structure. Then from (1.8) we have V;jeir+ Viesi+ Vagii=0.

Substituting (2.13) into this equation, we have 6jis 4 8irj + 6rji =0.

By using the relations (2.22) in Theorem 2.6, we calculate as follows:

i (0i+6ji—6'i;))=—1060"0i+778"ji=0
and @13 (6ji + 6’ ji — 6'i)
=(—018 + 17a) b Opai + @1 Ojsapi® M8 — (—0818 + N1718) Bipa 0
= =T Opti +717678 Bpai + p1J ¢i® 0 jsa e + Bita e
=76 8pit — N1 7508 Opia + @1 i® 0 j8a 72 + Bita e
=% (84i1 + Oita + B1ai) + 81tia e + ¢1® ¢i? Opac 1 — 117672 Bpig
=%a(0qi1 + Oita + Olai)
=0.

Therefore we have 8ji+6';;i—6'i;=0.
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Thus our theorem is proved by Theorem 2.13.
From this theorem it follows immediately the following theorem [3].

THEOREM 3.4. If every hypersurface in an almost Tachibana manifold admits a

contact structure, then the almost Tachibana manifold reduces necessarily to a Kahlerian
manifold.

At the end we should like to express our sincere gratitude to Prof. K. Koté and
Prof. K. Takamatsu whom we are indebted for their kind discussions during our
research.
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