A remark on the embeddability of n-manifolds in ($2 \mathrm{n}-2$)-space

By
Tsuyoshi Watabe

(Received October 31, 1967)

1. Introduction

In this note, we shall prove the following
Theorem 1. Let M be a closed, smooth simply-connected n-manifold whose homology groups are torsion free. Then the immersibility of M in $R^{2 n-3}((2 n-3)$-dimensional Euclidean space) implies the embeddability of M in $R^{2 n-2}$ if $n \geq 7$.

This is a corollary to the following
Theorem 2. Let M be a closed, smooth ($n-k-1$)-connected n-manifold whose homology groups are torsion free. If M is immersible in R^{n+k} with vanishing Euler class, $2 k \geq n+3$ and $k \leq n-2$, then M is embeddable in R^{n+k}.

We shall sketch an outline of our proof. Let M be immersed in R^{n+k} with normal disk bundle ν. Then the total space E of ν is parallelizable manifold and contains M as a submanifold (the image of the zero cross section). Let E_{0} be the total space of the restriction of ν to $M_{0}=M$-int D^{n}. Then E_{0} is also parallelizable manifofd and contains M_{0} as a submanifold. Note that $b M_{0}$ is embedded in $b E_{0}$. We kill homotopy groups of E_{0} and obtain a contractible manifold C in which M_{0} is embedded and $b M_{0}$ in $b C$. We can show that $b C$ is simply connected and hence C is an ($n+k$)-disk. Thus we have an embedding of M_{0} in D^{n+k}. By attaching a cone on $b M_{0}$ in the complemetary disk to D^{n+k} in S^{n+k}, we have a piecewise linear embedding of M in S^{n+k}. By a result of Haefliger, this is approximated by a differentiable embedding under a suitable assumption on n and k.

This note is motivated by the method of the proof of THEOREM 14 in Wall's paper "Classification Problems in Differential Topology. V On certain 6-manifolds." Invent. Math., 335-374('66).

2. Statements of results

Throughout this section, M denotes a closed, smooth simply-connected n-ma-
nifold whose homology groups are torsion free. Let ξ be a k-dimensional vector bundle over M and E the total space of the associated disk bundle and $b E$ the total space of the associated sphere bundle. Let M_{0} denote the complement of an embedded open n-disk D^{n} in M. We define E_{0} as the total space of restriction of E to M_{0}. We shall assume that E is parallelizable and the Euler class of ξ vanishes. By performing surgery on E, we can prove the following proposition•

Proposition 1. We can construct two sequences of parallelizable manifolds;

$$
C_{1}=E_{0}, C_{2}, \cdots \cdots, C_{k-2},
$$

and

$$
D_{1}=E, D_{2}, \cdots \cdots, D_{k-2},
$$

with the properties;
(1) $C_{h}=C_{h-1 \cup} \cup\left(U_{i-1}^{r h-1} D^{h+1} \times D_{i}^{n+k-h-1}\right)$
$D_{h}=D_{h_{-1} \cup} \cup C_{h}$
(2) C_{h} and $b C_{h-1}$ are h-connected and $H_{i}\left(C_{h}\right)=H_{i}\left(C_{h}\right)=H_{i}\left(C_{h-1}\right)$
for $i \geq h+1$,
(3) D_{h} and $b D_{h}$ are h-connected and $H_{i}\left(D_{h}\right)=H_{i}\left(D_{h-1}\right)$ for
$i \geq h+2$,
(4) $H_{h+1}\left(C_{h}\right)=H_{h+1}\left(D_{h}\right)$
and
(5) $b D_{h}$ is h-connected and $H_{h+1}\left(b D_{h}\right)$ has no torsion,
where $2 \leq h \leq k-2$. Moreover M embeds in D_{h} and $\left(M_{0}, b M_{0}\right)$ in $\left(C_{h}, b C_{h}\right)$.
We construct C_{h} and D_{h} inductively. From (5), we can choose maps $f_{i}: S^{h+1}$ $\rightarrow b D_{h}\left(i=1,2, \cdots \cdots, r_{h}\right)$ representing basis of $H_{h+1}\left(b D_{h}\right)$. If $n+k-1 \geq 2(h+1)+1$, we may assume that f_{i} 's are embeddings with trivial normal bundles and have disjoint images. It is easy to show that $f_{i}\left(S^{h+1}\right)$ can be pushed into $b D_{h \cap} C_{h}$. By attaching handles $D^{h+2} \times D_{i} i^{n+k-h-2}$ to C_{h} with attaching maps f_{i}, we construct C_{h+1} $=C_{h} \cup\left(U_{i=1}^{\gamma_{h}} D^{h+2} \times D_{i}{ }^{n+k-h-2}.\right)$

It is known that C_{h+1} is a smooth manifold Moreover C_{h+1} is parallelizable. Define D_{k+1} by $D_{h} \cup C_{h+1}$, then D_{h+1} is also parallelizable manifold. Using the Mayer-Vietoris exact sequence, we can show that C_{h+1} and D_{h+1} satisfy the properties (1)~(5)

We can show the following
Proposition 2. The ($k-1$)-th homology group of $b D_{k-2}$ contains the infinite cyclic group generated by the fiber over the center of the disk which is to be removed from M to construct M_{0} as a direct summand; $H_{k-1}\left(b D_{k-2}\right)=Z \oplus G$.

By the same arguments as above, we can kill the group G and obtain the
following proposition;
Proposition 3. We can construct smooth manifolds C_{k-1} and D_{k-1} with the properties;
(1) C_{k-1} and $b C_{k-1}$ are ($k-1$)-connected and $H_{i}\left(C_{k-1}\right)=$ $H_{i}\left(C_{k-2}\right)$ for $i \geq k$,
(2) $H_{i}\left(D_{k-1}\right)=H_{i}\left(D_{k-2}\right)$ for $i \geq k+1$,
and
(3) $b D_{k_{-1}}$ is ($k-2$)-connected and $H_{k_{-1}}\left(b D_{k_{-1}}\right)=Z$.

Since $b D_{k-1}$ is ($k-2$)-connected, the Hurwicz homomorphism $H: \pi_{k}\left(b D_{k-1}\right) \rightarrow$ $H_{k}\left(b D_{k-1}\right)$ is an epimorphism. Note that $H_{k}\left(b D_{k-1}\right)$ is free. By performing surgery on elements of $H_{k}\left(b D_{k_{-1}}\right)$, we can construct a smooth manifold C with the properties;

Proposition 4. $\quad C$ is k-connected and $H_{i}(C)$ is isomorphic with $H_{i}\left(M_{0}\right)$ for $i \geq$ $k+1$. Moreover ($M_{0}, b M_{0}$) is embeddable in ($C, b C$).

We shall apply the arguments above to the normal bundle ν of an immersion of M in R^{n+k}, which is assumed to have vanishing Euler class. We can construct a smooth manifold C with the properties of proposition 4. The ($n-k-1$)-connectedness of M implies that all homotopy groups of C vanish. We can show that $b C$ is simply-connected and hence C is an ($n+k$)-disk Thus M_{0} is embeddable in D^{n+k} and $b M_{0}$ in $b D^{n+k}=S^{n+k^{-1}}$. The desired embedding of M in S^{n+k} is obtained by attaching a cone to $b M_{0}=S^{n-1}$ in the complementary disk of C in S^{n+k}. This proves Theorem 2.

3. Surgery on a disk bundle

We use same notations in the preceding section. Moreover we assume that $k \leqq n-2$. By the assumptions, $E, E_{0}, b E$ and $b E_{0}$ are simply-connected and s-parallelizable, and their homology groups have no torsion. It is easy to prove the following lemma;

Lemma. Let f be an embedding of $S r$ in $b E$ such that $f(S r)$ does not meet the fibre over the center of D^{n} (the disk which is to removed from M to construct M_{0}). Then $f\left(S^{r}\right)$ can be pushed into $b E \cap E_{0}$. Hence if $r<n-1$, then we may assame that $f\left(\mathrm{~S}^{r}\right)$ $\subset b E_{\cap} E_{0}$.

We kill $H_{2}(b E)$. Since all elements are spherical, we can find maps $f_{i}: S^{2}$ $\longrightarrow b E\left(i=1 \cdots \cdots, r_{2}\right)$ which represent a base of $H_{2}(b E)$. If $n+k-1 \geq 5$, we may assume that f_{i} 's are embeddings with trivial normal bundles and their images are disjoint. Let C_{2} be the manifold obtained from E_{0} by attaching handles $D^{3} \times D_{i}{ }^{n+k-3}$
($i=1, \cdots \cdots, r_{2}$) to $E_{0 \cap} b E$ by the maps f_{i}. Note that C_{2} is parallelizable manifold. We put $D_{2}=E \cup C_{2}$. Using the Mayer-Vietoris exact sequence, we can immeadiately prove the properties (2)~(5) of Proposition 1 for C_{2} and D_{2}.

Suppose that we have constructed manifolds $C_{1}=E_{0}, C_{2}, \cdots \cdots, C_{h}$ and $D_{1}=E$, $D_{2}, \cdots \cdots, D_{h}$, with the properties (1)~(5) in Proposition 1 for $2 \leqq h \leqq k-3$. Since all elements of $H_{h+1}\left(b D_{h}\right)$ are spherical, we can find maps $f_{i}: S^{h+1} \longrightarrow b D_{h}(i=1, \cdots \cdots$, $\left.r_{h}\right)$ which represent a base of $H_{h+1}\left(b D_{h}\right)$, where $r_{h}=$ rank of $H_{h+1}\left(b D_{h}\right)$. Since $n+$ $k-1>h+k+1$, we may assume that $f_{i}\left(S^{h+1}\right) \subset b D_{h-1 \cap} C_{h}$ by the same argument of Lemma. Thus we can construct $C_{h+1}=C_{h} \cup\left(\cup_{i=1}^{r h} D^{h+2} \times D^{n+k-h-2}\right)$ and $D_{h+1}=D_{h} \cup C_{h+1}$. It is easy to show (1), (2), (3) and (5). We prove (4). Consider the following commutative diagram ;

By excision, $H_{i}\left(D_{h+1}, D_{h}\right)=H_{i}\left(C_{h+1}, C_{h}\right)$ for all i. From the following commutative pagarm, in which all homomorphisms are induced by inclusion and all homomorphisms except i_{-1} are isomorphisms, it follows that i_{-1} is an isomorphism.

By 5-lemma, we have $H_{h+2}\left(D_{h+1}\right)=H_{h+2}\left(C_{h+1}\right)$ (note that i_{2} is an isomorphism). This completes the proof of Proposition 1.

We shall prove Proposition 2. Write $Y=b D_{k-2 \cap} C_{k-2}$, and $Y=b C_{k-2}-S^{n-1} \times D^{k}$ $=b D_{k-2}-D^{n} \times S^{k-1}$. Consider the Mayer-Vietoris exact sequence;

$$
0 \longrightarrow H_{k}(Y) \longrightarrow H_{k}\left(b C_{k-2}\right) \longrightarrow H_{k-1}\left(S^{n-1} \times S^{k-1}\right) \longrightarrow H_{k-1}(Y) \longrightarrow H_{k-1}\left(b C_{k-2}\right) \longrightarrow 0
$$

Since $H_{k}\left(b C_{k-2}\right)$ is free, $H_{k}(Y)$ is also free and has the same rank as $H_{k}\left(b C_{k-2}\right)$. Hence we have an exact sequence;

$$
0 \longrightarrow H_{k-1}\left(S^{n-1} \times S^{k-1}\right) \longrightarrow H_{k-1}(Y) \longrightarrow H_{k-1}\left(b C_{k-2}\right) \longrightarrow 0 .
$$

Since $H_{k-1}\left(b C_{k-2}\right)$ is free, we have $H_{k-1}(Y)=H_{k-1}\left(\mathrm{~S}^{n-1} \times S^{k-1}\right) \oplus H^{k-1}\left(b C_{k-2}\right)$. From the Mayer-Vietoris exact sequence;

$$
0 \longrightarrow H_{k-1}\left(S^{n-1} \times S^{k-1}\right) \longrightarrow H_{k-1}(Y) \oplus H_{k-1}\left(D^{n} \times S^{k-1}\right) \longrightarrow H_{k-1}\left(b D_{k-2}\right) \longrightarrow 0,
$$

and the fact that $H_{k-1}\left(b D_{k-2}\right)$ is free, we have $H_{k-1}\left(b D_{k-2}\right)=Z \oplus G$, where Z is generated by the fibre over the center of the disk and G is isomorphic with H_{k-1} ($b C_{k-2}$). This completes the proof of Proposition 2. By selecting embeddings f_{i} : $S^{k-1} \longrightarrow b D_{k-2 \cap} C_{k-2}$ with trivial normal bundles, which represent a base of G, we
construct smooth manifolds C_{k-1} and D_{k-1} as before. We shall prove Proposition 3. It is not difficult to show (1) and (2). Write $Y=b D_{k-1} \cap C_{k-1}$. Applying the Mayer-Vietoris exact sequence to $b C_{k-1}=Y \cup S^{n-1} \times D^{k}$, we have $H_{k-1}(Y)=Z$ (note tht $H_{k}(Y) \longrightarrow H_{k}\left(b C_{k-1}\right)$ is an epimorphism). Since $H_{i} \quad\left(b D_{k-1}, Y\right)=H_{i} \quad\left(D^{n} \times S^{k-1}\right.$, $\left.S^{n-1} \times S^{k-1}\right)$, we have $H_{k-1}(Y)=H_{k-1}\left(b D_{k-1}\right)$ and hence $H_{k-1}\left(b D_{k-1}\right)=Z$. This implies Proposition 3.

Finally we shall prove Proposition 4. Since $C=C_{k-1} \cup\left(\cup_{i-1}{ }^{r k} D^{h+1} \times D_{i}{ }^{n-1}\right)$ by the Mayer-Vietoris exact sequence, we have $H_{i}(C)=0$ for $i \leqq k-1$ and $H_{i}(C)=H_{i}\left(C_{k-1}\right)$ for $i \geq k+2$. Consider the exact sequence ;

$$
0 \longrightarrow H_{k+1}\left(C_{k-1}\right) \longrightarrow H_{k+1}(C) \longrightarrow H_{k}\left(\cup_{i} S^{k} \times D_{i}^{n-1}\right) \xrightarrow{j_{*}} H_{k}\left(C_{k-1}\right) \longrightarrow H_{k}(C) \longrightarrow 0
$$

We show that j_{*} is an isomorphism. In fact, we consider the following commutative diagram;

Since $H_{i}\left(b D_{k-1}, b D_{k-1} \cap C_{k-1}\right)=H_{i}\left(D^{n} \times S^{k-1}, S^{n-1} \times S^{k-1}\right)$, if $k \leqq n-2, i_{*}$ is an isomorphism. From the exact sequence;

$$
\begin{aligned}
& 0 \longrightarrow H_{k}\left(b D_{k-1} \cap C_{k-1}\right) \xrightarrow{j_{*}} H_{k}\left(b C_{k-1}\right) \longrightarrow H_{k}\left(S^{n-1} \times D^{k}, S^{n-1} \times S^{k-1}\right) \\
& \longrightarrow H_{k-1}\left(b D_{k-1} \cap C_{k-1}\right) \longrightarrow 0,
\end{aligned}
$$

it follows that $j^{\prime} *$ is an isomorphism and hence j_{*} is an isomophism. Therefore $H_{k}(C)=0$, and hence $H_{i}(C)=H_{i}\left(C_{k-1}\right)$ for $i \geqq k+1$.

4. Application

In this section, we shall prove Theorem 2 and hence Theorem 1. Let M be a closed, smooth simply-connected manifold whose homology groups have no torsion. Suppose that M be immersed in R^{n+k} with normal bundle ν whose Euler class vanishes. Applying the arguments in Section 3 to the associated disk bundle, we have a smooth manifold C with boundary with following properties;
(1) $\left(M_{0}, b M_{0}\right)$ is embeddable in ($C, b C$)
(2) C is k-connected and $H_{i}(C)=H_{i}\left(M_{0}\right)$ for $i \geqq k+1$,
and
(3) $b C$ is simply-connected.

If M is $(n-k-1)$-connected, then $H_{i}(C)=0$ for all i and hence C is an ($n+k$)-disk ($n+k \geqq 6$). We obtain a piecewise linear embedding of M in S^{n+k} by the method mentioned in Introduction. By a result of Haefliger, if $2 k \geq n+3$, this embedding
can be approximated by a differentiable one. Thus we have Theorem 2. It is easy to deduce Theorem 1 from Theorem 2.

Niigata University

