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The present paper is concerned with the abstract semi-linear differential $eq$ .
uation

(1) $du/dt+A(t)u=F(t, u),$ $0\leqq t\leqq T$,

in a Banach space $X$, where the unknown $u(t)$ and the given function $F(t, u)$ in
$[0, T]\times X$ take values in $X$ and where $\{A(t), 0\leqq t\leqq T]\}$ is a family of not nece-
ssarily bounded operator acting in $X$ . This equation was treated by K. Asano
[1] when $A(t)$ does not depend on $t:A(t)=A$ . The main object of the present

article is to show that his method can be applied to this equation when $-A(t)$ ,
$0\leqq t\leqq T$ are infinitesimal generators of analytic semi-groups $\exp(-sA(t))$ of bou-
nded linear operators on $X$ which have the properties (I), (II) and (III) stated
below.

We are also interested in finding sufficient conditions on $F(t, u)$ under which
the solution of (1) exists in some sense or other. In order to construct a strict
solution of (1) we had to assume among other things the strong H\"older continuity

of $F(t, A(t)^{-\alpha}p)$ in $t\in[0, T]$ for $p\in X$ with some positive $\alpha$, which seems to be
rather restrictive. It is possible, however, to construct approximate solutions to
(1) replacing this assumption with weaker one.

1. Preliminaries.

We first state the assumptions to be made throughout this paper. By $D(A)$

and $R(A)$ we denote the domain and the range of an operator $A$ .
(I) For each $t\in[0, T],$ $A(t)$ is a densely defined closed linear operator in X.

The resolvent set of $A(t)$ contains a fixed closed sector $\sum=\{\lambda:arg\lambda\not\in(-\theta, \theta)\}$ ,
$0<\theta<\pi/2$ and the resolvent of $A(t)$ satisfies $||(\lambda-A(t))^{-1}||\leqq M/|\lambda|$ for any $ t\in\sum$ ,

where $\theta$ and $M$ are constants independent of $t$ and $\lambda$ ;

(II) $A(t)^{-1}$ is continuously differentiable in $t$ in the uniform operator topol $\cdot$

ogy;
(III) There exists a positive number $\rho\geqq 1$ such that $R(dA(t)^{-1}/dt)\subset D(A(t)\rho)$
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and $A(t)^{\rho}dA(t)^{-1}/dt$ is strongly cotinuous in $t\in[0, T]$ . Hence with some positive
constant $N$ independent of $t$ we have $||A(t)^{\rho}dA(t)^{-1}/dt||\leqq N$ .

Under these assumptions the fundamental solution $U(t, s),$ $0\leqq s\leqq t\leqq T$ of the
equation $du/dt+A(t)u=0,0\leqq t\leqq T$ is constructed as follows:

$U(t, s)=\exp(-(t-s)A(t))+W(t, s),$ $ W(t, s)=\int_{s}^{t}\exp(-(t-\sigma)A(t))R(\sigma, s)d\sigma$.
$R(t, s)=\sum_{m-1}^{\infty}R_{m}(t, s),$ $R_{m}(t, s)=]_{s}^{t}R_{1}(t, \sigma)R_{m-1}(\sigma. s)d\sigma,$ $ m=2,3,\cdots\cdots$ ,

$R_{1}(t, S)=-(\theta/\theta t+e/\theta s)\exp(-(t-s)A(t))=\frac{-1}{2\pi i}\int_{\Gamma}e^{-\lambda(t-s)(\theta/\theta t)(\lambda-A(t))^{-1}d\lambda}$,

$\exp(-sA(t))=\frac{-1}{2\pi i}|_{\Gamma}e^{-\lambda s}(\lambda-A(t))^{-1}d\lambda,$ $s>0$,

where $\Gamma$ is a smooth contour running in $\Sigma$ from $\infty e^{-\theta i}$ is $\infty e^{\theta i}$ . For the details,

see [2] and [3].

As to fractional powers of $A(t)$ , by (I), $A(t)\beta 0<\beta<1$ is well defined by

$A(t)\beta=(A(t)^{-}\beta)^{-1},$ $ A(t)^{-\beta}=\frac{\sin\pi\beta}{\pi}\int_{0}^{\infty}\lambda^{-\beta}(\lambda+A(t))^{-1}d\lambda$ .

Next we assume on $F(t. u)$ the following condition:

(IV) $F(t, v(t))$ is a function defined on
$\{(t, v(t)):v(t)\in D(A(t)^{\alpha}), t\in[0, T]\}$

into $X$ for some constant $\alpha$ with $ 0<\alpha<\rho$ and satisfies

$||E(t. A(t)-\alpha p)||\leqq f(||p||)$

and $||F(t.A(t)-\alpha p)-F(t, A(t)-\alpha q)||\leqq g(||p||+||v||)||p-q||$

for $p$. $q\in X$ and $t\in[0, T]$ , where $f$ and $g$ are non-decreasing continuous functions
on $[0, \infty$) to [$0$. $\infty$).

But we don’t know whether the condition $\alpha<\rho$ is essential or not.

2. Existence and uniqueness of the weak solution.

In this section we consider the following abstract integral equation associated
(1):

(2) $u(t)=U(t, 0)\varphi+]_{0}^{t}U(t. s)F(s, u(s))ds,$ $0\leqq t\leqq T$ .

To solve this equation by successive approximation we assume

(V) $F(t, v(t))$ is strongly measurable in $t\in[0, T]$ if $v(t)\in D(A(t)^{a})$ and if
$A(t)^{a}v(t)$ is strongly continuous in $t\in[0, T]$ .

We first prove the following

THOREME 1. Under the assumptions $(I)-(V)$ there exists, for every $\varphi\in D(A(O)^{\alpha})$ .
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one and only one solution $u(t)$ of (2) in $[0, T_{0}]$ and

(i) $u(t)$ is strongly continous in $[0, T_{0}]$ ,
(ii) $u(t)\in D(A(t)^{\alpha})$ for each $t\in[0, T_{0}]$ and $A(t)^{\alpha}u(t)$ is strongly continuous in

$[0. T_{0}]$ ,

whbre $T_{0}$ is a constant with $0<T_{0}\leqq T$ depending only on $||A(0)^{\alpha}\varphi||+||\varphi||$ .
We call $u(t)$ a mild soulution of (2) in $[0, T_{0}]$ .
PROOF. We put $ u_{0}(t)=U(t, 0)\varphi$ . Then $u_{0}(t)$ belongs to $D(A(t)^{a})$ and

$ A(t)^{a}u_{0}(t)=\frac{-1}{2\pi i}\int\lambda^{\alpha}e^{-}{}^{t}\{(\lambda-A(t))^{-1}-(\lambda-A(0))^{-1}\}\varphi d\lambda\Gamma$

$+\exp(-tA(0))A(0)^{\alpha}\varphi+\int_{0}^{t}A(t)^{\alpha}\exp(-(t-s)A(t))R(s, O)\varphi ds$ .

Noting $\alpha<\rho$ we can see that $A(t)\alpha u_{0}(t)$ is strongly continuous in $[0, T]$ and

$||A(t)^{\alpha}u_{0}(t)||\leqq C(||A(0)^{\alpha}\varphi||+||\varphi\Vert)=a_{0}$ .
In what follows, various constants depending only on $T,$ $\theta,$ $M,$ $\rho$. $N$ and $\alpha$ are

denoted by $C$ .
By the assumption (V), $u_{k}(t),$ $k=0,1,$ $\cdots\ldots$ can be defined for $t\in[0, T]$ step

by step as follows:

(3) $\left\{\begin{array}{l}u_{0}(t)=U(t, 0)\varphi,\\u_{i}(t)=u_{0}(t)+\int_{0}^{t}U(t, s)F(s, uk-1(s))ds, k=1,2, \cdots\cdots.\end{array}\right.$

As is easily seen,

$t_{1}^{1}|_{A(t)^{\alpha}(t)||\leqq a_{0}+C\int_{0}^{t}(t-s)^{-\alpha}f(||A(s)^{\alpha}u_{i-1}(s)||)ds}^{A(t)^{\alpha}u_{0}(t)||\leqq a_{0}}uk,$

$k=1,2,$ $\cdots\cdots$ .
Hence there exist positive numbers $a$ and $T_{0}$ with $0<T_{0}\leqq T$ depending only on

$||A(0)^{\alpha}\varphi||+||\varphi||$ such that

$||A(t)^{\alpha}u(t)||\leqq a$ for $t\in[0, T_{0}]$ and $k=0,1,$ $\cdots\cdots$ .
From

$\left\{\begin{array}{l}||A(t)^{\alpha}(u_{1}(t)-u_{0}(t))||\leqq Cf(a)(1-\alpha)^{-1}t^{1-\alpha},\\||A(t)^{\alpha}(u_{k+1}(t)-u_{k}(t))||\leqq C\cdot g(2a)]_{0}^{t}(t-s)^{-\alpha}||A(s)^{\alpha}(u_{k}(s)-u_{i-1}(s))||ds,\end{array}\right.$

it follows immediately that

$||A(t)\alpha(u_{k+1}(t)-u_{i}(t))||\leqq\frac{f(a)\cdot(C\cdot g(2a)\Gamma(1-\alpha)t^{1-\alpha})^{k+)}}{g(2a)\cdot\Gamma((k+1)(1-\alpha)+1)},$ $k=0,1,$ $\cdots\cdots$

Thus $A(t)^{\alpha}u_{n}(t)$ converges uniformly on $[0, T_{0}]$ in the strong topology as
$ n\rightarrow\infty$ and so does $u_{n}(t)$ because of the uniform boundedness of $ A(t)-\alpha$

Putting
$s-\lim_{n\rightarrow\infty}u_{n}(t)=u(t)$
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and passing to the limit in (3), we can conclude without difficulty that $u(t)$ is a
mild solution of (2) in $[0, T_{0}]$ with the desired properties.

In order to complete the proof it remains to show the uniqueness of the
solution.

Let $u(t)$ and $v(t)$ be mild solutions of (2) in $[0, T_{0}^{\prime}](0<T_{0}^{\prime}\leqq T)$ .
Putting

$b(tt=\sup_{0<s<t}||A(s)^{a}(u(s)-v(s))||$ ,

$K=c_{g(\sup||A(s)^{\alpha}u(s)||+sup}I_{0}^{|A(s)^{\alpha}v(s)||)}$ ,

we get

$b(t)\leqq K\int_{0}^{t}(t-s)^{-\alpha}b(s)ds\leqq\frac{(K\Gamma(1-\alpha)t^{1-\alpha})^{k+1}}{\Gamma((k+1)(1-\alpha)+1)},$ $h=0,1\ldots\ldots.$ .
which implies $b(t)=0$ on $[0, T_{0}^{\prime}]$ .

3. Approximate solutions

In this section we investigate the behaviour of the solution $u_{n}(t)$ of the
equation

(4) $du/dt+A(t)u=(I+n^{-1}A(t)^{\gamma})^{-1}F(t, u),$ $0\leqq t\leqq T$

with the initial value $u_{n}(0)=\varphi\in D(A(0)\alpha)$ as $ n\rightarrow\infty$ . Here $n$ and $\gamma$ are arbitrary
natural number and a positive constant with $\gamma\leqq 1$ .

$F_{n}(t, u)=(I+n^{-1}A(t)^{\gamma})^{-1}F(t, u)$ satisfies

II$F_{n}(t, A(t)^{-a}p||\leqq M\cdot f(||p||)$

and $||F_{n}(t, A(t)^{-\alpha}p)-F_{n}(t, A(t)^{-\alpha}q)||\leqq M\cdot g(||p||+||q||)||p-q||$

for $p,$ $q\in X$ and $t\in[0, T]$ with the aid of $||(I+n^{-1}A(t)^{r})^{-1}||\leqq M$ .
Now we assume

(VI) $F(t, A(t)^{-a}p)$ is strongly continuous in $t\in[0, T]$ for $p\in X$.
Obviously the assumptions (IV) and (VI) imply that if $v(t)\in D(A(t)^{\alpha})$ and if

$A(t)^{\alpha}v(t)$ be strongly continuous in $t\in[0, T]$ , then $F(t, v(t))$ is strongly contin-
uous in $t\in[0, T]$ .

By Theorem 1, for every natural number $n$ and $\varphi\in D(A(0)^{\alpha})$ there exists a
unique mild solution $u_{n}(t)$ of the equation

$u(t)=U(t, 0)\varphi+\int_{0}^{t}U(t, s)F_{n}(s, u(s))ds,$ $0\leqq t\leqq T$

in $[0, T_{1}]$ satisfying $||A(t)^{\alpha}u_{n}(t)||\leqq b$, where $T_{1}$ and $b$ are constants with $0<T_{1}\leqq T$

and $0<b$ depending only on $\Vert A(0)^{\alpha}\varphi\Vert+\Vert\varphi\Vert$ but not on $n$ .
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The equality

$\int_{0}^{t}A(t)U(t, s)F_{n}(s, u_{n}(s))ds$

$=\int_{0}^{t}\{A(t)\exp(-(t-s)A(t))-A(s)\exp(-(t-s)A(s))\}F_{n}(s, u_{n}(s))ds$

$+\int_{0}^{t}A(s)^{1-\gamma}\exp(-(t-s)A(s))A(s)^{\gamma}(I+n^{-1}A(s)r)F(s, u_{n}(s))ds$

$+\int_{0}^{t}A(t)W(t, s)F_{n}(s, u_{n}(s))ds$

implies that $u_{n}(t)$ belongs to $D(A(t))$ and is continuously diffdrentiable in
$t\in[0, T_{1}]$ in the strong topology. Furthermore $u_{n}(t)$ satisfies

$u_{n}/dt+A(t)u_{n}(t)=F_{n}(t, u_{n}(t))$ with $ u_{n}(0)=\varphi$ .
We are now in a position to state

THEOREM 2. Under the assumptions $(I)-(W)$ and (VII), there exists a unique
solution $u_{n}(t)$ of (4) in $[0, T_{1}](0<T_{1}\leqq T)$ with the initial value $u_{n}(0)=\varphi\in D(A(0)\alpha)$ .

Moreover, if $(I+n^{-1}A(t)^{\gamma})^{-1}$ converges to I uniformly on $[0, T]$ in the strong to-
pology as $ n\rightarrow\infty$ , then $u_{n}\rightarrow u(t)$ uniformly on $[0, T_{0}]\cap[0T_{1}]$ , where $u(t)$ is the unique
solution of (2) in $[0, T_{0}]$ .

PROOF. We have only to prove the last half part. $u_{n}(t)$ may be given by

$u_{n}(t)=u_{n}^{K}(t)+\sum_{k-K}^{\infty}(u_{n}^{k+1}(t)-u_{n}^{k}(t))$ ,

where

$\left\{\begin{array}{l}u_{n^{0}}(t)=U(t, 0)\varphi,\\u_{n^{k}}(t)=U(t, 0)\varphi+\int_{0}^{t}U(t, s)F_{n}(s, u_{n^{k-1}}(s))ds, k=1,2, \cdots\cdots\end{array}\right.$

On the other hand, from (3) $u(t)$ is expressed as

$u(t)=u_{K}(t)+\sum_{k-K}^{\infty}(uk+1(t)-uk(t))$ .

Therefore we obtain
$\Vert A(t)\alpha(u_{n}(t)-u(t))||\leqq\Vert A(t)\alpha(u_{n^{K}}(t)-u_{K}(t))\Vert$

$+\sum_{k-K}^{\infty}\frac{f(b)\cdot(C.\cdot g(2b)\Gamma(1-\alpha)t^{1-\alpha})^{k+1}}{g(2b)\Gamma)(k+1)(1-a)+1)}+\sum_{k-K}^{\infty}\frac{f(a)\cdot(C\cdot g}{g(2a)\cdot\Gamma}\frac{(2a)\Gamma(1-\alpha)t^{1-\alpha})^{k+1}}{((k+1)(1-\alpha)+1)}$

for $t\in[0, T_{0}]\cap[0, T_{1}]$ .
For any given $\epsilon>0$ a natural number $K=K(\epsilon)$ dependent only on $\epsilon$ can be

chosen so that for any $t\in[0, T_{0}]\cap[0T_{1}]$ the second and third terms on the right

hand side of the above inequality may be dominated by $\epsilon/4$ .
$F(t, uk-1(t)),$ $k=1,2,$ $\cdots\cdots,$

$K$ are strongly continuous on $[0, T_{0}]\cap[0, T_{1}]$ and hence

$C^{k}=\{F(t, uk-1(t):t\in[0, T_{0}1\cap[0, T_{1}]\},$ $k=1,2,$ $\cdots\cdots,$
$K(\epsilon)$
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are compact subsets of $X$ depending only on $\epsilon$ .
Noting

$\left\{\begin{array}{l}\Vert A(t)^{\alpha}(u_{n}^{1}(t)-u_{1}(t))\Vert\leqq|_{0}^{t}C(t-s)^{-a}\Vert\{(I+n^{-1}A(s)^{\gamma})^{-1}-I\}F(S, U(s, O)\varphi)\Vert ds,\\\Vert A(t)^{\alpha}(u_{n}^{k}(t)-u_{k}(t))\Vert\leqq\int_{0}^{t}C(t-s)^{-\alpha}g(a+b)\Vert A(s)^{\alpha}(u_{n}^{k-1}(s)-uk-1(s))\Vert ds\end{array}\right.$

$+\int_{0}^{t}C(t-s)^{-\alpha}\Vert\{(I+n^{-1}A(s)r)^{-1}-I\}F(s, uk-1(s))\Vert ds$,

we can show by induction that for any $k\in\{1,2, \cdots\cdots, K\}$

$A(t)^{\alpha}u^{k_{n}}(t)\rightarrow A(t)^{\mathcal{O}}uk(t)$

uniformly on $[0, T_{0}]_{\cap}[0, T_{1}]$ as $ n\rightarrow\infty$ .
In other words, there exists a natural number $N=N(\epsilon, K(\epsilon))$ depending

only on $\epsilon$ such that $\Vert A(t)^{\alpha}(u_{n^{K}}(t)-u_{K}(t))\Vert<\epsilon/2$

and hence $\Vert A(t)^{\alpha}(u_{n}(t)-u(t))\Vert<\epsilon$ for any $n\geqq N$ and $t\in[0, T_{0}]_{\cap}[0, T_{1}]$ .
Thus the proof is completed in such a way that was often used in [4].

4. Existence of the strict solution.

We begin with the proof of a preparatory lemma.
LEMMA. $(i)For$ any $\beta>\alpha$ and $\Psi\in D(A(0)\rho),$ $ A(t)^{\alpha}U(t, 0)\Psi$ is strongly Holder

continuous in $[0, T]$ ,

(ii) For a strongly measurable and bounded function $w(t)$ on $[0, T]$ to $X$

$|_{0}^{t}A(t)^{a}U(t, \sigma)w(\sigma)d\sigma$ is strongly Holder continuous in $[0, T]$ .
PROOF. From

$A(t)^{1+\gamma}U(t, s)=A(t)^{1+\gamma}\exp(-(t-s)A(t))$

$+\int_{s}^{t}\{A(t)^{1+\gamma}\exp(-(t-\sigma)A(t))-A(\sigma)^{1+\gamma}\exp(-(t-\sigma)A(\sigma))\}R(\sigma, s)d\sigma$

$+|_{s}^{t}A(\sigma)^{1-(\rho-\gamma})/2\exp(-(t-\sigma)A(\sigma))A(\sigma)^{(\rho+\gamma)/2}R(\sigma, s)d\sigma$

and

$(\partial/\partial t)\{A(t)^{\alpha}U(t, s)\}=_{\frac{\sin\pi\alpha}{\pi}}|_{0}^{\infty}\lambda^{\alpha}A(t)^{1-0}(\lambda+A(t))^{-1}A(t)^{\rho}dA(t)-1/dt\cdot(\lambda+A(t))^{-1}d\lambda d$

$\times A(t)U(t, s)-\frac{\sin\pi\alpha}{\pi}|_{0}^{\infty}\lambda^{\alpha-1}A(t)^{1-\gamma}(\lambda+A(t))^{-1}d\lambda\cdot A(t)^{1+\gamma}U(t’, s)$

for $\gamma$ with $\alpha<\gamma<\rho$, we have

$\Vert(\partial/\partial t)\{A(t)^{a}U(t, s)\}\Vert\leqq C\Vert A(t)^{1+\gamma 0}U(t, s)\Vert\leqq C(t-s)^{-\gamma_{0}-1},$ $r_{0}=(\alpha+\rho)/2$ .
(ii) is a direct consequence of

$\Vert\int_{0}^{t}A(t)^{\alpha}U(t, \sigma)w(\sigma)d\sigma-!_{0}^{s}A(s)^{\alpha}U(s, \sigma)w(\sigma)d\sigma\Vert$



On the abstract semi-linear differential equation $1^{-})$

$\leqq\int_{s}^{t}\Vert A(t)^{\alpha}U(t, \sigma)w(\sigma)\Vert d\sigma+|_{0}^{s}d\sigma\int_{s}^{t}\Vert(\partial/\partial_{T})\{A(\tau)^{\alpha}U(\tau, \sigma)\}w(\sigma)\Vert d\tau$

and the above inequality.
Noting

$ A(t)^{1+\alpha}U(t, 0)\Psi=\{A(t)^{1+\gamma}\exp(-tA(t))-A(0)^{1+\gamma}\exp(-tA(0))\}\Psi$

$+A(0)^{1+}r-\beta\exp(-tA(0))\cdot A(0)^{\beta}\Psi+A(t)^{1+\gamma}W(t, 0)\Psi$

for $\gamma$ with $\alpha<r<\min(\beta,\rho)$ , we can prove (i) and complete the proof.

By Theorem 1, there exists a unique mild solution $u(t)$ of (2) in $[0, T_{0}]$ for
$\phi\in D(A(0)\beta)(\beta>\alpha)$ . To prove that $u(t)$ is also a solution of (1) in $[0, T_{0}]$ we
must assume

(VII) $F(t, A(t)-\alpha p)$ is strongly H\"older continuous in $t\in[0, T]$ :

$\Vert F(t, A(t)-\alpha p)-F(s, A(s)-\alpha p)\Vert\leqq h(\Vert p\Vert)|t-s|^{\delta}$

for $p\in X$ and $t,$ $s\in[0, T]$ with some $\delta>0,$ $h$ being such a function as $f$ and $g$ .
Then it is easy to see

$\Vert F(t, v(t))-F(s, v(s))\Vert\leqq g(\Vert A(t)^{\alpha}v(t)\Vert+\Vert A(s)^{\alpha}v(s)\Vert)\Vert A(s)^{\alpha}v(t)-A(s)^{\alpha}v(s)\Vert$

$+h(\Vert A(s)^{\alpha}v(s)\Vert)|t-s|^{\delta}$

for $v(t)\in D(A(t)^{\alpha})$ and $t,$ $s\in[0, T]$ .
By the above lemma, $A(t)^{\alpha}u(t)$ is strongly H\"older continuous in $[0, T_{0}]$ and

hence so is $F(t, u(t))$ .
Wri ting

$\int_{0}^{t}A(t)U(t, s)F(s, u(s))ds$

$=\int_{0}^{t}A(t)U(t, s)\{F(s, u(s))-F(t, u(t))\}ds-\int_{0}^{t}(\partial/\partial t+\partial/\partial s)\exp(-(t-s)A(t))ds$

$\times F(t, u(t))+\{I-\exp(-tA(t))\}F(t, u(t))-\int_{0}^{t}(\partial/\partial t)W(t, s)ds\cdot F(t, u(t))$ ,

we have established

THEOREM 3. Under the assumptions $(I)-(IV)$ and (VII), for every $\varphi\in D(A(0)\beta)$

$(\beta>\alpha)$ there exists a unique solution $u(t)$ of (1) in $[0, T_{0}](0<T_{0}\leqq T)$ with the initial
value $ u(O)=\varphi$ and

(i) $u(t)$ is strongly continuous in $[0, T_{0}]$ and continuously differentiable in $(0,$ $T_{0}1$ ,

(ii) $u(t)\in D(A(t))$ for each $t\in(O, T_{0}$] and $A(t)u(t)$ is strongly continuous in
$(0, T_{0}]$ .

$u(t)$ is called a strict solutian of (1) in $[0, T_{0}]$ .
REMARK. As is easily seen in the preceding section, if we make the following

assumption instead of (VII):
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For $t\in[0, T]$ and $p\in X,$ $F(t, A(t)-\alpha p)$ belongs to $D(A(t)\delta)$ with some $\delta>0$

and $A(t)\delta F(t, A(t)-\alpha p)$ is strongly continuous in $t\in[0, T]$ ,
then we can prove similarly that (1) admits a unique strict solution in $[0, T_{0}]$

with the initial value $u(O)=\phi\in D(A(0)^{\alpha})$ .
Especially if $F(t, u)=-B(t)u$, where
$\{B(t), 0\leqq t\leqq T\}$ is a family of closed linear operators acting in $X$ such that

$D(B(t))\supset D(A(t)^{\alpha}),$ $D(A(t)\delta)\supset R(B(t)A(t)-\alpha)$ for $t\in[0, T]$ with $a\in[0,1$) and $\delta\in(0,1)$

and $A(t)\delta B(t)A(t)-a$ is strongly continuous in $t\in[0, T]$ ,
we can construct the fundamental solution $V(t, s),$ $0\leqq s\leqq t\leqq T$ to the perturbed
equation

$du/dt+A(t)u+B(t)u=0,0\leqq t\leqq T$

without difficulty in the following manner:

$V(t, s)=\sum_{n-0}^{\infty}V_{m}(t, s)$ ,

$\left\{\begin{array}{l}V_{0}(t, s)=U(t, s),\\V_{m}(t, s)=-\int_{s}^{t}U(t, \sigma)B(\sigma)V_{m-1}(\sigma, s)d\sigma_{;}m=1,2, \cdots\cdots\end{array}\right.$
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