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1. Extended contravariant almost analytic vectors.

S. Tachibana [9] generalized the notion of contravariant analytic vectors in
a Kéhlerian manifold to an almost Kihlerian manifold with structure tensor ¢j
and called » a contravariant almost analytic vector if it satisfies

an £ Yit=vrVrpjt —;éj’Vrvf +@riVivr =

where Vv denotes the operator of covariant derivative with respect to the Riemannian
connection. But this formula (1.1) is the so called concomitant and so it is in-
dependent of connection. Since, if we consider (1.1) in a Kidhlerian manifold, it
means »¢ is an analytic vector, a contravariant almost analytic vector is a generali-
zation of a contravariant analytic vector in a Kéihlerian manifold. From this point
of view, in an almost complex manifold, we shall call »i an extended contravariant
almost analytic vector if it satisfies

1.2) .;gsoj" +2¢j*Nriiv!t = 0

where N, is the Nijenhuis tensor and 2 is C*® scalar function. This vector is also
a generalization of a contravariant analytic vector in a Kédhlerian manifold. In fact,
in a Kihlerian manifold, since N»i =0 and Vv pi? =0, (1.2) shows that » is an
analytic vector [15].

Particularly, when 2 =-——%, this definition coincides with Sato’s definition
obtained from the standpoint of cross-section of a tangent bundle [4].

2. Properties of extended contravariant almost analytic vectors in K-space

By K-space (Tachibana sp'ace) we mean a Hermitian manifold M such that

.1 Vipin+Vipjn = 0.
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In K-space, since Nji#=4¢;lvipi*, we have

Z)t§0;’Nlt‘ = 4¢Jl§018(vs§0t1)vt = 4vtvt¢ji.
Consequently, if we put 2=—-711—in (1.2), we have

—@i"Vrvi+oriVjvr =0
or transvecting this equation with ¢z/, we obtain
@.2) Vivi +oriprtVir = 0
or this is equivalent to
2.3) Vrvi—orloirV i, = 0.

Generally, in an almost complex manifold, a tensor T';i(Tj) is called pure in j, i,
if it satisfies

Tii+¢@i%piTe? =0 (Tji+¢i%i*Tapr=0)
and T;i(T;:) is called hybrid in j, i, if it satisfies
Ti—gi%psiTa® =0  (Tji—ei%pi®Tap=0).
For instance, our structure tensor ¢;i is pure in j, i and Riemannian metric
tensor gji is hybrid in j, i.
The following proposition is easily verified.
ProrosiTioON. (1) If Tji is pure (Chybrid) in j, i then we have
¢i'Tir = @i"Tri (9i’Tjr=—¢;7Tri).
(2) If T is pure (hybrid) in j, i, then we have
Soerri — ¢riTjr (¢17Tr!= —gorl'ij).
B) If Tjiis pure in j, i, and Sj is pure Chybrid) in j, i, then T;»Siv is pure (hybrid)
in j, i.
(4) If Tji is pure in j,i and Sii is hybrid in j, i, then we have T;iSii = 0,
Accordingly (2.2) means that Vv is pure in &, i and (2.3) means Vs; is hybrid
in &, i. If a tensor is pure with respect to all pairs of its indices, then it is called
a pure tensor.

Now, it is well known that in a compact K-space with constant scalar carvature,
an almost analytic vector »i is decomposed in the form

vi — pi..,_??i

where pi is killing vector and % is a vector such as %= vir for a certain scalar
r [13]. '
Hence, we have
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Vivi+Viv; = Vili+Vilj = 2V 7.
On the other hand since, by (1.1), it is easily verified that vj»i+Vvw; is hybrid in
7 i, V% is hybrid in j, i.

Thus we find that % in this theorem is an extended almost analytic contra-
variant vector. And it is well known that in an Einstein K-space with nonvanish-
ing scalar curvature, an infinitesimal conformal transformation »¢ is decomposed in
the form

i = piti

where p¢ is a Kkilling vector and 7 is a gradient defining an infinitesimal conformal
transformation [1].
From this decomposition and definition of »i, we have

Vivi+Viv; = 2pgji = 2V %
where p is a scalar function.

Thus v;7; is hybrid in j, i and hence % in this theorem is also an extended
contravariant almost analytic vector.
In K-space, the following properties are known [10], [8].

(2 4) Vipir+ QDjagDibVa(/Dbh = 0, Vipin+ SDiaSDthjQDab.: O, ngp,']’ — O’
2.5 Rji—i*¢i®Ras=0, R*ji—i%0ibR*a=0, Rji=R*ij, (ViptDVipt!=Rji—R*ji

where Rji = Riji! and R*j; = ; -2 Rabripi”
(2.6) R—R* = constant
where R = giiRj; and R* = giiR*;;,

2.7 ——%—— ViR=VIRji, % ViR*=VJiR*ji

2.8 Vk(Rir—R*ix) = ’—%—Vi(_R—R*) =0.

Next we shall prove the following two lemmas.

LemMa 2.1. In a K-space, for an extended contravariant almost analytic vector vi for

A= — —i—, we have
2.9 V Vi +Riror = 0,
(2.10) VAV rvi+R*irvr =

where vi=gi*vr and vi=girp, = —gpivr,
Proor. By (2.2) and (2.4), the following identity is easily verified
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(2.1D Vjvi—0i0idVats = 20aV jpic. .
Operating v/ to (2.11) and making use of Vip;e=0, we obtain -
(2.12)  ViVivi—eia(Vigit)Vavs—0i%0idViVate = 20aViV jpia+2(Viva)V jpia.

In this place, by Proposition and (2.5), the second term of the left hand side
of (2.12) turns to

0ia(VigidIVavs = ¢j9Vigib(0sVapss +@b5Vats)
= (Ria—R*ia)ve.
For the third term, by the Ricci’s identities, we have
0i90iPViVavs= —R*iv".
Similarly, for the first term of the right hand side, by Vvipjs = 0, we have
aVIiVjpi¢ = —vaViVipja - (Ria—R*ia)va.

For the last term, since Viye is hybrid in j, ¢ and V;¢is is pure in j, @, by Proposi-
tion, it vanishes. Accordingly from (2.3), (2.9) follows.
It is easy to prove (2.10).

Lemma 2.2. In a conformally flat K-space, for an extended contravariant almost
anglytic vector v for 2 =—--71———, we have
(2.13) (Rji—R*iHVivi = 0.
Proor. Since Vjpis is pure in j, i and Rii— R*ji is hybrid in j, i, we have
Vipis(Rii —R*ii)ps = 0
and therefore it follows
(2.1 (Rii—R*i)V jvi = (Rii—R*i)(0sV jpis +9isV jvs) = (Rii— R*i)pisV jvs.
Similarly, since (Vagjs)Vivs = 0, operating Ve to this equation, we obtain
(VaVapis)Vivs+(Vapjs)VaVivs = 0,

Making use of the Ricci’s identities and Vep.s = 0, the last equation becomes
, 1 .
(2.15) os"(Rjr—R*j»)Vivs+ ——Z—Rajzsv’V“gofs =0,

By definition of conformally flat K-space, the Riemannian curvature tensor has
the following form

1
(2.16) Rajis= o (gasRj1—gjsRat+Rasgijl—Rjsgal) —b(gasgil—gisgal),
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b— R
T (@n—-2)@2n-1) -

But since we have T*#jiRy;is = 0 for anti-symmetric tensor T%ji, the second term of
the left hand side of (2.15) vanishes and so from (2.14) and (2.15) we have (2.13).
By virture of the above two lemmas, we can prove the following
TueoreM 2.1. In a compact conformally flat K-space of dim. 2n (n>2), if vi is an

extended contravariant almost analytic vector for 2:———1—-, then v' is a Killing vector and

vi is closed.
Proor. From (2.16), we have easily

(m—D(Rji—R*ji) = (n—2)Rji+n—1)bgji

where 5>0 [12].
Multiplying this equation by Wwi»i and making use of (2.13), we have

@.17) Rividi= — = pvi.

On the other hand, operating Vi to (2.9), we have
(2.18) ViV7Vs0i +0rViRyi -+ RriVior = 0.
But since, from (2.16) we have easily ViR = 0, by (2.7),

ViR, = ; V-sR=0
and by the Ricci’s identities we have
ViV'Vri = V,V'Vivi + RriV7ol,
Thus (2.18) turns to
VAVt +2Ryivroi = 0
or putting 7 = visi and substituting (2.17) in this equation, we have

.19 vv— 22 m—0 >0,

Multiplying (2.19) by %, we have

2n—2

IV — = —5 b =0
1 2n—2
or 5 V7 PR= (V)24 n—2 b2

where (V)2 = (V)V.

Consequently, by virture of Green’s theorem, we obtain
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2n—2
5 b |do = 0

\ael CVm2+
from which it follows 7=0 i.e.
2. 20) vivi = 0.
But since our manifold is compact, by (2.9) and (2.20), » is a killing vector.
Thus from Vji+Vio; =0, (2.1) and (2.3), it easily follows that
Vivi—Viv; = 0. Q.E.D.

Recently one of the present authors proved the following
THEOREM 2.2, In a compact K-space with constant scalar curvature, if v\ is an
extended contravariant almost analytic vector, i.e. if it satisfies

£Loit+2¢i' Nitivt = 0
v

where 2 is a constant satisfying ——f;—gzgo, then vi is decomposed in the form

where p and q' are both Killing vectors [14].

3. Extended covariant almost analytic vectors.
Let w: be a covariant vector in an almost complex space. If w: satisfies the
following equation
GB.D onld1w;—dnw;j+wsd jons = 0

where w; = pjsws, then w; is called a covariant almost analytic vector. This is
a generalization of a covariant analytic vector in a Kihlerian manifold.

From the same point of view as §1, we can define an extended covariant almost
analytic vector, that is, in an almost complex manifold, if w:; satisfies the following
@3.2) onl 01w — Ontw; +wsd jons +Apn! N1jsws = 0
where 21 is C® scalar function, then we shall call w; an extended covariant almost

analyltic vector.

Particularly, when 2 =——é—, this definition coincides with Sato’s definition

[5].
For instance, in an *O-space [2] which we mean a 2n-dim. almost Hermitian
manifold such that

Vigit+¢;20ibVapsh = 0,
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the Nijenhuis tensor Nji#* becomes

3.3 Njit = 2¢;7(Vrpit—Viprh)
and therefore if we put 2 =—-—%—, (3.2) turns to

on'Viw;i—¢;sVaws = 0
which is equivarent to
G40 Viwi+¢i¢pibVaws = 0,

Moreover, in an *O-space it is easily verified that if w; is an extended covariant
almost analytic vector for any scalar function A, then w; is so.

But it is well-known that a K-space is an *O-space and an almost-Kihlerian
manifold which we mean a 2n-dim. almost Ké&hlerian manifold satisfying the
equation
@G.5 Vigin+Vipni+Vapii = 0,
is also an *QO-space.

Thus in a K-space or in an almost-Kidhlerian manifold, an extended covariant
almost analytic vector for 2=———;— can be written as in the form (3.4).

In this place, we can prove the following
THeOREM 3.1. In a compact *O-space, let vi be an extended contravariant almost

analytic vector for 2:—%, i.e.
(3.6) ;')6501’""" it Nitivt =0
. 1 .
and let wi be an extended covariant almost analytic vector for 2= ——5, i.e
G.D Viwi+¢;%¢i®Vaws = 0,
then the inmer product viwi is constant.
Proor. From (1.2) for 2:———%——, it follows
. . . 1 .
3.8 UVrpiti— iVt +eriVitr — —5— ¢ Nsrior =0
and substituting (3. 3), (3. 8) becomes
(3. 9) SDj”Vrv"—gDr"Vjv’—v"Vjsor" = O.

Multiplying (3.9) by —¢&/, we have
(310 Vi -+ oriorV 07+ RV jpr = 0,
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On the other hand,
@G.1D Ve(viw) + ort Vi(viwapia)
= piVrwi +wiVrvi + orl (V10D waeis + orlvi (Viwa) gid -+ orlviwaV 19i%
= (Vi + ol osiV 105 + ol vV 1ps wi - viV rwi +viprl 0iaV itwa.
For the last term, by (3.7), we have
G.12) ViprliaV 1wa = vigr! (— @i15pa! Vswi )it = —viVrwi
and hence by (3.10) and (3.12), from (3.11) it follows
3.13) Vr(@iw) + orVi(viwapia) = 0
or putting f=viw: and g = vipisws, we have
G.14) Vift+eitvig =0.
Operating v/ to (3.14), and making use of Vip;v =0, we have
@.15) Vivif+¢itvivig = 0.

But since ¢i! is anti-symmetric in j, / and V;Vig is symmetric in j, /, we have
0ilyjvig=0 and hence

Vivif = 0.
Thus, by virture of Green’s theorem, we have

f = conmstant. Q.E.D.

4. Properties of extended covariant almost analytic vectors
in almost Kihlerian manifold.

Let w: be an extended covariant almost analytic vector for i= ——;— in an
almost Kihlerian manifold, i.e.
Viwi+¢i%idVaws = 0,
Operating v/ to this equation, we easily have
4.1 ViV iwi— R*isws— ¢is(Vips)Viwr = 0
and operating v* to (3.5), we have
ViV rpji = VFV jori—V*Vipk;.

Making use of the Ricci’s identies and Vkpr; = 0, the left hand side of the last
equation can be written as

4.2 V*Vreji = @PIRpqji+ Ri"ori— Ri*orj [9].
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On the other hand, operating v* to the following
Vrwi = wsVreisS+ @isVirws
and making use of the Ricci’s identities and (4. 2), we have
VEViwi = (PR pgit+ Ri?@ori— Rir oridw!
+2(Vreil )Vrwi+ @il Vv rwi
from which it follows
4.3) (V"Vrwi— Rriw)wi = (V"Vrwi —[—Rriwr)w?' —2R*riwrwi — 2V w! (Vroit )psiws

where wi = pisws and wi = —pstws,
And from (4.1) we have

4.4 Vrwt(Vrpst)@is = VIV jwi— R*isws.

Then substituting (4.4) in the last term of the right hand side of (4.3), we
have

(V" Vrthi—Rri ) = (V7Vrwi+ Rriw)wi —2R*riwr i —2(VIV jwor— R¥sw)uwr
from which we have
4.5) (V" Vribi— Rriter )i -+ (V70— RriwrYwi = 0,

But the following integral formulas are well-known [15] :

(4.6) S 2o LV Vrtwi— Rriwndwi+S(w)ldo = 0,

@n |, [(V" Vribi = Rritoryuvi+S () 1do = 0
where M denotes our almost Kiahlerian manifold and

1
S<w> =92 (szr - ers) (VsWr - er.s') + (VrWr>2,

-~ 1 ~ ~ ~ ~ ~
S(W) =792 (szr—V’u)s)(VSWr—VrWS) +(Vrwr)2.
Consequently, forming the sum (4.6)+(4.7) and by (4.5), we have S(w) =0
and S(w)=0.

Thus we have the following
THEOREM 4.1. In a compact almost Kihlerian manifold, if wi is an extended

. . 1 ~ .
covariant almost analytic vector for A= — 5 then wi and wi are both harmonic vectors.

Moreover, the following theorems are well-known.
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TueoreM 4.2. (S. Tachibana [9]) In a compact almost Kihlerian manifold a
necessary and sufficient condition in order that a vector wi be a covariant almost analytic
vector is that wi and wi are both harmonic.

THEOREM 4.3. In an *O-space, a vector wi is covariant almost analytic if and only if

Viwi+¢j%0itVaws = 0, Njrwr =0 ([6], [16]).

By virtue of the above two theorems, we have
Tueorem 4.4. In a compact almost Kihlerian manifold, covariant almost analytic

. . . . 1
vector coincides with an extended covarient almost analytic vector for A= — 35 -

Would it be possible to prove the same theorem as Theorem 4.1 in a compact
K-space ?

5. Extended covariant almost analytic tensors.

Let Tj,.j, be a pure tensor in an almost complex manifold. If Tj,.j, satisfies
the following equation

-~ q
G.D OnTjq...5» =¢n!0iT jq...5, — 0nT jq...51 +21(ajr¢hl)qu...l...j1 =0
=

where qu...j,_='_go,-,1qu...I...j1(r=1, 2, <eeeen q), then Tj, j, is called an covariant almost
analytic tensor. This is a generalization of covariant analytic tensor in a Kihlerian
manifold.

As in the case of an extended almost analytic vector, a pure tensor is called

an extended covariant almost analytic tensor, if it satisfies the following

q
(5. 2) ¢hT]q_71 +2f7§0thljrtqu...t...j1 = 0
=
where 2,(r=1,2, -----. ,q) are C* scalar functions.
Now, we shall assume we are in an *QO-space and consider the case when
1
A =-=2,=0, 2g= —-—.

From (5.2) we have
a 1
(5.3 onViTje..iv—Vr(@ig Tlig-r...i1) + 2 (Virph YT jg. doir = —g— W Nij' Ttig-1..1 =0
=
and substituting (3.3) in the last equation, we have
q-—1
onl VIqu---jl_¢faIVthjq—1---i1+>:‘.|1<er¢ht>qu~--t~--j1 =0
=

or multiplying this equation by ¢si¢, we have
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. -1
ViTsiqs..i1+0nt0siaViT jq... 5.+ }___.1§Ds]a<er§0ht)qu..-t~-J1 =0
-

or changing indices, we hav
q—-1

G.4) ViTiq.irtonl@isViT sjq_l...f1+21wq’ (Virpnt)Ttjg-r.d.iv = 0.
<

And from (5. 3) it follows
~ q-—1
(5.5) ViTje..in=¢n'ViTjq..j1+ Z‘.l(erth’ YW igdois+ (Vi YT 15q-1...51.
=

Moreover if we assume Tj,..;, is anti-symmetric, and put
VirT jq..511 = VhT jq..j3— (VigThig1...js+Vig-1T jahig-2...1 +VirTjq...izh),
then we find
(5.6) VirT jq..5d = VigT ja-r...in1  for even g,
VirT je.i1d = —Viiqlig-r..s1] for odd q.
On the other hand, from the following
Viel higoydr = OV iqT1ig-1...51F+ (Via@a D) T1ig1...51,

Vie-1Tjqhiq-2...51 = OW*VijqrT jqliq-z...i1+ (Vig-19n DT jalig-1--2s

Vil je..jzh = OV irTiq..is+(Viror)Tiq...ial
and (5.5), we have
6.7 VT ig.is1 = OWVOT jg.i11+ (Vr@id —VieehD) Tliq-1...5x
and similarly
5.8 Vel ja-1irhd = @i VT jqor...ishd+ (Via®iqt — Vias@ia! YT ligo1...j.
When ¢ is even, if we notic that T,.j, is also anti-symmetric, by (5.6) we have
G.9 (on!'ViT jq...i11— i VT jgr..i1k1) — (ViePigs! — Vig=10iad VT 1jg-2...i1h
= (Vigph! = V19id DT 1jg-1...51
and if we multiply the both sides of (5.9) by

*0 Z,h = —%— (827a08" + Qaiapsh),
then the left hand side vanishes and hence we have

(5. 10D 0 = (Vaos! —Vbpa! )T 1jg-1... 11
Similarly, when ¢ is odd and ¢=1, we have (5. 10).
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But in an *O-space, we have the following
TueoreM 5.1. In an *O-space, a covariant pure tensor Tj,.j, is almost analytic if
and only if

q-1
ViT jq..iv+ont0iasViT sjq-1...51 +Z}1¢jq‘ (Viror)Ttjq-1.d4..5: = 0,
=

(Vigon! —Vn0id DT 1jg-1..» = 0 [T].

Thus we have. the following

THEOREM 5.2. In an *O-space, an anti-symmeltric extended covariant almost analytic

1 .. . .
tensor Tjg.jy for 2y =+ =241 =0, ¢ = 5 and b=2 coincides with an anti-

symmelric covariant almost analytic temsor.

6. Extended almost analytic tensors of mixed type.

Let Tj,.jiiei, or briefly T(;@ be a pure tensor of type (p, q) in an almost
complex manifold. If T »® satisfies the following equation

q
+>31<3hsoz"r—azsohfr)T(j)"p“""‘fx =0,
=

where ng)ﬁ‘zgoquszq_l...j,(“, then it is called an almost analytic tensor and this is
a generalization of an analytic tensor in a Kihlerian manifold [31, [7]1, [11].

As in the preceding paragraph, for a pure contravariant tensor and pure tensor
of mixed type we can also define an extended almost analytic tensor but since we
have not yet obtained any remarkable results on these tensors, we conclude this
last section with the treatment only for the tensor of type (1.1).

Let Tji be a pure tensor of type (1.1). If T';¢ satisfies the following

(6.1 OnT ji +20r N1tiT jt + pon! N1t Tei = 0

where 2 and g are C® scalar functions, then it is called an extended almost analytic
tensor.
1 1

Suppose that we are in an *0O-space and A=—%—, p=——5, then from (6.1)
it follows
ot ViT it — @il = 0
or multiplying the last equation by ¢z#, we have

6.2) ViTji+orheil VT = 0,
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But in an *O-space, by its definition, we have
Vipii+orhpilVaprt = 0.

Thus, as an example of an extended almost analytic tensor of type (1.1) for
1 .

A= /,t=———§— in an *O-space, we have structure tensor ¢ji.

10.
11,
12.
13,
14,
15.
16.
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