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1. Introduction

The object of this note is to give the classification up to diffeomorphism of
closed, 5-connected 14-manifolds. All of our results are valid only for manifolds
with torsion free homology which are boundaries of certain 15-manifolds. The
proofs of our rsults are straightforward applications of the results of [6] and [8].

Throughout this note, we are only concerned with 14-manifolds $M$ which
satisfy the hypothesis;

$(H)M$ is closed, 5-connected and the homology of $M$ is torsion free.
By an $(H)\cdot manifold$ , we shall mean a 14-manifold satifying the hypothesis $(H)$ .

2. Splitting theorem

THEOREM 1. Let $M$ be an $(H)$ -manifold. Then we can write $M$ as a connected sum
$M=M_{1}\#(S^{7}\times S^{7})\#\cdots\cdots\#(S^{7}\times S^{7})$ ,

where $M_{1}$ is an $(H)$-manifold with $H_{7}(M_{1})=0$ .
Since the proof of this is analogous to that of theorem 1 in [8], we shall give

an outline of the proof.
It is known that $H_{7}(M)$ admits a symplectic basis $\{e;, e;^{\prime}\}(1\leqq i\leqq k)$ so that

$e;\cap e_{j}=e_{t}^{J}\cap e_{j^{\prime}}=0$

and

$e;\cap e_{J^{\prime}}=\delta_{ij}$ .
Since $M$ is 5-connected, the Hurwicz homomorphism $H$ : $\pi_{7}(M)\rightarrow H_{7}(M)$ is an
epimorphism. Thus we have mappings $\overline{f_{i}}$ and $\overline{fi^{J}}$ of $S^{7}$ in $M$ which represent $ei$

and $e;$, respectively. By a theorem of Haefliger [2], a general position argument
and the method of Whithey, we may assume that for each $i,\overline{fi}$ and $\overline{fi^{\prime}}$ are embedd-
ings, the image spheres meet each other transversely in a finite set of points, none
of which lies on more than two of the spheres, and for each $i,\overline{fi}$ and $\overline{f_{\dot{l}}}^{\prime}$ intersect
in a single point and others do not intersect. Let $p_{0}$ be the base point of $S^{7}$. We
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may suppose that our intersections are $\overline{fi}(p_{0})=\overline{fi^{\prime}}(p_{0})$ . We have embeddings

$h=\overline{f_{i}}\times p_{0}\cup p_{0}\times\overline{f_{i^{\prime}}}$ : $S^{7}\times p_{0}\cup p_{0}\times S^{7}\rightarrow M$

and
$\overline{h}$ : $D^{7}\times D^{7}\rightarrow M$,

where $D^{7}\times D^{7}$ is a neighborhood of $p_{0}\times p_{0}$ in $S^{7}\times S^{7}$. Since $\pi_{6}(SO(7))=0,\overline{f_{i}}$ and $\overline{f_{i^{\prime}}}$

can be extended to embeddings

$f_{i}$ : $S^{\gamma}\times D^{7}\rightarrow M$

$f_{i^{\prime}}$ : $S^{\gamma}\times D^{7}\rightarrow M$ .
Combing these embeddings, we have an embedding $ F\iota$ of a neighborhood $N$ of
$S^{7}\times p_{0^{U}}p_{0}\times S^{7}$ in $S^{7}\times S^{7}$ in $M$ ;

$F_{i}$ : $N\rightarrow M$ .
By a suitable choise of $N$ , we can construct a closed 14-manifold $M_{1}$ by

$M_{1}=(M-\cup intF\iota(N))\cup\bigcup_{i-1}^{k}Di^{14}$,

where a cell $D$; is attached by the map $F;$ . Obviousely $M$ is diffeomorphic to a
connected sum $M_{1}\#(S^{7}\times S^{7})\#\cdots\cdots\#(S^{7}\times S^{7})$ . It is not difficult to see that $M_{1}$ is an
$(H)$-manifold with additional property $H_{7}(M_{1})=0$ .

3. A normal form

We shall first prove the following lemma.
LEMMA 2. Let $M$ be an $(H)$ -manifold with $H_{7}(M)=0$ . Then $M$ can be obtained

from a hmotopy 14-sphere $\Sigma$ by surgery on a disjoint set of embeddings $gi$ : $ S^{\prime}\times D^{7}\rightarrow$

$\Sigma(1\leqq i\leqq k)$ .
Although the proof of lemma 2 is similar to that of theorem 2 in [8], we shall

give a complete proof, since some notations used in the proof are needed later.
PROOF of lemma. Let $\{e;\}$ be a free basis for $H_{6}(M)$ . By the Hurwic $z$ theorem,

for each $i,$ et can be represented by a map $\overline{fi}:S^{6}\rightarrow M$ ; by a general position

argument, these maps may be supposed disjoint embeddings. Since $\pi_{5}(SO(8))=0$ ,

for each $i,\overline{fi}(S^{6})$ has a trivial normal bundle, and hence $\overline{fi}$ extends to an embedd-
ing $f_{i}$ : $S^{6}\times D^{8}\rightarrow M$ . Form $W$ from $M\times I$ by using the map $fi$ to attach handle
$D^{7}\times D\iota^{8}$ to $M\times 1$ . Evindently $W$ has the same homotopy type as $M\cup\bigcup_{i-1}^{k}D_{i^{7}}$ . Hence

we have

$H_{7}(W, M;Z)=\left\{\begin{array}{ll}Z & \cdots\cdots+Z if i=7\\0 & otherwise.\end{array}\right.$
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It is easy to see that $W$ is 7-connected. I,et $\Sigma$ be the component other than $M\times O$

of $\partial W$ . We shall show that $\Sigma$ is a homotopy sphere, $i$ . $e$ . $\Sigma$ is 7-connected. In fact,

from the homology exact sequence of the pair $(W, \Sigma)$ , we have $Hi(\Sigma)=0$ for $i\leqq 6$ .
Consider the following diagram

$0\rightarrow H_{8}(W)\rightarrow H_{8}(W,\Sigma)\downarrow_{i*}\approx\downarrow\rightarrow H_{7}(\Sigma)\approx\rightarrow 0$

$\delta$

$H_{8}(M)=H^{6}(M)\rightarrow H^{7}(W, M)$ ,

where the top horizontal sequence is a part of the homology exact sequence of
that pair $(W, \Sigma),$ $i_{*}$ the homomorphism induced by the inclusion $M\rightarrow W$ and $\delta$

the coboundary homomophism. Since $i_{*}$ and $\delta$ are isomorphisms, $H_{7}(\Sigma)=0$ . Clearly
$\Sigma$ is simply connected, and hence $\Sigma$ is 7-connected.

Reversing the construction above, we see that $M$ can be obtained from $\Sigma$ by
surgery on a disjoint set of embeddings $g;$ : $S^{7}\times D^{7}\rightarrow\Sigma(1\leqq i\leqq k)$ . This completes
the proof of lemma 2.

Combining theorem 1 and lemma 2, we have shown that an $(H)$ -manifold $M$

can be written as a connected sum $M_{1}\#(S^{7}\times S^{7})\#\cdots\cdots\#(S^{7}\times S^{7})$ , where $M_{1}$ is obtained
from a homotopy 14-sphere $\Sigma$ by surgery on a disjoint set of embeddings $g;$ : $ S^{7}\times$

$ D^{7}\rightarrow\Sigma$ . If $\Sigma$ is the standard sphere $S^{14}$, then $M_{1}$ is boundary of a handlebody
$W\in \mathfrak{X}(15, k, 8)$ . Since Wall has given a classification up to diffemorphism of
elements of SC $(15, k, 8)$ [6], we can classify $(H)$ -manifolds such that $M_{1}$ bounds a
handlebody.

In what follows, $M_{S}$ denotes the sum $(S^{7}\times S^{7})\#\cdots\cdots\#(S^{7}\times S^{7})$ .
Assume that $M$ bounds a manifold $W$ with $w_{2}(W)$ (the second Stiefel-Whitney

class) $=0$ and $p_{1}(W)$ (the first Pontrjagin class) $=0$ . By surgery, we may assume
that $W$ is 6-connected. Let $W_{1}$ be the cobordism between $M_{1}$ and $\Sigma$ given in the
proof of lemma 2, which is 7-connected. We construct a 15-manifold whose
boundary is a disjoint union of $M_{1}\# M_{s}$ and $\Sigma\# M_{S}$ as follows. Choose an embedding

$\overline{f}:I\rightarrow W_{1}$ so that $\overline{f(}0$) $\in M_{1}$ and $f\overline{(}1$) $\in\Sigma$ . Since $\overline{f}$ has a trivial normal bundle,
we have an embedding $f:I\times D^{14}\rightarrow W_{1}$ so that $f(0\times D^{14})\in M_{1}$ and $ f(1\times D^{14})\in\Sigma$.
Let $x$ be a point of $M_{S}$ and $D$ is a disc neighborhood of $x$ in $M_{S}$ . Define

$ W_{2}=(W_{1}-f(I\times intD^{14}))\cup$($M_{S}\times I$-int $D\times I$)

by identifying the points $f(t, s)$ and $(t, s)$ , where $t\in I,$ $s\in\partial D$ . Clearly $\partial W=M_{1}\# M_{s}\cup$

$(-(\Sigma\# M_{S}))$ . By the homology Meyer-Vietoris exact sequence, we can show that
$W_{2}$ is 6-connected. According to the arguments in [5], $\Sigma$ can be obtained from
$\Sigma\# M_{s}$ by a sequence of surgeries. Let $W_{3}$ be the cobordism between $\Sigma\# M$ and $\Sigma$,

which is 6-connected. By identifying the common boundary of $W_{2}$ and $W_{3}$, we can
construct a 15-manifold $W^{\prime}$ whose boundary is a disjoint union of $\Sigma$ and $M_{1}\# M_{S}$ .
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Again, by identifying the common boundary of $W^{\prime}$ and $W$, we obtain a 15-manifold
$V$ whose boundary is $\Sigma$. It is not difficult to see that $V$ is 6-connected. Now we
shall prove that $V$ is 7-parallelizable, $i$ . $e$ . the restriction of the tangent bundle $\tau_{V}$

of $V$ to the 7-skelton of $V$ is trivial. In fact, the obstrucions to 7-parallelizability
are in $H^{i}(V;\pi;_{-1}(SO(15)),$ $i=1,2,$ $\cdots\cdots,$

$7$ . Sinee $V$ is 6-connected and $\pi_{6}(SO(15))=0$,
there are no obstructions. By a theorem of Wall [7], $\Sigma$ bounds a contractible
manifold, and hence $\Sigma$ is diffeomorphic to the standard 14-sphere $S^{14}$.

Thus we have proved

THEOREM 3. Let $M$ be an $(H)$ -manifold which bounds a manifold $W$ with $w_{2}(W)=$

$p_{1}(W)=0$ . Then $M$ can be written as a connected sum
$M=M_{1}\#(S^{7}\times S^{7})\#\cdots\cdots\#(S^{7}\times S^{7})$ ,

where $M_{1}$ can be obtained from the standard 14-sphere $S^{14}$ by surgery on a disioint set of
embeddings $ g\iota$ : $S\times D^{7}\rightarrow S^{14}(1\leqq i\leqq k);M_{1}$ is boundary of a handlebody $W\in\partial C(15, k, 8)$ .

In next section, we show that $M$ is framed cobordant to zero, then $M_{1}$ is
boundary of a parallelizable habdlebedy.

4. Invariants.

In his paper [6], Wall has proved the following
THEOREM. Diffeomorphism classes of elements of $9C(15, k, 8)$ correspound bijectively

to isomorphism classes of structures of invariants;

a free abelian group $H$

a symmetric bilinear map $\lambda$ : $H\times H\rightarrow\pi_{8}(S^{7})$

a map $\alpha$ : $H\rightarrow\pi_{7}(SO(7))$

subject to; for $x,$ $y\in H$

i) $\lambda(x, x)=S\pi\alpha(x)$

ii) $\alpha(x+y)=\alpha(x)+\alpha(y)+\partial\lambda(x,y)$ ,
where $\pi$ is the hmorphism induced by $SO(7)\rightarrow S^{6}$ and $\partial$ the boundary homomorphism of
the fibring $SO(7)\rightarrow SO(8)\rightarrow S^{7}$ .

We recall the definition of invariants $H,$ $\alpha$ and $\lambda$ . Let $W$ be an element of SC(15,

$k,$ $8$) $;W=D^{15}\cup\bigcup_{1i-}^{k}D^{8}\times Di^{7}$, where a handle $D^{8}\times D$; is attached by an embedding

$gi:S^{7}\times D^{7}\rightarrow S^{14},1\leqq i\leqq k$ . The handles have homology classes in $H_{8}(W, D^{15})=H_{8}(W)$ ;

denote these classes in $H_{8}(W)$ by $e;$ . Then $H$ is the group $H_{8}(W)$ . Let $\overline{gi}=g;/S^{7}\times 0$,
and we have a link in the sense of Haefliger [1]. Let $\lambda;J(i\leqq j)$ be linking numbers.
Then the map $\lambda$ is given by the formula:

$\lambda(e;, e_{j})=S\lambda_{ij}$ .
Let $FC_{7^{7}}$ be the group of isotopy classes of embeddings $g:S^{7}\times D^{7}\rightarrow S^{14}$. In his
paper [3], Haefliger has obtained an isomorphism $\tau$ : $\pi_{7}(SO(7))\rightarrow FC_{7^{7}}$, where $\tau$ is
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the map which twists the tubular neighborhood of $g$. Then the map $\alpha$ is defined
by the formula;

$\alpha(et)=\tau^{-1}[g_{i}]$ ,

where $[g;]$ denotes the isotopy class of $gi$ .
It can be shown that a handlebody $W$ is parallelizable if and only if the

boundary of $W$ is s-parallelizable. In fact, let $F$ be a trivialization of the stable
tangent bundle of $\partial W$ . It is sifficient to show that $F$ can be extend over $W$ .
Obstructions to the extending $F$ over $W$ are in $H^{i}(W, \partial W;\pi i-1(SO))$ . By straight $\cdot$

forward calculations, these groups are zero. Hence $\tau W$ is stable trivial and then $W$

is parallelizable.
Now we shall seek the condition under which a handlebody $W\in SC(15, k, 8)$ is

parallelizable. Let $W=D^{\bigcup_{i}}\bigcup_{-1}^{k}D^{8}\times D^{7}$ and $hi$ an embedding $D^{8}\times D^{7}\rightarrow W$ so that

$h;(S^{7}\times D^{7})=g;(S^{7}\times D^{7})$

and $T,$ $D$ the natural trivialization of $\tau_{D^{8}\times D^{7}}$ and $\tau_{D^{15}}$ , respectively. Define a map
$\varphi;$ : $S^{7}\rightarrow SO(15)$ by the formula;

$\varphi;(x)=<D,$ $h;’(T)>g_{(x,0)}x\in S^{7}$

Thus we have an element $0\in H^{8}(W,$ $D^{15}$ ; $\pi_{7}(SO(15))$ so that $<0,$ $ei>=[\varphi i]$ . It is
clear that $[\varphi;]=j_{*}\alpha(e;)$ , where $j_{*}$ is the homomorphism: $\pi_{7}(SO(7))\rightarrow\pi_{7}(SO(15))$

induced by the inclusion $SO(7)\rightarrow SO(15)$ . Since $W$ is parallelizable if and only
if $0=0,$ $W$ is parallelizable if and only if $\alpha=0$ .

We have shown that an $(H)$ -manifold $M$ which bounds a 7-parallelizable
manifold can be written as a connected sum $M_{1}\# M_{S}$, where $M_{1}$ is a boundary of
a handlebody $W\in 9C(15, k, 8)$ . It is clear that two diffeomophic $(H)$ -manifolds which
bound 7-parallelizable manifolds determine diffeomorphic handlebodies and two
diffeomorphic handlebodies determine diffeomorphic $(H)$ -manifolds which bound 7-
parllelizable manifolds. From the arguments above and the theorem of Wall
quated above, we have

THEOREM 4. Diffeomorphism classes of $(H)$ -manifolds which bound 7-parallelizable

manifolds correspond bijectively to isomorphism classes of structures of invariants $\{H, G, \alpha, \lambda\}$ ,

where $\{H, \alpha, \lambda\}$ is given in the theorem of Wall and $G$ is a free abelian group.
$CoROLLARY$ . Diffeomorphism classes of $(H)$ -manifolds which bound parallelizable

manifolds correspond bijectively to isomorphism classes of invariant $\{H, G, a, \lambda\}$ with $\alpha\Leftarrow 0$ .

5. Embeddings.

In this section, we shall consider the embedding problem of $(H)$ -manifolds
and closed 5-dimensional s-parallelizable manifolds.
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Let $M$ be an $(H)$-manifold which bounds a parallelizable manifold. Then, by

a result of DeSapio [4], $M$ can be embedded in $R^{17}$ . We shall show that $M$ can
be embedded in $R^{16}$ . We can assume that $M$ is boundary of a handlebody $W\in \mathfrak{N}(15$,
$k,$ $8$). We construct a new handlebody $W^{\prime}$ by giving framed links $gt^{\prime}$ : $S^{7}\times D^{8}\rightarrow S^{15}$,

the suspenion of earlier link $g_{i}$ : $S^{7}\times D^{7}\rightarrow S^{14}$ . Then $W^{\prime}\in \mathfrak{N}(16, k, 8)$ . Clearly $W^{\prime}$

is obtained from $W\times I$ by rounding the corneres. Since $W$ is parallelizable, $W^{\prime}$ is
also parallelizable. Since all the 7-spheres lie in the equater $S^{14}$, they are unliked.
Thus the invariants $\alpha$ and $\lambda$ are zero. Hence $W^{\prime}$ is diffeomorphic to a boundary-

connected sum of copies of trivial $D^{8}$-bundles over $S^{8}$. Clearly $W^{\prime}$ embeds in $R^{16}$ ,

and hence $M$ embeds in $R^{16}$ . It is not difficult to see that an $(H)$-manifold $M$

which bounds 7-parallelizable manifold embeds in $R^{16}$ if and only if $M$ bounds
a parallelizable manifold.

Next we shall consider embeddability of a cloed 5-dimensional $s\cdot paralleliz$able
manifold $M$ in $R^{8}$. By a result of [4], $M$ can be embedded in $R^{9}$. We shall show
that if $H_{1}(M)$ is free, then $M$ can be embedded in $R^{8}$. The proof is a straight-
forward application of the following theorem of Wall [8].

THEOREM of Wall.
Let $M$ be a closed simply connected 6-manifold with torsion free hmology and vanish $\cdot$

$ing$ first Pontrjagin class. Then $M$ embeds in $R^{8}$.
Let $M$ be a closed s-parallelizable 5-manifold. Then there exists a parallelizable

6-manifold $W$ whose boundary is $M$ . We may assume that $W$ is 2-connected. Let
$\tilde{W}$ be the double of $W$ . It is known that $\tilde{W}$ is a simply connected s-parallelizable
6-manifold. We shall show that $H_{*}(\tilde{W})$ has no torsion. By the homology exact
sequence of the pair $(\tilde{W}, W)$ , we have $H_{2}(\tilde{W})=H_{2}(\tilde{W}, W)$ , which is isomorphic to
$H_{2}(W, M)$ . Similarly $H_{2}(W, M)$ is isomorphic to $H_{1}(M)$ . By the assumption
$H_{1}(M)$ is free and hence $H_{2}(\tilde{W})$ is free. Since $\tilde{W}$ is simply connected, $H_{*}(\tilde{W})$ has
no torsion. By the theorem of Wall above, $\tilde{W}$ embeds in $R^{8}$ and hence $M$ also
embeds in $R^{8}$. This completes our assertion.
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