# Remarks on certain 14-manifolds 

By<br>Tsuyoshi $\mathrm{W}_{\text {atabe }}$

(Received in November 30, 1966)

## 1. Introduction

The object of this note is to give the classification up to diffeomorphism of closed, 5 -connected 14 -manifolds. All of our results are valid only for manifolds with torsion free homology which are boundaries of certain 15-manifolds. The proofs of our rsults are straightforward applications of the results of [6] and [8].

Throughout this note, we are only concerned with 14 -manifolds $M$ which satisfy the hypothesis;
(H) $M$ is closed, 5-connected and the homology of $M$ is torsion free.

By an ( $H$ )-manifold, we shall mean a 14 -manifold satifying the hypothesis ( $H$ ).

## 2. Splitting theorem

Theorem 1. Let $M$ be an (H)-manifold. Then we can write $M$ as a connected sum

$$
M=M_{1} \#\left(S^{7} \times S^{7}\right) \# \cdots \cdots \#\left(S^{7} \times S^{7}\right),
$$

where $M_{1}$ is an $(H)$-manifold with $H_{7}\left(M_{1}\right)=0$.
Since the proof of this is analogous to that of theorem 1 in [8], we shall give an outline of the proof.

It is known that $H_{7}(M)$ admits a symplectic basis $\left\{e_{i}, e_{i}\right\}(1 \leqq i \leqq k)$ so that

$$
e_{i} \cap e_{j}=e_{i}^{\prime} \cap e_{j}^{\prime}=0
$$

and

$$
e_{i} \cap e_{j}^{\prime}=\delta_{i j} .
$$

Since $M$ is 5-connected, the Hurwicz homomorphism $H: \pi_{7}(M) \longrightarrow H_{7}(M)$ is an epimorphism. Thus we have mappings $\overline{f_{i}}$ and $\overline{f_{i}^{\prime}}$ of $S^{7}$ in $M$ which represent $e_{i}$ and $e_{i}$, respectively. By a theorem of Haefliger [2], a general position argument and the method of Whithey, we may assume that for each $i, \overline{f_{i}}$ and $\overline{f_{i}^{\prime}}$ are embeddings, the image spheres meet each other transversely in a finite set of points, none of which lies on more than two of the spheres, and for each $i, \overline{f_{i}}$ and $\overline{f_{i}^{\prime}}$ intersect in a single point and others do not intersect. Let $p_{0}$ be the base point of $S^{7}$. We
may suppose that our intersections are $\overline{f_{i}}\left(p_{0}\right)=\overline{f_{i^{\prime}}}\left(p_{0}\right)$. We have embeddings

$$
h=\overline{f_{i}} \times p_{0} \cup p_{0} \times \overline{f_{i}^{\prime}}: S^{7} \times p_{0} \cup p_{0} \times S^{7} \longrightarrow M
$$

and

$$
\bar{h}: D^{7} \times D^{7} \longrightarrow M,
$$

where $D^{7} \times D^{7}$ is a neighborhood of $p_{0} \times p_{0}$ in $S^{7} \times S^{7}$. Since $\pi_{6}(S O(7))=0, \overline{f_{i}}$ and $\overline{f_{i}^{\prime}}$ can be extended to embeddings

$$
\begin{aligned}
& f_{i}: S^{7} \times D^{7} \longrightarrow M \\
& f_{i}^{\prime}: S^{7} \times D^{7} \longrightarrow M
\end{aligned}
$$

Combing these embeddings, we have an embedding $F_{i}$ of a neighborhood $N$ of $S^{7} \times p_{0} \cup p_{0} \times S^{7}$ in $S^{7} \times S^{7}$ in $M$;

$$
F_{i}: N \longrightarrow M .
$$

By a suitable choise of $N$, we can construct a closed 14 -manifold $M_{1}$ by

$$
M_{1}=\left(M-\cup i n t F_{i}(N)\right) \cup \bigcup_{i=1}^{k} D_{i}^{14}
$$

where a cell $D_{i}{ }^{14}$ is attached by the map $F_{i}$. Obviousely $M$ is diffeomorphic to a connected sum $M_{1} \#\left(S^{7} \times S^{7}\right) \# \cdots \cdots\left(S^{7} \times S^{7}\right)$. It is not difficult to see that $M_{1}$ is an ( $H$ )-manifold with additional property $H_{7}\left(M_{1}\right)=0$.

## 3. A normal form

We shall first prove the following lemma.
Lemma 2. Let $M$ be an ( $H$-manifold with $H_{7}(M)=0$. Then $M$ can be obtained from a homotopy 14 -sphere $\Sigma$ by surgery on a disjoint set of embeddings $g_{i}: S^{7} \times D^{7} \longrightarrow$ $\Sigma(1 \leqq i \leqq k)$.

Although the proof of lemma 2 is similar to that of theorem 2 in [8], we shall give a complete proof, since some notations used in the proof are needed later.

Proof of lemma. Let $\left\{e_{i}\right\}$ be a free basis for $H_{6}(M)$. By the Hurwicz theorem, for each $i, e_{i}$ can be represented by a map $\overline{f_{i}}: S^{6} \longrightarrow M$; by a general position argument, these maps may be supposed disjoint embeddings. Since $\pi_{5}(S O(8))=0$, for each $i, \overline{f_{i}}\left(S^{6}\right)$ has a trivial normal bundle, and hence $\overline{f_{i}}$ extends to an embedding $f_{i}: S^{6} \times D^{8} \longrightarrow M$. Form $W$ from $M \times I$ by using the map $f_{i}$ to attach handle $D^{7} \times D_{i}{ }^{8}$ to $M \times 1$. Evindently $W$ has the same homotopy type as $M \cup \cup_{i=1}^{k} D_{i}{ }^{7}$. Hence we have

$$
H_{7}(W, M ; Z)=\left\{\begin{array}{l}
Z+\cdots \cdots+Z \text { if } i=7 \\
0 \text { otherwise }
\end{array}\right.
$$

It is easy to see that $W$ is 7 -connected. Let $\Sigma$ be the component other than $M \times 0$ of $\partial W$. We shall show that $\Sigma$ is a homotopy sphere, i. e. $\Sigma$ is 7 -connected. In fact, from the homology exact sequence of the pair ( $W, \Sigma$ ), we have $H_{i}(\Sigma)=0$ for $i \leqq 6$. Consider the following diagram

where the top horizontal sequence is a part of the homology exact sequence of that pair $(W, \Sigma), i_{*}$ the homomorphism induced by the inclusion $M \longrightarrow W$ and $\delta$ the coboundary homomophism. Since $i_{*}$ and $\delta$ are isomorphisms, $H_{7}(\Sigma)=0$. Clearly $\Sigma$ is simply connected, and hence $\Sigma$ is 7 -connected.

Reversing the construction above, we see that $M$ can be obtained from $\Sigma$ by surgery on a disjoint set of embeddings $g_{i}: S^{7} \times D^{7} \longrightarrow \Sigma(1 \leqq i \leqq k)$. This completes the proof of lemma 2.

Combining theorem 1 and lemma 2, we have shown that an ( $H$ )-manifold $M$ can be written as a connected sum $M_{1} \#\left(S^{7} \times S^{7}\right) \# \cdots \cdots \#\left(S^{7} \times S^{7}\right)$, where $M_{1}$ is obtained from a homotopy 14 -sphere $\Sigma$ by surgery on a disjoint set of embeddings $g_{i}: S^{7} \times$ $D^{7} \longrightarrow \Sigma$. If $\Sigma$ is the standard sphere $S^{14}$, then $M_{1}$ is boundary of a handlebody $W \in \mathscr{C}(15, k, 8)$. Since Wall has given a classification up to diffemorphism of elements of $\mathscr{C}(15, k, 8)$ [6], we can classify $(H)$-manifolds such that $M_{1}$ bounds a handlebody.

In what follows, $M_{s}$ denotes the sum ( $S^{7} \times S^{7}$ ) \# $\cdots \cdots \#\left(S^{7} \times S^{7}\right)$.
Assume that $M$ bounds a manifold $W$ with $w_{2}(W)$ (the second Stiefel-Whitney class) $=0$ and $p_{1}(W)$ (the first Pontrjagin class) $=0$. By surgery, we may assume that $W$ is 6 -connected. Let $W_{1}$ be the cobordism between $M_{1}$ and $\Sigma$ given in the proof of lemma 2, which is 7 -connected. We construct a 15 -manifold whose boundary is a disjoint union of $M_{1} \# M_{s}$ and $\Sigma \# M_{s}$ as follows. Choose an embedding $\bar{f}: I \longrightarrow W_{1}$ so that $\bar{f}(0) \in M_{1}$ and $\overline{f(1)} \in \Sigma$. Since $\bar{f}$ has a trivial normal bundle, we have an embedding $f: I \times D^{14} \longrightarrow W_{1}$ so that $f\left(0 \times D^{14}\right) \in M_{1}$ and $f\left(1 \times D^{14}\right) \in \Sigma$. Let $x$ be a point of $M_{s}$ and $D$ is a disc neighborhood of $x$ in $M_{s}$. Define

$$
W_{2}=\left(W_{1}-f\left(I \times \text { int } D^{14}\right)\right) \cup\left(M_{s} \times I-\text { int } D \times I\right)
$$

by identifying the points $f(t, s)$ and $(t, s)$, where $t \in I, s \in \partial D$. Clearly $\partial W=M_{1} \# M_{s} \cup$ $\left(-\left(\Sigma \# M_{s}\right)\right)$. By the homology Meyer-Vietoris exact sequence, we can show that $W_{2}$ is 6-connected. According to the arguments in [5], $\Sigma$ can be obtained from $\Sigma \# M_{s}$ by a sequence of surgeries. Let $W_{3}$ be the cobordism between $\Sigma \# M$ and $\Sigma$, which is 6-connected. By identifying the common boundary of $W_{2}$ and $W_{3}$, we can construct a 15 -manifold $W^{\prime}$ whose boundary is a disjoint union of $\Sigma$ and $M_{1} \# M_{s}$.

Again, by identifying the common boundary of $W^{\prime}$ and $W$, we obtain a 15 -manifold $V$ whose boundary is $\Sigma$. It is not difficult to see that $V$ is 6 -connected. Now we shall prove that $V$ is 7-parallelizable, i. e. the restriction of the tangent bundle $\tau_{V}$ of $V$ to the 7-skelton of $V$ is trivial. In fact, the obstrucions to 7-parallelizability are in $H^{i}\left(V ; \pi_{i-1}(S O(15)), i=1,2, \cdots \cdots, 7\right.$. Sinee $V$ is 6 -connected and $\pi_{6}(S O(15))=0$, there are no obstructions. By a theorem of Wall [7], $\Sigma$ bounds a contractible manifold, and hence $\Sigma$ is diffeomorphic to the standard 14 -sphere $S^{14}$.

Thus we have proved
Theorem 3. Let $M$ be an ( $H$ )-manifold which bounds a manifold $W$ with $w_{2}(W)=$ $p_{1}(W)=0$. Then $M$ can be written as a connected sum

$$
M=M_{1} \#\left(S^{7} \times S^{7}\right) \# \cdots \cdots \#\left(S^{7} \times S^{7}\right),
$$

where $M_{1}$ can be obtained from the standard 14 -sphere $S^{14}$ by surgery on a disjoint set of embeddings $g_{i}: S \times D^{7} \longrightarrow S^{14}(1 \leqq i \leqq k) ; M_{1}$ is boundary of a handlebody $W \in \mathscr{G}(15, k, 8)$.

In next section, we show that $M$ is framed cobordant to zero, then $M_{1}$ is boundary of a parallelizable habdlebedy.

## 4. Invariants.

In his paper [6], Wall has proved the following
Theorem. Diffeomorphism classes of elements of $\mathfrak{H}(15, k, 8)$ correspound bijectively to isomorphism classes of structures of invariants;
a free abelian group $H$
a symmetric bilinear map $\lambda: H \times H \longrightarrow \pi_{8}\left(S^{7}\right)$
a map $\alpha: H \longrightarrow \pi_{7}(S O(7))$
subject to ; for $x, y \in H$
i) $\lambda(x, x)=S \pi \alpha(x)$
ii) $\alpha(x+y)=\alpha(x)+\alpha(y)+\partial \lambda(x, y)$,
where $\pi$ is the homorphism induced by $S O(7) \longrightarrow S^{6}$ and $\partial$ the boundary homomorphism of the fibring $S O(7) \longrightarrow S O(8) \longrightarrow S^{7}$.

We recall the definition of invariants $H, \alpha$ and $\lambda$. Let $W$ be an element of $\mathscr{C}(15$, $k, 8) ; W=D_{i=1}^{15 \cup} \bigcup_{i=1}^{k} \times D_{i}{ }^{7}$, where a handle $D^{8} \times D_{i}{ }^{7}$ is attached by an embedding $g_{i}: S^{7} \times D^{7} \longrightarrow S^{14}, 1 \leqq i \leqq k$. The handles have homology classes in $H_{8}\left(W, D^{15}\right)=H_{8}(W)$; denote these classes in $H_{8}(W)$ by $e_{i}$. Then $H$ is the group $H_{8}(W)$. Let $\overline{g_{i}}=g_{i} / S^{7} \times 0$, and we have a link in the sense of Haefliger [1]. Let $\lambda_{i j}(i \leqq j)$ be linking numbers. Then the map $\lambda$ is given by the formula;

$$
\lambda\left(e_{i}, e_{j}\right)=S \lambda_{i j} .
$$

Let $F C_{7}{ }^{7}$ be the group of isotopy classes of embeddings $g: S^{7} \times D^{7} \longrightarrow S^{14}$. In his paper [3], Haefliger has obtained an isomorphism $\tau: \pi_{7}(S O(7)) \longrightarrow F C_{7}{ }^{7}$, where $\tau$ is
the map which twists the tubular neighborhood of $g$. Then the map $\alpha$ is defined by the formula;

$$
\alpha\left(e_{i}\right)=\tau^{-1}\left[g_{i}\right],
$$

where [ $g_{i}$ ] denotes the isotopy class of $g_{i}$.
It can be shown that a handlebody $W$ is parallelizable if and only if the boundary of $W$ is s-parallelizable. In fact, let $F$ be a trivialization of the stable tangent bundle of $\partial W$. It is sifficient to show that $F$ can be extend over $W$. Obstructions to the extending $F$ over $W$ are in $H^{i}\left(W, \partial W ; \pi_{i-1}(\mathrm{SO})\right)$. By straightforward calculations, these groups are zero. Hence $\tau_{W}$ is stable trivial and then $W$ is parallelizable.

Now we shall seek the condition under which a handlebody $W \in \mathscr{H}(15, k, 8)$ is parallelizable. Let $W=D \cup_{i=1}^{k} D^{8} \times D^{7}$ and $h_{i}$ an embedding $D^{8} \times D^{7} \longrightarrow W$ so that

$$
h_{i}\left(S^{7} \times D^{7}\right)=g_{i}\left(S^{7} \times D^{7}\right)
$$

and $T, D$ the natural trivialization of $\tau_{D^{8} \times D^{7}}$ and $\tau_{D^{15}}$, respectively. Define a map $\varphi_{i}: S^{7} \longrightarrow S O(15)$ by the formula;

$$
\varphi_{i}(x)=<D, h_{i^{\prime}}(T)>g(x, 0) \quad x \in S^{7}
$$

Thus we have an element $o \in H^{8}\left(W, D^{15} ; \pi_{7}(S O(15))\right.$ so that $\left\langle o, e_{i}\right\rangle=\left[\varphi_{i}\right]$. It is clear that $\left[\varphi_{i}\right]=j_{*} \alpha\left(e_{i}\right)$, where $j_{*}$ is the homomorphism: $\pi_{7}(S O(7)) \longrightarrow \pi_{7}(S O(15))$ induced by the inclusion $S O(7) \longrightarrow S O(15)$. Since $W$ is parallelizable if and only if $o=0, W$ is parallelizable if and only if $\alpha=0$.

We have shown that an ( $H$ )-manifold $M$ which bounds a 7-parallelizable manifold can be written as a connected sum $M_{1} \# M_{s}$, where $M_{1}$ is a boundary of a handlebody $W \in \mathscr{C}(15, k, 8)$. It is clear that two diffeomophic $(H)$-manifolds which bound 7-parallelizable manifolds determine diffeomorphic handlebodies and two diffeomorphic handlebodies determine diffeomorphic ( $H$ )-manifolds which bound 7parllelizable manifolds. From the arguments above and the theorem of Wall quated above, we have

Theorem 4. Diffeomorphism classes of (H)-manifolds which bound 7-parallelizable manifolds correspond bijectively to isomorphism classes of structures of invariants $\{H, G, \alpha, \lambda\}$, where $\{H, \alpha, \lambda\}$ is given in the theorem of $W$ all and $G$ is a free abelian group.

Corollary. Diffeomorphism classes of ( $H$ )-manifolds which bound parallelizable manifolds correspond bijectively to isomorphism classes of invariant $\{H, G, \alpha, \lambda\}$ with $\alpha=0$.

## 5. Embeddings.

In this section, we shall consider the embedding problem of $(H)$-manifolds and closed 5-dimensional s-parallelizable manifolds.

Let $M$ be an ( $H$ )-manifold which bounds a parallelizable manifold. Then, by a result of DeSapio [4], $M$ can be embedded in $R^{17}$. We shall show that $M$ can be embedded in $R^{16}$. We can assume that $M$ is boundary of a handlebody $W \in \mathscr{H}(15$, $k, 8$ ). We construct a new handlebody $W^{\prime}$ by giving framed links $g_{i}{ }^{\prime}: S^{7} \times D^{8} \longrightarrow S^{15}$, the suspenion of earlier link $g_{i}: S^{7} \times D^{7} \longrightarrow S^{14}$. Then $W^{\prime} \in \mathscr{H}(16, k, 8)$. Clearly $W^{\prime}$ is obtained from $W \times I$ by rounding the corneres. Since $W$ is parallelizable, $W^{\prime}$ is also parallelizable. Since all the 7 -spheres lie in the equater $S^{14}$, they are unliked. Thus the invariants $\alpha$ and $\lambda$ are zero. Hence $W^{\prime}$ is diffeomorphic to a boundaryconnected sum of copies of trivial $D^{8}$-bundles over $S^{8}$. Clearly $W^{\prime}$ embeds in $R^{16}$, and hence $M$ embeds in $R^{16}$. It is not difficult to see that an ( $H$ )-manifold $M$ which bounds 7-parallelizable manifold embeds in $R^{16}$ if and only if $M$ bounds a parallelizable manifold.

Next we shall consider embeddability of a cloed 5-dimensional s-parallelizable manifold $M$ in $R^{8}$. By a result of [4], $M$ can be embedded in $R^{9}$. We shall show that if $H_{1}(M)$ is free, then $M$ can be embedded in $R^{8}$. The proof is a straightforward application of the following theorem of Wall [8].

Theorem of Wall.
Let $M$ be a closed simply connected 6-manifold with torsion free homology and vanishing first Pontrjagin class. Then $M$ embeds in $R^{8}$.

Let $M$ be a closed s-parallelizable 5 -manifold. Then there exists a parallelizable 6 -manifold $W$ whose boundary is $M$. We may assume that $W$ is 2 -connected. Let $\tilde{W}$ be the double of $W$. It is known that $\tilde{W}$ is a simply connected s-parallelizable 6-manifold. We shall show that $H_{*}(\tilde{W})$ has no torsion. By the homology exact sequence of the pair $(\tilde{W}, W)$, we have $H_{2}(\tilde{W})=H_{2}(\tilde{W}, W)$, which is isomorphic to $H_{2}(W, M)$. Similarly $H_{2}(W, M)$ is isomorphic to $H_{1}(M)$. By the assumption $H_{1}(M)$ is free and hence $H_{2}(\tilde{W})$ is free. Since $\tilde{W}$ is simply connected, $H_{*}(\tilde{W})$ has no torsion. By the theorem of Wall above, $\tilde{W}$ embeds in $R^{8}$ and hence $M$ also embeds in $R^{8}$. This completes our assertion.

Nigata University

## References

1. A. HAEFLIGER, Differentiable links. Topology, 1 (1962), 241-244.
2. , Prongements differentiables de varietes dans varietes. Comm. Math. Helv. 35, (1961), 47-82.
3. Differentiable embeddings of $S^{\boldsymbol{n}}$ in $S^{\boldsymbol{n + q}}$ for $q>2$. Ann. of Math. 83, (1966), 402-436.
4. R. DESAPIO, Embedding $\pi$ - manifolds. Ann. of Math., (1966).
5. M. A. Kervaire \& J. Milnor, Groups of homotopy spheres I. Ann. of Math. 77, (1963), 504-537.
6. C. T C. WALL, Classification problems in differential topology I. Topology 1, (1963), 253-261.
7. $\quad$, Killing the middle homotopy group of odd dimensional manifolds. Trans. Amer. Math. Soc. 103, (1962), 421-433.
8. Classification problems in differential Topology V. On certain 6-manifolds. Invent. Math. 1, (1966), 355-374.
